testo - Università degli studi di Pavia

10a Esercitazione: testo
Monica Bonacina ([email protected]) Responsabile
Esercitazioni del corso di Microeconomia A-K, a.a. 2009-2010
Stefania Migliavacca
([email protected]) Responsabile
Esercitazioni del corso di Microeconomia L-Z, a.a. 2009-2010
Part I
Esercizi da svolgere ad esercitazione
Esercizio 1. Considerate un mercato concorrenziale in cui nel breve periodo opera
un’impresa caratterizzata dalla funzione di costo totale T C(Q) = 2Q. La curva
di domanda inversa per il bene considerato è p = 10 Q ed il bene è acquistato
esclusivamente dagli abitanti di Pavia. Supponete che l’attività produttiva generi
un danno alla collettività limitrofa, ad esempio dovuto alla necessità di rimuovere i
residui inquinanti della produzione che vengono scaricati nei …umi, nella misura di
4Q. (1) Si fornisca una rappresentazione gra…ca della situazione indicando curva di
domanda inversa, costo marginale privato e costo marginale sociale. (2) Si calcoli
l’equilibrio privato (ovvero la quantità di bene Q prodotto dall’impresa supponendo
che non tenga conto del danno causato alla collettività limitrofa) in termini di quantità scambiata, prezzo, pro…tti, surplus dei consumatori di Pavia e danno sopportato
dalla collettività limitrofa. (3) Si individui il livello Pareto e¢ ciente di output e lo si
rappresenti nel gra…co di cui sopra. (4) Supponete che il governo decida di introdurre
una tassa su ogni unità prodotta per un ammontare pari a 3. Si calcoli l’equilibrio
privato in corrispondenza di tale tassa e si dica se si tratta di una tassa pigouviana
(argomentando la risposta).
Esercizio 2. Elisa ama ascoltare musica techno ad altissimo volume a qualsiasi ora
del giorno e della notte. Paola, la sua compagna di appartamento, odia la musica
techno. In particolare l’utilità che Elisa ottiene dall’ascolto di musica techno è
h2
UE (h) = 5 + 8h
(il costo marginale per Elisa derivante dall’ascolto di musica techno è M CE (h) = 0)
mentre il danno per Paola di tale ascolto è
DP (h) = 6h
1
5
dove h è il numero di ore durante le quali Elisa ascolta musica techno. (1) De…nite
il concetto di esternalità. Determinate (2) il numero di ore di musica techno che
Elisa ascolterebbe in assenza di regole che le impongano di smettere; (3) il numero di
ore di musica techno socialmente ottimale. (4) Fornite una rappresentazione gra…ca
delle curve di bene…cio marginale e di danno marginale delle consumatrici indicando
l’ottimo privato (individuato al punto 2) e quello sociale (individuato al punto 3).
(5) Che tipi di interventi potrebbero convincere Elisa a ridurre il numero di ore di
ascolto di musica techno? Argomentate.
Esercizio 3. Siano date due imprese delle quali una produce microprocessori, m, e
l’altra assembla computer, c. L’impresa che produce microprocessori si caratterizza
per un’intensa attività di ricerca e sviluppo e per una continua introduzione di nuove
e migliori qualità di microprocessori. Si supponga che le funzioni di costo delle due
imprese siano date rispettivamente da
T C(m) =
m2
40
e T C(c) =
c2
10
m
dove m e c indicano le quantità di microprocessori e di computer prodotti. Dal
momento che i costi dell’impresa produttrice di computer dipendono sia dalla sua
scelta di produzione che dalla scelta di produzione della rivale (e non si veri…cano
compensazioni monetarie tra le due imprese), siamo nell’ambito delle esternalità di
produzione. Si supponga che ambedue le imprese siano price taker e che il prezzo di
mercato dei microprocessori sia pm =18, mentre quello dei computer sia pc =50. (1)
Descrivete brevemente quale forma di interdipendenza sussiste tra le due imprese.
(2) Si determini la quantità di microprocessori e di computer prodotta in equilibrio ed i pro…tti delle due imprese. (3) Come cambierebbe la risposta data al punto
precedente se l’impresa che produce microprocessori acquistasse l’impresa che produce computer?
