Operazioni con le matrici Algebra lineare stabilire se le seguenti matrici sono invertibili e in caso affermativo calcolarne l’inversa 1 2 3 −9 −8 � 5 3 −3 10 � 6 −7 � � −10 −1 � � −8 8 −6 −8 � � −9 1 4 0 � � −1 −7 −6 8 � −9 9 � � −9 12 � � −3 4 8� 13 � 9 − �13 1� 4 1 − �28 0 � − 1�7 − 1�11 − 1�11 1� � 2 1� 2 −10 7 � 6 −4 − 1�88 � 5� 44 − 4�9 � − 1�3 4 � 5 � 6 � 7 � 8 � 9 � 10 � � −2 0 0 � 10 4 −2� −1 0 3 −4 −5 0 � 7 10 0� 0 −4 6 − 1�2 ⎛ 7� 6 1 ⎝− �6 0 −4 0 � 5 −1 3� −3 0 6 0 −8 4 � 0 −3 0 � −8 10 −9 − 1�26 2�13 − 1�13 ⎛ 1 ⎞ 0 0 ⎟ ⎜ − �4 − 1�52 1�13 5�39 ⎝ ⎠ 11 12 13 v 3.0 2 −4 � 7 6 7 2 � 9 3 −2 5 � −3 7 5 2 � −8 1 −9 3 � 15 −5 5 −4 � 6 −5 −10 0 −10 � 0 −8 0 � −4 5 −8 � � 3� 13 5 − �13 � � � � � 5 9 � 2 4 � 4 −10 � −6 −3 � 0 −5 � −9 −10 � 3� 20 − 7�40 − 2�3 � 7� 3 1 −3 7 3 −5 � −2 1� � 21 8� 21 1 0 � 6 −7 −2 3 � 9 −6 1� 10� 1� 20 − 2�21 � 5� 21 Non invertibile 3 −4 � 6 −8 � 2 0 1 �−1 −3 7 � 5 0 −1 5 6 −4 � −5 − 1�5 ⎛ ⎜ 0 1� ⎝ 10 − 1�78 � − 3�26 10� 39� 1� 13 − 4�39 � 1� 13 Non invertibile � 2 3 2 � −1 7� 2� 5 − 9�2 � 5� 2 1� � 24 − 1�12 2� � 9 − 1�5 1 �6 �7 2� � 5 3� 5 − 5�36 � − 1�18 − 1�9 0 � 0 � − 1�7 1� 5� 2� 15 Non invertibile 0 0 1� 1� ⎞ 4 6 1 0 �3⎠ 5� 1� 4 32 ⎞ − 1�8 0 ⎟ − 5�32 − 1�4 ⎠ © 2016 - www.matematika.it 7� � 39 2� 13 −2 7� � 5 14� 15 −1 4� 5 8� 15 0 0 � 1� 6 1� 1� 0 7 7 ⎛34 1� − 5� ⎞ � − ⎜ 21 7⎟ 3 5� 2� 0 − 7⎠ ⎝ 7 ⎛ − 9�32 0 1 ⎝ �4 1� 1 3 − �8 − 1�3 0 ⎞ − 2�3 0 ⎠ 1 di 4 Operazioni con le matrici Algebra lineare 14 15 16 17 0 0 �6 1 0 0 −2 2� 7 9 4 0 �3 0 0 � 0 −4 3 3 −5 −10 �−8 0 2 � 3 0 3 2 1 0 �0 −4 −3� 0 −5 −1 −6 0 4 �−3 0 7� −5 7 5 −10 0 0 � −9 0 0� 9 −3 10 0 −2 1 2� 5 0 0 ⎛1� 4 1� ⎝ 3 1� 3 3 − �4 −1 0 0 ⎞ 1� 3⎠ 1� 0 − 1�10 15 ⎛ 