IPOTESI SULLA NATURA DETERMINISTICA DEL COLLASSO DELLA FUNZIONE D’ONDA L’assioma principale della meccanica quantistica è la natura probabilistica (principio di indeterminazione) dello stato della particella elementare che si ipotizza parzialmente determinabile solo nel momento in cui viene osservata. In questa condizione si verificherebbe quello che è stato chiamato il collasso della funzione d’onda, dove tutte le condizioni possibili di stato scompaiono tranne quella osservata. Sappiamo che ogni atto di osservazione deve fare conti con alcuni limiti insormontabili fra cui la velocità della luce per cui ciò che veramente si nasconde dietro il misurabile non è dato di conoscere se non probabilisticamente secondo formule statistiche. Questo approccio si è peraltro dimostrato altamente preciso e ciò ha contribuito moltissimo a consolidare la meccanica quantistica. Il concetto che sta alla base consiste nell’affermazione che la particella si trova contemporaneamente in tutti gli stati possibili e di questi solo uno si verrebbe a visualizzare nell’atto di misura. La domanda è: come mai ne vediamo solo uno? E gli altri che, secondo la teoria quantistica, sarebbero contemporanei? E se non fossero contemporanei? Partendo da questi presupposti viene formulata la seguente ipotesi per fornire una diversa spiegazione del fenomeno. L’ipotesi si ricollega al modello di particella che ho sviluppato nella teoria “RIFLESSIONI CONCETTUALI SU ENERGIA E MATERIA: LA GEOMETRIA DELLE FORZE” dove la particella viene descritta come un’onda che ruota attorno ad un perno anziché lungo una linea retta. In tale modello la vibrazione del campo elettrico (l’ampiezza) possiede necessariamente una velocità cn superiore a quella di propagazione dell’onda elettromagnetica c, sia che essa si sviluppi lungo una linea retta che lungo la linea curva rappresentata dalla circonferenza della particella. Ciò sta a significare che all’interno della particella la vibrazione energetica viaggia a velocità superluminale e la sua posizione, pur essendo di tipo deterministico, non è rilevabile. cn c Il percorso della circonferenza, effettuato a velocità c, implica che le vibrazioni cn debbano essere uguali a π per avere la stessa velocità, cioè n=1. In realtà, come illustrato nella teoria, lo stato di particella (ammassamento dell’energia attorno ad un perno di rotazione) implica una lunghezza d’onda tendente a 0 (o lp) per cui il numero di oscillazioni che avverrebbero nell’arco di un giro sarebbe molto elevato da cui è ipotizzabile che l’esponente n>1. In base a ciò la posizione della vibrazione non può essere misurabile con nessun strumento fisico dal momento che funzionerebbe necessariamente con onde e.m. (è come inseguire un ghepardo con una lumaca). Sempre in base alla citata teoria la particella sarebbe caratterizzata anche da una vibrazione esterna che la porterebbe ad oscillare nello spazio secondo i profili d’onda della vibrazione interna che, essendo a velocità >c, determineranno anche per la particella una velocità di spostamento ugualmente >c. A questo punto anche la particella risulta non rilevabile tranne quando, colpita da un’altra particella, interferisce con essa creando un evento misurabile. Non si tratterebbe quindi di contemporaneità di stati ma di dinamiche che avvengono a velocità cn con n>1. Probabilmente, per coerenza con l’equazione di Einstein, n=2. Conclusioni Con il cambiamento di stato geometrico da onda a particella, la velocità della vibrazione del campo elettrico, che è necessariamente maggiore di c, caratterizza il moto della particella in quanto è di ciò che è fatta. La sua vibrazione si manifesta all’interno di un campo che, non permettendo di essere “visto” in quanto più veloce della luce, può essere affrontato solo su basi statistiche, quali sono appunto quelle della meccanica quantistica. Ciò però non starebbe a significare che gli stati siano contemporanei ma solo iperveloci, oltre c, e quindi indeterminabili dal momento che l’osservazione può essere fatto solo a velocità c.