Esercizio 4. L’impresa 1, price taker sul mercato delle sardine, adotta un sistema
di produzione che genera inquinamento. La funzione di costo totale della nostra
impresa è
T C1 (q1 ; Z) = q12 4Z + Z 2
dove q1 indica la quantità di sardine e Z le emissioni inquinanti. L’inquinamento
prodotto dall’impresa 1 causa una riduzione dei pro…tti dell’impresa 2, i cui costi
totali di produzione sono
T C2 (q2 ; Z) = q22 + Zq2
dove q2 indica l’output della seconda impresa. Il prezzo delle sardine è pari a 10 euro
(p1 = 10) mentre il prezzo sul secondo mercato, anch’esso competitivo, è pari a 6 euro
(p2 = 6). Si determini: (1) la produzione e l’inquinamento nel caso in cui la prima
impresa non sia costretta a tener conto dei danni causati alla seconda; (2) i pro…tti
sui due mercati in assenza di interventi correttivi; (3) la produzione e l’inquinamento
socialmente e¢ cienti; (4) i pro…tti sui due mercati in corrispondenza della quantità
e¢ ciente di inquinamento; (5) confrontate i risultati ottenuti ed argomentate.
2
Esercizio 5. Considerate un’industria con due imprese, Creazione (C) e Imitazione
(I), che producono lo stesso bene e sono caratterizzate dalle seguenti funzioni di costo
totale:
T Cc (qc ) = qc2 e T Ci (qi ) = qi2 4qc
dove qc e qi rappresentano, rispettivamente, le quantità prodotte da Creazione e da
Imitazione. Dal momento che i costi di Imitazione dipendono sia dalla sua scelta
di produzione che dalla scelta di produzione della rivale (e non si veri…cano compensazioni monetarie tra le due imprese), siamo nell’ambito delle esternalità di produzione. Sul mercato del prodotto le due imprese sono price-taker e il prezzo di
mercato del bene è 100. (1) Quale tipo di interdipendenza sussiste tra le due imprese a livello di produzione? (2) Si calcolino le quantità di bene prodotta da ciascuna impresa nel caso in cui esse agiscano in modo indipendente. (3) Nell’ipotesi
in cui Creazione e Imitazione agiscano in modo indipendente, ritenete che la quantità del bene complessivamente prodotta sia maggiore, minore o uguale di quella
socialmente ottimale? Motivare brevemente la vostra risposta. (Non c’è bisogno
di fare calcoli). (4) Se invece Creazione acquistasse Imitazione, quale sarebbe la
quantità complessiva di bene prodotta dalla nuova impresa Creazione&Imitazione?
(5) Calcolate l’ammontare di sussidio (sussidio pigouviano) che il governo dovrebbe
introdurre per indurre Creazione a produrre il livello socialmente e¢ ciente di output.
Esercizio 6. L’impresa A produce il bene x venduto in un mercato concorrenziale
al prezzo costante di 1000. La funzione di costo totale dell’impresa A è
T CA (x; z) = x2 + (12
z)2
dove z rappresenta il livello di inquinamento connesso al processo produttivo di
x. L’impresa B produce il bene y, venduto in un mercato concorrenziale al prezzo
costante pari a 400. La funzione di costo totale dell’imopresa B è
T CB (y; z) = y 2 + 21 z 2 .
(1) Si calcoli il livello di inquinamento scelto dall’impresa A quando massimizza i suoi
pro…tti. (2) Si determino i pro…tti massimi dell’impresa B dato il comportamento
dell’impresa A. (3) Si calcoli il livello di inquinamento socialmente e¢ ciente. (4) Si
determini il livello di imposta di Pigou che dovrebbe gravare sull’impresa A perchè
si raggiunga la con…gurazione Pareto e¢ ciente.
Esercizio 7. Considerate un mercato concorrenziale in cui nel breve periodo opera
un’impresa caratterizzata dalla funzione di costo totale T C(Q) = 10Q. (1) Si calcoli l’equilibrio (in termini di quantità scambiata, prezzo, pro…tti e surplus dei consumatori) supponendo che la domanda inversa di mercato sia p = 100 Q. (2) Si
supponga che l’attività produttiva generi un danno, ad esempio dovuto ad emissioni
inquinanti, a soggetti terzi nella misura di Q2 45Q. Si calcoli il danno in corrispondenza dell’equilibrio privato. (3) Se invece di un’impresa competitiva il mercato fosse
stato dominato da un monopolista, quale sarebbe stato il livello di output prodotto
e quale il danno causato ai terzi? (4) Confrontate (anche gra…camente) l’equilibrio
competitivo con quello monopolistico in presenza dell’esternalità e calcolate il livello
di imposta pigouviana che dovrebbe gravare sull’impresa nei due casi.
