LICEO ARTISTICO STATALE DI CREMA E CREMONA“B. MUNARI” PROGRAMMA SVOLTO Anno Scolastico 2012/2013 Classe V B Materia: Matematica Insegnante: Prof. ELISABETTA FANTI Testo adottato:M.Bergamini, A. Trifone, G. Barozzi “Le funzioni e i limiti” U VERDE ed. Zanichelli M.Bergamini, A. Trifone, G. Barozzi “Il calcolo differenziale e lo studio delle funzioni” V VERDE ed. Zanichelli Funzioni ♦ Intervalli nell’insieme dei numeri reali: intervalli limitati; intervalli illimitati. ♦ Estremo inferiore e superiore di un insieme di numeri reali: insiemi limitati e illimitati; minimo e massimo di un insieme ♦ Intorni di un punto ♦ Intorno destro, sinistro, completo. ♦ Intervalli aperti, semiaperti, chiusi. Funzioni reali di variabile reale ♦ Precisazioni sui simboli. ♦ Introduzione al concetto di funzione e definizione. ♦ Funzioni iniettive, suriettive, biunivoche. ♦ Funzioni crescenti e decrescenti in un intervallo ♦ Funzioni monotone ♦ Dominio e codominio di una funzione ♦ Classificazione delle funzioni ♦ Calcolo del dominio di funzioni razionali intere, razionali fratte, esponenziali, logaritmiche, irrazionali intere. ♦ Considerazioni intuitive sui grafici: dominio, codominio, intersezioni con gli assi, intervalli di positività, limiti, asintoti. ♦ Formalizzazione della nozione di dominio per funzioni analitiche intere e fratte. ♦ Simmetrie particolari: funzioni pari e funzioni dispari. Limiti e continuità delle funzioni ♦ Introduzione al concetto di limite: considerazioni intuitive a partire da grafici. ♦ Definizione di limite, con il linguaggio degli intorni e con la simbologia tradizionale (casi: finito/finito infinito/infinito; infinito/finito; finito/infinito). ♦ Limite destro e limite sinistro. ♦ Teorema di unicità del limite (solo enunciato). ♦ Teorema del confronto (solo enunciato). ♦ Teorema della permanenza del segno (solo enunciato). ♦ Definizione di funzione continua in un punto e in un intervallo ♦ Calcolo dei limiti delle funzioni continue Algebra dei limiti. Funzioni continue. Asintoti ♦ Somma/differenza/prodotto/quoziente di limiti. ♦ Teorema del limite della somma di due funzioni, teorema del limite della differenza, teorema del limite del prodotto, prodotto di una funzione infinitesima per una limitata, teorema del limite del quoziente di due funzioni (solo enunciati). ♦ Forme indeterminate ( +∞−∞; ∞/∞; 0/0). ♦ Infinitesimi e loro confronto ♦ Infiniti e loro confronto (regola pratica) ♦ Utilizzo di due limiti notevoli (solo semplici applicazioni): x lim xα 0 senx =1 x 1 1 + = e lim x xα ∞ Pag.1 di 2 ♦ ♦ ♦ ♦ Dal concetto intuitivo alla definizione di continuità di una funzione in un punto, in un intervallo. Continuità delle funzioni elementari. Punti di discontinuità di una funzione e loro classificazione (prima, seconda e terza specie o eliminabile) anche con esempi grafici. Asintoti di una funzione; ricerca di asintoti verticali, orizzontali e obliqui (per questi ultimi m e q senza dimostrazione). Grafico probabile di una funzione Lettura di alcune caratteristiche del grafico di una funzione (dominio, codominio, intersezioni con gli assi, insieme di positività,intervalli di monotonia,funzioni pari e dispari, limiti, asintoti). Derivata di una funzione. Algebra delle derivate. ♦ Rapporto incrementale ♦ Significato geometrico del rapporto incrementale ♦ Definizione di derivata ♦ Significato geometrico della derivata ♦ Determinazione dell’equazione di una retta tangente ad una funzione in un punto assegnato. ♦ Derivata destra e sinistra ♦ Punti stazionari (massimi relativi, minimi relativi, punti di flesso a tangente orizzontale). ♦ Interpretazione geometrica di alcuni casi di non derivabilità (punto angoloso, cuspide, flesso a tangente verticale) ♦ Continuità delle funzioni derivabili ( teorema con dimostrazione ed esempi anche grafici di funzioni continue in un punto ma non derivabili) ♦ Derivate di alcune funzioni elementari: funzione costante, funzione identità, funzione potenza, funzioni goniometriche y = sen(x) e y = cos(x), funzione logaritmica e funzione esponenziale con base “e” . ♦ Algebra delle derivate: le operazioni nella derivazione. ♦ Derivata della somma di due o più funzioni, derivata del prodotto di una costante per una funzione, derivata del prodotto di due funzioni e derivata di una potenza con esponente qualsiasi, derivata del quoziente, derivata di una funzione composta (in quest’ultimo caso solo semplici esempi). ♦ Derivata seconda e derivate di ordine superiore. ♦ Teorema di De L’Hôpital (senza dimostrazione) come condizione sufficiente per l’esistenza del limite del rapporto f/g nei casi di indeterminazione 0/0 o ∞/∞. Massimi e minimi relativi; Concavità e flessi; Studio delle funzioni e loro rappresentazione grafica. ♦ Funzioni derivabili crescenti e decrescenti ♦ Definizione di massimo e di minimo relativo ♦ Definizione di punto di flesso ♦ Ricerca degli intervalli di monotonia partendo dallo studio del segno della derivata prima. ♦ Concavità: definizioni ♦ Ricerca degli intervalli in cui una data curva volge la concavità in un verso o nell’altro partendo dallo studio del segno della derivata seconda. ♦ Punti di flesso a tangente obliqua ♦ Schema generale per lo studio di una funzione razionale intera e razionalefratta e relativo diagramma cartesiano. Il programma è stato portato a conoscenza della classe e di seguito firmato dai rappresentanti Cremona, 31 maggio 2013 I rappresentanti degli studenti L’insegnante Pag.2 di 2