Integrali di funzioni goniometriche 1. ∫ sen 2 x ⋅ dx Dalla formula di duplicazione del coseno si ha: cos 2 x = cos 2 x − sen 2 x = 1 − sen 2 x − sen 2 x = 1 − 2 sen 2 x . Pertanto dalla formula cos 2 x = 1 − 2 sen 2 x = si ottiene: 1 ⋅ (1 − cos 2 x ) . Sostituendo si ha: 2 1 1 2 ∫ sen x ⋅ dx = ∫ 2 ⋅ (1 − cos 2 x ) ⋅ dx = 2 ⋅ ∫1 ⋅ dx − ∫ cos 2 x ⋅ dx = 1 ⎡ 1 ⎡ 1 ⎡ 1 1 1 ⎤ ⎤ ⎤ ⋅ ⎢ x − sen 2 x ⎥ + c = ⋅ ⎢ x − ⋅ 2 sen x ⋅ cos x ⎥ + c = ⋅ ⎢ ∫ 1 ⋅ dx − ⋅ ∫ 2 ⋅ cos 2 x ⋅ dx ⎥ = 2 ⎣ 2 ⎣ 2 ⎣ 2 2 2 ⎦ ⎦ ⎦ 1 = ⋅ x − sen x ⋅ cos x + c 2 2 sen 2 x = 1 − cos 2 x ; sen 2 x = [ [ 2. ∫ cos 2 ] ] x ⋅ dx ( Dalla formula di duplicazione del coseno si ha: cos 2 x = cos 2 x − sen 2 x = cos 2 x − 1 − cos 2 x ) = = − 1 + 2 cos 2 x . Pertanto dalla formula cos 2 x = − 1 + 2 cos 2 x si 1 ⋅ (1 + cos 2 x ) . Sostituendo si ha: 2 1 1 2 ∫ cos x ⋅ dx = ∫ 2 ⋅ (1 + cos 2 x ) ⋅ dx = 2 ⋅ ∫ 1 ⋅ dx + ∫ cos 2 x ⋅ dx = 1 ⎡ 1 1 ⎡ 1 1 ⎡ 1 ⎤ ⎤ ⎤ ⋅ ⎢ x + sen 2 x ⎥ + c = ⋅ ⎢ x + ⋅ 2 sen x ⋅ cos x ⎥ + c = ⋅ ⎢ ∫ 1 ⋅ dx + ⋅ ∫ 2 ⋅ cos 2 x ⋅ dx ⎥ = 2 ⎣ 2 2 ⎣ 2 2 ⎣ 2 ⎦ ⎦ ⎦ 1 ⋅ x + sen x ⋅ cos x + c = 2 ottiene: 2 cos 2 x = 1 + cos 2 x ; cos 2 x = [ [ 3. 1 ∫ sen 2 x ⋅ cos 2 x dx sen 2 x + cos 2 x ∫ sen 2 x ⋅ cos 2 x dx = ] ] Ricordando che: sen 2 x + cos 2 x = 1 si ha: sen 2 x cos 2 x dx + ∫ sen 2 x ⋅ cos 2 x ∫ sen 2 x ⋅ cos 2 x dx = 1 1 ∫ cos 2 x dx + ∫ sen 2 x dx = tg x − cot g x + c . Matematica www.mimmocorrado.it 1 = 4. 1 ∫ senx dx Ricordando che: sen 2 x = 2 sen x ⋅ cos x si ha: sen x = 2 ⋅ sen x x ⋅ cos 2 2 1 dx Applicando la relazione fondamentale sen 2 x + cos 2 x = 1 si ha: x x 2 ⋅ sen ⋅ cos 2 2 x x x x sen 2 + cos 2 sen 2 cos 2 2 2 dx = 2 2 = ∫ dx + ∫ dx = ∫ x x x x x x 2 ⋅ sen ⋅ cos 2 ⋅ sen ⋅ cos 2 ⋅ sen ⋅ cos 2 2 2 2 2 2 x x 1 x 1 x − sen sen cos cos 1 1 1 1 2 dx + ⋅ 2 dx = 2 dx + ⋅ 2 ⋅ 2 2 dx = = ⋅ ⋅ (− 2 ) ⋅ ∫ 2 ∫ x x 2 ∫ cos x 2 ∫ sen x 2 2 cos sen 2 2 2 2 = ∫ = − log cos x x + log sen + c 2 2 1 5. ∫ cos x dx = ∫ ⎛ ⎝ x+ Matematica tg sen x 2 +c cos x 2 Ricordando che: cos x = sen ⎜ x + 1 dx π⎞ ⎛ sen ⎜ x + ⎟ 2⎠ ⎝ = log = log 2 = log tg x +c 2 π⎞ ⎟ si ha: 2⎠ Applicando l’integrale dimostrato precedentemente si ha: π 2 + c = log ⎛ x π⎞ tg ⎜ + ⎟ + c ⎝2 4⎠ www.mimmocorrado.it 2