3
Esercizio 8. A causa di una recente frana è necessario ricostruire il ponte che collega il Comune A al Comune B. Gli abitanti dei due comuni possono decidere di
cooperare (C) e contribuire in equal misura alla realizzazione del nuovo ponte oppure
di non cooperare (NC) sperando che gli abitanti dell’altro Comune provvedano autonomamente a stanziare l’intera somma. La scelta viene e¤ettuata simultaneamente
e comporta i seguenti esiti.
1. Se i due comuni cooperano, ciascuno ottiene un bene…cio pari a y.
2. Se i due comuni non cooperano il ponte non viene realizzato e, a causa dell’impossibilità
di e¤ettuare scambi, ciascuno ottiene un benessere pari a 1.
3. In…ne, se un solo Comune decide di farsi carico integralmente degli oneri della
ricostruzione, questi otterrà un bene…cio a y/2 (mentre il comune che non
partecipa alla spesa ma bene…cia comunque della ricostruzione del ponte otterrà
2 + y).
(a) Si rappresenti il gioco in forma di matrice indicando in alto il Comune A.
(b) Per quali valori di y, cooperare è una strategia dominante? (c) Per quali valori
di y non cooperare è una strategia dominante? (d) Per quali valori di y si ha un
atteggiamento opportunistico da parte di uno dei due Comuni e le coppie di strategie
fC; N Cg e fN C; Cg sono equilibri di Nash del gioco?
Esercizio 9. Il sindaco di Musicopoli vuole organizzare un concero nel parco cittadino. (1) Supponendo che la popolazione si componga di 100 consumatori identici
e che il sindaco sappia che il bene…cio marginale che ciascun cittadino ricaverebbe
dall’evento è
M Bi = 11 51 h
dove h è il numero di minuti di musica, costruite e rappresentate gra…camente il
bene…cio marginale sociale (ovvero l’aggregato dei bene…ci marginali dei singoli consumatori) connesso all’evento. (2) Supponendo che il costo totale dell’evento sia
T C(h) = h2
e supponendo che il sindaco disponga dell’autorità necessaria ad imporre a tutti i
cittadini di pagare per l’evento, inividuate la durata ottimale del concerto ed il contributo richiesto a ciascuno.
Esercizio 10. Un Governo deve decidere quale ammontare di bene pubblico fornire.
Ci sono solo due cittadini interessati a tale bene (A e B). Le curve della disponibilità
a pagare (ovvero le curve di bene…cio marginale) di ognuno dei due cittadini sono
M BA = 2
1
6Q
e M BB = 4
1
3Q
La produzione del bene ha un costo
T C(Q) =
Q2
4
+9
(1) Individuate (anche gra…camente) la quantità ottimale di bene pubblico speci…cando il contributo complessivo, quello individuale e l’introito pubblico (supponendo
4
che il Governo abbia la facoltà di imporre ai contribuenti di partecipare al …nanziamento della spesa per la produzione del bene pubblico). (2) Se il Governo dovesse
imporre ad entrambi i cittadini un contributo alla produzione del bene pubblico nella
stessa misura, ritenete che il bene sarebbe prodotto? Argomentate la risposta.
Esercizio 11. Nel mercato italiano dei gelati confezionati sono presenti due grandi
imprese, la Algida (A), la Sammontana (B), che competono scegliendo simultaneamente la quantità da produrre (à la Cournot). La loro struttura dei costi è la
seguente
T C(yA ) = yA e T C(yB ) = yB
Supponete che la domanda di mercato sia data da: Y = 10 P , dove Y = yA +yB .
(1) Determinate l’espressione delle funzioni di reazione delle due imprese. (2) Calcolate quali saranno la quantità totale, il prezzo di equilibrio nel mercato e i pro…tti
delle due imprese. (3) Supponete ora che l’impresa A diventi uno Stackelberg leader
e che quindi faccia la prima mossa scegliendo il proprio volume di produzione prima
dell’impresa B. Vi aspettate che le due imprese continuino a spartirsi equamente il
mercato? Perché? (Si risponda senza fare calcoli). (4) Calcolate quali saranno le
quantità prodotte da ciascuna impresa, la quantità totale prodotta nel mercato, il
prezzo di equilibrio ed i pro…tti delle due imprese. (5) Quale tipo di concorrenza
preferiranno i consumatori? Spiegate brevemente.
5