FORMULARIO Limiti notevoli 1⎞ ⎛ 1) lim ⎜1 + ⎟ x⎠ x → ∞⎝ x ⎛ α⎞ 2) lim ⎜1 + ⎟ x⎠ x → ∞⎝ =e 11) lim x→0 = eα 12) lim x→0 x 1 7) lim x → +∞ x β =0 β lim x ⋅ ln α x = 0; (∀α ∈ ℜ , ∀β > 0 ) x → 0+ 1 ax −1 = ln a = 9) lim log x e x→0 a 8) 10 ) lim x→0 (1 + x)α x −1 = α; α ∈ ℜ Formule simboliche non indeterminate k = ∞ K.............K k ≠ 0 0 ∞ ⋅ k = ∞ KK..........k ≠ 0 k ⋅ (− ∞ ) = −∞ KK...k > 0 sin x =1 13) lim x→0 x sin(ax) = 1 (a ≠ 0) 14) lim x → 0 ax tan x =1 15) lim x→0 x 1 − cos x 1 = 16) lim 2 2 x→0 x arctan x =1 17) lim x→0 x arcsin x =1 18) lim x→0 x sinh x =1 19) lim x→0 x cosh x − 1 1 = 20) lim 2 x x→0 3) lim (1 + x ) x = e x→0 ln (1 + x ) =1 4) lim x x→0 ln (1 + α x ) =α 5) lim x x→0 ax = +∞ , a > 1 6) lim x → +∞ x β ln α x log (1 + x ) 1 a = log e = ; a ∈ ℜ + − {1} a x ln a k ⋅ (− ∞ ) = +∞ KK...k < 0 (+ ∞ ) ⋅ (− ∞ ) = (− ∞ ) ⋅ (+ ∞ ) = −∞ k −∞ = 0 KK.............k > 1 k −∞ = +∞ K....K 0 < k < 1 (+ ∞ )−∞ = 0 k = 0 KK..............k ≠ ∞ ∞ ∞+k =∞ k ⋅ (+ ∞ ) = +∞ KK k > 0 k ⋅ (+ ∞ ) = −∞ KK k < 0 (+ ∞ ) ⋅ (+ ∞ ) = (− ∞ ) ⋅ (− ∞ ) = +∞ ex −1 =1 x k +∞ = +∞ KK.......k > 1 k +∞ = 0 KK....0 < k < 1 (+ ∞ )+∞ = +∞ Limiti notevoli e limiti generalizzati Limite notevole sin x =1 x x→0 1 − cos x 1 = lim 2 x2 x→0 log(1 + x) =1 lim x x→0 lim e x −1 =1 lim x x→0 ⎛ 1⎞ lim⎜⎝1+ x ⎟⎠ x =e x→∞ lim(1+ x) 1 x =e x→0 Formula generalizzata sin f ( x ) =1 f (x ) x →0 lim x lim ( ) f log [1 + f ( x )] =1 lim f ( x) f ( x )→ 0 e f ( x) − 1 =1 lim f ( x) f ( x )→0 ⎛ f ( x )→ ∞ 1 ⎞ ⎟ f ( x ) ⎟⎠ lim [1 + f ( x )] f ( x )→ 0 1 lim x x → ±∞ a 1 lim x x→0 a x→ 0 lim cos x = 1 x→ 0 = ∞ KK .......... ........ a > 0 = +∞ KK .......... ........ a > 1 lim a x = 0 KK .......... ..... 0 < a < 1 lim a x = 0 KK .......... .......... a > 1 x → −∞ lim a = +∞ KK.......... .0 < a < 1 lim log x = +∞ K.......... K.a > 1 lim log x = −∞ KK...... 0 < a < 1 lim log x = −∞ K.......... K.a > 1 x =e x → −∞ a x → +∞ lim sin x = 0 = 0 K .......... ......... K a > 0 x x → +∞ =e = +∞ KK .......... ....... a > 0 lim a x → +∞ f ( x) 1 f (x) a x → +∞ 1 − cos f ( x ) 1 = lim 2 f 2 (x ) f ( x )→ 0 lim ⎜⎜⎝1 + Limiti di Funzioni elementari a x → +∞ a x→0+ lim log x→0+ lim x → +∞ n a x = +∞ K ......... 0 < a < 1 x = +∞