1 13 37� ⎞ − − − � � ⎜ 5 50 75⎟ 1� 4� 0 10 15 ⎝ ⎠ 3� 1� − 1� 2 22 22 3 1� ⎛ 0 ⎞ 11 − �11 5 4� ⎝ 0 − �11 11 ⎠ − 5�4 ⎛ 5 ⎜ �6 4� ⎝ 3 3� 4 ⎞ 1 − �2⎟ − 2�3 5� 9 8� 9 −1 ⎠ Non invertibile 1� 1� 1 18 18 − �90 ⎛ 1� ⎞ 0 ⎜ 0 5 ⎟ 5 2 1 − �9 �18 − �18 ⎝ ⎠ calcolo i prodotti righe per colonne 𝑣𝑣𝑣𝑣 e 𝐴𝐴𝐴𝐴, rispettando l’orientamento dei vettori 18 𝑣𝑣 = (3 −6) ; 𝐴𝐴 = � 19 𝑣𝑣 = (−6 7) ; 𝐴𝐴 = � 20 𝑣𝑣 = (−9 −4) ; 𝐴𝐴 = � 21 𝑣𝑣 = (−6 9) ; 𝐴𝐴 = � 22 𝑣𝑣 = (4 −1) ; 𝐴𝐴 = � 23 𝑣𝑣 = (0 −5) ; 𝐴𝐴 = � 24 𝑣𝑣 = (7 0) ; 𝐴𝐴 = � 25 𝑣𝑣 = (−3 −5) ; 𝐴𝐴 = � v 3.0 Non invertibile −4 0 −3 �6 9 0� 0 8 −5 10 �8 0 − 7�30 2�15 0 ⎛ 2 1 1 ⎞ ⎜− �21 − �21 �7⎟ 1� − 1�10 0 5 ⎝ ⎠ 7 0 � 4 −9 −3 1 � 0 10 0 −7 � 0 1 1 1 � 1 0 −1 9 � 10 0 6 4 � −1 5 −4 4 � 0 1 −1 0 � 7 −7 © 2016 - www.matematika.it (−3 54) � 21 � 66 (18 64) � 25 � 70 (0 59) � 28 � −4 (3 −6) � 3 � −6 (−14 (5 36) −25) (−28 28) (−32 35) � −13 � 40 � −20 � −25 � −28 � 0 � 3 � 14 2 di 4 Operazioni con le matrici Algebra lineare 26 𝑣𝑣 = (0 6) ; 𝐴𝐴 = � 27 𝑣𝑣 = (−2 −2) ; 𝐴𝐴 = � 28 𝑣𝑣 = (−5 4 ; 29 𝑣𝑣 = (7 −10 30 𝑣𝑣 = (10 31 𝑣𝑣 = (3 0 −7) ; 32 𝑣𝑣 = (9 2 −10) ; 33 𝑣𝑣 = (8 −1 −9) ; 9) ; 3 10) ; 𝐴𝐴 = (7 0 35 𝐴𝐴 = (10 36 𝐴𝐴 = (−1 6 38 v 3.0 0 5 � 8 −6 (−30 18) � −54 � 18 (−16 2) � −10 � −4 −6 −1 −2 𝐴𝐴 = � 9 −6 −10� 4 0 −10 (82 0 −6 −5 𝐴𝐴 = � 10 −2 −8� −10 −3 −6 (−70 3 −8 −2 𝐴𝐴 = � 0 −8 0 � −2 −9 −9 −19 −6 −9 0 𝐴𝐴 = � 9 −8 −4� 0 −10 −1 (−132 7 1 −10 𝐴𝐴 = �8 10 3 � 0 −1 −7 (21 10 (47 2 −1 −3 −10 𝐴𝐴 = � 0 10 1 � −8 −5 3 (64 11 18 �−109� −60 −70) −73 −96 31) −134) 48 �107� 91 −68 � 14 � −169 91 �3� 49 19) 31 �−16� 54 72) 85 �−19� −86 −108) date le matrici 𝐴𝐴 e 𝐵𝐵, calcola i prodotti righe per colonne 𝐴𝐴𝐴𝐴 e 𝐵𝐵𝐵𝐵 34 37 4) 0 −9 � −5 3 1) ; 𝐵𝐵 = (6 5 −4 7) ; 𝐵𝐵 = (−7 −6 0) 4) ; 𝐵𝐵 = (8 0 −4 7 𝐴𝐴 = �−10 10� 0 8 ; 0 0 −5 𝐵𝐵 = � � 2 4 0 ; 2 0 𝐵𝐵 = � 0 10 3 −9 𝐴𝐴 = �4 0 � 8 0 3) 3 1) 2 � 5 © 2016 - www.matematika.it 45 −46 Non è possibile calcolare i prodotti (perchè?) 