Interferenze elettromagnetiche tra linee elettriche e reti urbane di distribuzione del gas per le Smart Grids Ing. Michele De Benedictis 25/01/2013 pag. 1 di 40 INDICE 1. INTRODUZIONE .............................................................................................................................. 4 2. EFFETTI DELLE INTERFERENZE PRODOTTE DA LINEE ELETTRICHE ...................................................... 5 3. NATURA DEI DISTURBI ELETTROMAGNETICI .................................................................................... 6 3.1. Accoppiamento capacitivo ......................................................................................................... 6 3.2. Accoppiamento induttivo ........................................................................................................... 6 3.3. Accoppiamento conduttivo ......................................................................................................... 7 4. EFFETTI PRODOTTI DALL’INTERFERENZA ELETTROMAGNETICA ........................................................ 8 4.1. Problemi di sicurezza .................................................................................................................. 8 4.2. Danni allo strato isolante della conduttura metallica .................................................................. 8 4.3. Danni alla struttura metallica ..................................................................................................... 8 4.4. Danni ai giunti e alle protezioni catodiche................................................................................... 8 4.5. Generalità sugli effetti delle correnti vaganti e corrosione da corrente alternata ......................... 9 5. NORMATIVA E DOCUMENTAZIONE TECNICA ................................................................................. 11 5.1. La normativa italiana di riferimento ......................................................................................... 11 5.2. Corridoio di influenza ............................................................................................................... 12 6. METODOLOGIA DI STUDIO DELLE INTERFERENZE ELETTROMAGNETICHE........................................ 13 6.1. Accoppiamento induttivo ......................................................................................................... 13 6.1.1 6.2. Calcolo delle tensioni indotte ......................................................................................................... 13 Accoppiamento conduttivo ....................................................................................................... 17 6.2.1 Condotte che attraversano zone interessate da una potenziale di terra ....................................... 17 6.2.2 Condotte collegate all’impianto di terra di una installazione elettrica.......................................... 17 6.2.3 Calcolo delle tensioni dovute all’accoppiamento conduttivo ......................................................... 18 6.2.4 Calcolo del potenziale di terra (EPR) delle principali installazioni elettriche ................................. 18 6.2.4.1 Potenziale di terra in prossimità dei sostegni........................................................................ 18 6.2.4.2 Potenziale di terra delle sottostazioni ................................................................................... 19 6.2.4.3 Calcolo del potenziale di terra locale (local EPR) ................................................................... 20 6.2.5 Tensione trasmessa a tubazioni vicine ad un sostegno o una sottostazione ................................. 21 pag. 2 di 40 6.3. 7. Parametri elettrici della tubazione ............................................................................................ 21 CASO STUDIO ............................................................................................................................... 24 7.1. Accoppiamento induttivo ......................................................................................................... 24 7.2. Accoppiamento conduttivo ....................................................................................................... 24 7.3. Accoppiamento capacitivo ....................................................................................................... 24 7.4. Esecuzione dei calcoli ............................................................................................................... 25 8. LIMITI APPLICATI .......................................................................................................................... 26 9. DESCRIZIONE DELLA SITUAZIONE DI INTERFERENZA ...................................................................... 28 9.1. Descrizione geometrica generale .............................................................................................. 28 9.2. Descrizione elettrica ................................................................................................................. 29 9.2.1 Resistività del suolo ........................................................................................................................ 29 9.2.2 Linee elettriche inducenti ............................................................................................................... 29 9.2.3 Tubazione indotta .......................................................................................................................... 30 10. RISULTATI DEI CALCOLI ESEGUITI .................................................................................................. 32 10.1. Risultati dei calcoli di accoppiamento induttivo......................................................................... 32 10.2. Risultati dei calcoli di accoppiamento conduttivo ...................................................................... 32 10.3. Risultati della prima fase .......................................................................................................... 33 11. CONCLUSIONI .............................................................................................................................. 39 12. RIFERIMENTI ................................................................................................................................ 