1. PROGRAMMA DEL CORSO DI Matematica e statistica modulo di Matematica Anno accademico 2014/15 2. DOCENTE Giovanni Modanese 3. CREDITI CFU 5 UFFICIO Palazzo K, Stanza 1.13 SETTORE SCIENT. MAT-07 INDIRIZZO E-MAIL giovanni.modanese@ unibz.it TELEFONO UFFICIO 0471-017134 LEZIONI 32 ESERCITAZIONI E LAB 15 ALTRO 24 ricevimento 4. ORE DI CORSO 47 5. CORSO DI LAUREA Corso di laurea in Scienze Agrarie e Agroambientali 6. CURRICULUM 7. ANNO 1° SEMESTRE 1° 8. TIPO DI CORSO Obbligatorio 9. LINGUA DEL CORSO Italiano 10. DESCRIZIONE 11. FORMATO E ORGANIZZAZIONE DIDATTICA 12. RISULTATI DI APPRENDIMEN TO 13. ARGOMENTI DEL CORSO Il corso fornisce gli strumenti essenziali del calcolo differenziale (le principali funzioni elementari, concetto di limite, di derivata, integrale ed equazione differenziale). Questi strumenti consentono di affrontare la descrizione quantitativa di fenomeni di interesse in ambito applicativo e di prevederne le caratteristiche. Lezioni con uso del proiettore o alla lavagna, esercizi ed esempi. Esercizi svolti dall’assistente didattico in ore facoltative. Alla fine del corso lo studente dovrà conoscere (1) Il significato dei simboli e degli strumenti matematici indispensabili ed utili nella formulazione e nello studio di problemi tecnico-scientifici. (2) Risoluzione di problemi traducibili nella ricerca di valori massimo e minimo; studio del grafico di una funzione; formulazione e interpretazione di semplici modelli matematici. Funzioni (algebriche e trascendenti). Calcolo differenziale. Calcolo integrale. Cenni alle equazioni differenziali. 14. BIBLIOGRAFIA DI BASE M. Abate, Matematica e Statistica. Le basi per le scienze della vita, McGraw-Hill, ISBN 9788838664922 G. Naldi, L. Pareschi, G. Aletti, Calcolo differenziale e algebra lineare, McGrawHill, ISBN 9788838663024 15. STUDENTI AMMESSI Studenti regolarmente iscritti al primo anno di corso. 16. RACCOMANDAZIONI Frequenza del pre-corso di matematica in settembre. 17. VALUTAZIONE DELLO STUDENTE Prova scritta. Per superare l’esame di Matematica e Statistica è necessario ottenere, oltre una media pesata (peso statistica 4, matematica 5) di almeno 18/30, almeno 15/30 in entrambi i moduli. 1. COURSE SYLLABUS OF Mathematics and Statistics module: Mathematics Academic year 2014/15 2. PROFESSOR G. Modanese 3. ECTS CREDITS 5 OFFICE Building K, Room 1.13 SCIENTIFIC FIELD MAT-07 E-MAIL ADDRESS Giovanni.modanese@u nibz.it OFFICE PHONE 0471-017091 LECTURES 32 EXERCISES AND LABS 15 4. COURSE HOURS 40 OTHERS 5. STUDY PROGRAMME Bachelor in Agricultural and Agroenvironmental sciences 6. MAJOR IN 7. YEAR 1st SEMESTER 1st 8. PROGRAMME STATUS Core 9. COURSE LANGUAGE Italian 10. DESCRIPTION The course provides the essential tools of differential calculus (the main elementary functions, concept of limit, derivative, integral and differential equation). These tools can be used for the quantitative description of phenomena of interest in agricultural science. 11. TEACHING FORMAT and ORGANIZATION Lessons with use of the projector or the blackboard, exercises and examples. Exercises done by the teaching assistant teaching in optional hours. 12. LEARNING OUTCOMES At the end of the course the student should know: 1. The meaning of symbols and mathematical tools necessary and useful in the formulation and study of technical and scientific problems. 2. How to solve problems which require the search for maximum and minimum values; study graph of a function, formulation and interpretation of simple mathematical models. 13. TOPICS Functions (algebraic and transcendental). Differential calculus. Integral calculus. Basic concepts on differential equations 14. BASIC BIBLIOGRAPHY M. Abate, Matematica e Statistica. Le basi per le scienze della vita, McGrawHill, ISBN 9788838664922 G. Naldi, L. Pareschi, G. Aletti, Calcolo differenziale e algebra lineare, McGrawHill, ISBN 9788838663024 15. ELIGIBILITY First year enrolled students 16. RECOMMANDATIONS Attendance of the mathematics pre-course in September 17. STUDENT ASSESSMENT Written test. In order to pass the exam of Mathematics and Statistics the student must obtain a weighted average (weight 4 statistics, mathematics 5) of at least 18/30 and at least 15/30 in both modules. 1. Kurslehrplan Mathematik und Statistik Modul: Statistik Akademisches Jahr 2014/15 2. DOZENT Armin Schmitt BÜRO (Lage) Gebäude K, Raum 2.13 E-MAIL ADRESSE [email protected] 4. LEHRSTUNDEN 5. STUDIENGANG 7. JAHR 8. KURSSTATUS 10. KURZBESCHREIBUNG 11. LEHRFORMAT UND KURSORGANISATION 12. LERNZIELE 3. KREDITPUNKTE WISSENSCHAFTLICHES FELD TELEFONNR. BÜRO SECS/S-02 0471-017138 VORLESUNGEN 24 ÜBUNGEN UND LABORSTUNDEN 16 ANDERE 12 Bachelor in Agrarwissenschaften und Umweltmanagement 1. 