Costruzione con riga e compasso Costruire il triangolo ABC dati i lati AB ed AC e la bisettrice dell'angolo interno BAC. _____________________________________________________________ ______ c1 s c2 B r A C D t Sia r la bisettrice data. La costruzione con riga e compasso avviene come segue: § § § § da un punto arbitrario A di r si traccia una circonferenza c1 di raggio AB e una circonferenza c2 di raggio AC. da A si traccia una semiretta arbitraria s non perpendicolare a r. Sia B il punto d'incontro tra s e c1. da B si traccia la perpendicolare a r. Sia D il punto d'incontro tra questa e c1 da A si traccia la semiretta t congiungente A con D. Sia C il punto d'incontro tra t e c2. Il triangolo ABC (in rosso in figura) è il triangolo cercato. Infatti: § § § Il triangolo ABD è isoscele e l'altezza relativa alla base DD, contenuta in r, è anche la bisettrice dell'angolo al vertice BAD. nel triangolo ABC i lati AB e AC hanno le lunghezze assegnate nel triangolo ABC la retta r che biseca l'angolo BAD biseca pure l'angolo BAC c.d.d. Esiste una semplice infinità di triangoli che soddisfano le condizioni poste, uno per ciascuna delle semirette s.