14 �20 16 6 �8 16 28 40 32 −90 0 0 20 50� 0 −39 8 � 16 � 0 −48 � 22 80 −40 � 54 −18 � 0 3 di 4 Algebra lineare 39 40 41 42 43 44 45 46 47 48 49 50 v 3.0 Operazioni con le matrici 0 2 𝐴𝐴 = �−1 7� 0 0 0 0 𝐴𝐴 = �−6 7� 6 0 0 −8 𝐴𝐴 = �9 0 � 0 −8 10 −5 𝐴𝐴 = � 5 −2� 8 −4 1 8 𝐴𝐴 = �0 10� 5 0 0 −1 𝐴𝐴 = �−4 −4� 0 −3 5 0 𝐴𝐴 = � 2 −3� −1 0 1 2 𝐴𝐴 = �−7 0 � −5 −3 9 0 1 −7 𝐴𝐴 = � � 0 −7 −10 0 6 0 −4 𝐴𝐴 = �6 0 −5� 0 −5 −3 −10 0 10 𝐴𝐴 = � −4 4 4� 4 −4 0 10 0 −2 𝐴𝐴 = �−9 0 1� −1 −6 6 4 �14 0 ; 0 −8 6 𝐵𝐵 = � � 2 9 0 ; 0 −10 −3 𝐵𝐵 = � � −1 −1 10 ; −6 −5 0 𝐵𝐵 = � � 0 2 −10 ; 4 5 10 𝐵𝐵 = � � 5 6 −9 ; 0 7 4 𝐵𝐵 = � � −2 0 −4 ; 3 0 0 𝐵𝐵 = � � 7 0 −3 ; −6 −4 10 𝐵𝐵 = � � −3 0 0 ; 0 7 −9 𝐵𝐵 = � � −3 8 0 ; 1 2 0 𝐵𝐵 = � � 8 −1 −2 9 −55 � −56 −10 −6 8 0 𝐵𝐵 = �−2 10 0� −6 6 3 0 � −8 −16 ; ; ; 4 5 −7 𝐵𝐵 = �−7 0 −7� 5 −7 −8 5 −3 −2 𝐵𝐵 = �0 6 6� 0 10 0 © 2016 - www.matematika.it 0 �−7 0 0 �−54 0 15 �10 12 −16 �−20 0 −7 �−40 −21 −30 � −3 6 18 71 0 0 53 −60 −16 −45 −16 20 13 16 7 0 35 8 −9 −56 � 67 0 42 88 � � 66 −18 −70 � −7 80 0� 80 145 68 � 116 −28 −40� 20 0 3 0 12� 0 9 −20 −8 4 −6 �0 9 23 −49 −59 4 �−1 20 58 65 21 50 �−45 −5 0 −6� 0 18 9 7 −20 −50 37 27 � −45 18 48 � 80 � 145 8 −70 � −1 � 20 −22 70 � −16 � 0 0 −3 � 2 50 −48 20 � � −15 −10 12 � 0 −4 −59 27 � −6 −9 63 � 45 � 0 Non è possibile 14 � calcolare 𝐵𝐵𝐵𝐵 14 (perchè?) 0 −10 −2 � 59 −20 32 −8 � 30 12� 0 54 �−42 −12 28 �−20 48 −20 79 18 � �−60 −34 −90 35 35 40 32 40 12 12 −36 0 −20 49 � 39 −28 20 � −36 −25 42 � 10 4 di 4