4 von 9 6. SCHWERPUNKT SEMESTER 1. Deutsch; bei Bedarf 9. KURSPflichtfach Zusammenfassung auf SPRACHE englisch In diesem Kurs werden die wichtigsten statistischen Konzepte, die für ein quantitatives Verständnis der Lebenswissenschaften notwendig sind, eingeführt. Gleichzeitig werden die Grundzüge des kostenfreien Statistikpakets R vorgestellt, so dass das Lösen statistischer Probleme mit realen oder simulierten Daten eingeübt werden kann. Besonderes Gewicht wird auf die graphische Darstellung von Daten gelegt. Für die wichtigsten Fachausdrücke werden die englischen Begriffe vorgestellt. Die Themen werden zunächst in den Vorlesungen – weitestgehend mit Tafel und Kreide – behandelt und dann zeitnah am PC mit dem statistischen Paket R eingeübt. Am Ende des Kurses sollten die Teilnehmer in der Lage sein: 1. eigene Daten zu erheben und zu speichern 2. eigene Daten statistisch aufzuarbeiten und graphisch darzustellen 3. wissenschaftliche Ergebnisse und Schlussfolgerungen kritisch zu beurteilen 4. das statistische Programmpaket R anzuwenden 16. EMPFEHLUNGEN Der Kurs beinhaltet folgende Themen (Auswahl): 1. Deskriptive Statistik (Lagemaße, Streumaße) 2. Beurteilung von Daten; Erkennen von Ausreißern 3. Verteilungen 4. Graphische Darstellung von Daten 5. Kreuztabellen 6. Statistische Hypothesentests (z.B. T-test, Wilcoxon-test, Chi-QuadratTest) 7. Korrelationen 8. Grundzüge der linearen Regression Skripten auf der Kurswebseite Studenten, die im ersten Jahr des Bachelors “Agrarwissenschaften und Umweltmanagement” eingeschrieben sind. Weitere Interessenten in Abstimmung mit dem Dozenten. Die Teilnehmer sollten über ausreichende Deutschkenntnisse verfügen und Interesse an den quantitativen Aspekten der Lebenswissenschaften haben. 17. LERNERFOLGSBEWERTUNG Schriftliche Prüfung am Ende des Kurses. Eigene Aufzeichnungen, Skripten und sonstige Literatur sowie Taschenrechner dürfen benutzt werden. 13. THEMEN 14. BASISLITERATUR 15. ZUGANGSVORAUSSETZUNGEN 1. COURSE SYLLABUS OF Mathematics and Statistics module: Statistics Academic year 2014/15 3. ECTS CREDITS 2. PROFESSOR Armin Schmitt OFFICE E-MAIL ADDRESS Building K, Room 2.13 [email protected] 4. COURSE HOURS 5. STUDY PROGRAMME 7. YEAR 8. PROGRAMME STATUS 10. DESCRIPTION 11. TEACHING FORMAT and ORGANIZATION 12. LEARNING OUTCOMES 13. TOPICS 14. BASIC BIBLIOGRAPHY 40 SECS/S-02 0471-017138 LECTURES 24 EXERCISES AND LABS 16 OTHERS 12 Bachelor in Agricultural Science and agroenvironmental sciences 1. Compulsory SCIENTIFIC FIELD OFFICE PHONE 4 of 9 6. MAJOR IN SEMESTER 1. 9. COURSE LANGUAGE German; if necessary summaries in English In this course the most important statistical concepts that are necessary for a quantitative understanding of the life sciences will be introduced. At the same time the fundamentals of the free statistical programme package R will be introduced so that the solution of statistical problems by means of real or simulated data can be practised. Special emphasis will be put on the graphical visualization of data. For the most important terms the English translation will be presented. The topics will first be developed on the blackboard and then be deepened on the PC using the statistical package R. By the end of the course, students should be able to: 1. to acquire and handle their own data 2. analyse statistically and represent visually their own data 3. review critically scientific results and conclusions 4. apply the statistical programming package R The topics of this course include: 1. Descriptive statistics (measures of location and dispersion) 2. Assessment of data; identification of outliers 3. Distributions 4. Graphical visualization of data 5. Contingency tables 6. Statistical hypothesis tests (e.g. t-test, Wilcoxon-test, Chi-square-test) 7. Correlations 8. Fundamentals of linear regression Scripts on the course web page 15. ELIGIBILITY 16. RECOMMANDATIONS 17. STUDENT ASSESSMENT Students regularly enrolled in the first year of the Bachelor Study Programme “Agricultural and Agro-Environmental Sciences”. The participation of further interested students has to be discussed with the professor. The participants should have a fair command of German and should be interested in the quantitative aspects of the life sciences. Written exam at the end of the course. Own documents, scripts and other literature as well as pocket calculators can be used.