40 pag. 3 di 40 1. INTRODUZIONE La presente relazione riassume i risultati dell’attività svolta per lo studio delle interferenze elettromagnetiche tra linee elettriche e reti urbane di distribuzione del gas per le smart grids. Tale attività rientra nell’ambito del Progetto di ricerca “Smart-Grids: tecnologie avanzate per i servizi pubblici e l’energia” - Accordo di Programma Quadro in materia di "Ricerca Scientifica" nella Regione Puglia – Delibera CIPE n. 17/03 e 20/04 Intervento progetti Strategici – PS_044 – CUP B95E08001120006. L’Unione Europea da diversi anni sta incentivando lo studio e lo sviluppo congiunto delle smart grids. Per rete intelligente (smart grid) si intende una rete energetica provvista di sistemi di comunicazione digitale bidirezionale fornitore-consumatore e di sistemi intelligenti di misurazione e controllo. I contatori intelligenti sono una componente inscindibile di una rete smart. Infatti, tra gli strumenti che stanno gradualmente entrando nel sistema per la gestione intelligente delle risorse energetiche ci sono gli Smart Meter, cioè strumenti di misura in grado di leggere automaticamente i consumi di energia e che, in alcuni casi, consentono anche un’interazione diretta tra distributore e cliente finale. L’introduzione di sistemi di misura intelligenti riguarda non solo le reti elettriche ma anche quelle del gas (Smart Meter Gas). L’integrazione tra reti intelligenti elettriche e del gas si realizza anche grazie a sistemi incentivanti e politiche di supporto che, negli ultimi anni, hanno innescato un repentino aumento di piccole unità di generazione diffusa (unità di produzione connesse alla reti di distribuzione soprattutto in bassa tensione) con notevole impatto sulle reti di distribuzione. Ad esempio, con il diffondersi della cogenerazione distribuita, lo sviluppo di reti elettriche intelligenti va sempre più ad intersecarsi con l’evoluzione delle smart grid del gas. L’interazione tra reti energetiche differenti (ad es. tra reti elettriche e reti del gas) include nell’ottica dello sviluppo di reti cosiddette intelligenti (smart grids) la necessità di esaminare la natura dei disturbi causati dalle possibili tipologie di interferenze che si possono innescare tra due o più sistemi. Per poter operare in modo intelligente un sistema di reti energetiche che possano meglio interagire tra loro è necessario studiare anche i possibili disturbi prodotti dall’interferenza che una rete può causare sull’altra. La natura e l’entità dei disturbi potrebbe essere tale condizionare il buon funzionamento di una o di entrambe le reti energetiche e creare anche possibili situazioni pericolose per le persone che con esse interagiscono. Lo scopo di questo documento è presentare una disamina sulla natura dei disturbi legati nello specifico ai fenomeni di interazione elettromagnetica che possono innescarsi tra reti elettriche e del gas e nel contempo mostrare in forma numerica e grafica i risultati dello studio dell’interferenza di tipo elettromagnetico che può influenzare l’interazione specifica tra linee elettriche (reti elettriche) e reti urbane di distribuzione del gas. Al riguardo, è stata selezionata una porzione della rete AMGAS spa di distribuzione del gas del quartiere Japigia della città di Bari. Tale porzione di rete si compone di due tronchi (un tronco della rete di distribuzione in media pressione ed un tronco della rete di distribuzione in bassa pressione) di condotte del gas interrate che si trovano in prossimità di due linee elettriche aeree con tensione di esercizio maggiore di 30 kV. Per l’elaborazione dello studio sono stati raccolti i dati geometrici e fisici delle linee elettriche aeree, dei metanodotti e del terreno e, di seguito, calcolati gli effetti delle interazioni elettromagnetiche di tipo induttivo e conduttivo. I calcoli delle forze elettromotrici inducenti e quindi delle tensioni e delle correnti indotte sulla tubazione del gas nonché degli effetti conduttivi sono stati effettuati implementando le formule della Guida CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 - Paris – 1995 e le prescrizioni della norma CEI 304-1 – Interferenza Elettromagnetica prodotta da linee elettriche su tubazioni metalliche: Identificazione dei rischi e limiti di interferenza. Al termine della elaborazione, i risultati numerici dei calcoli delle interferenze elettromagnetiche (effetti induttivo e conduttivo) sono stati utilizzati per produrre i grafici e le tabelle numeriche introdotti nella presente relazione. pag. 4 di 40 2. EFFETTI DELLE INTERFERENZE PRODOTTE DA LINEE ELETTRICHE Le condutture metalliche sono sistemi largamente utilizzati per convogliare fluidi, specialmente liquidi o gas. Essi possono estendersi per centinaia o addirittura per migliaia di chilometri, possono essere interrate ma anche aeree. Per prevenire la corrosione elettrochimica, le condutture metalliche interrate, sono generalmente provviste di uno strato isolante esterno e connesse ad apparecchiature per la protezione catodica. Per effetto della crescita continua nel consumo sia di gas e sia di energia elettrica e a causa di problemi connessi alla compatibilità ambientale, si sta sviluppando la tendenza ad installare le condutture metalliche nelle immediate vicinanze della rete di trasmissione e di distribuzione dell’energia elettrica. Questo fenomeno assieme alle maggiore intensità delle correnti elettriche (in condizioni di normale funzionamento o di guasto) determinata dalla crescita delle reti elettriche in dimensioni e potenza,fanno si da incrementare le interferenze elettromagnetiche tra linee elettriche e strutture metalliche dovute agli accoppiamenti induttivi, conduttivi e capacitivi che si vengono a determinare. Difatti, tali interferenze potrebbero generare problemi di diversa natura: sicurezza per le persone che vengono in contatto con le strutture metalliche (ad es. le condutture interrate); rischi di recare danni alla struttura metallica della conduttura e allo strato isolante, comprese apparecchiature (protezione catodica, ecc.); fenomeno della corrosione. Oltre ai sistemi elettrici di trasmissione e di distribuzione dell’energia elettrica, anche i sistemi di trazione elettrica sono fonte di una lunga serie di problematiche simili a quelle precedentemente delineate. La figura 1 mostra in maniera chiara quelle che sono le conseguenze delle interferenze elettromagnetiche, laddove non venissero presi dovuti accorgimenti (misure di protezione preventiva e correttiva). Figura 1 – Azione dell’interferenza prodotta da corrente alternata su tubazioni metalliche interrate pag. 5 di 40 3. NATURA DEI DISTURBI ELETTROMAGNETICI Nel valutare gli effetti delle tensioni elettriche prodotte dalle interferenze elettromagnetiche sulle tubazioni metalliche interrate, bisogna distinguere tra tre tipi di accoppiamento: capacitivo; induttivo; conduttivo. In condizioni di guasto, laddove non fossero predisposti presidi di sicurezza, la tensione indotta può agevolmente raggiungere valori compresi tra diverse centinaia di Volt ed alcuni kV. In condizioni di normale funzionamento, tali tensioni non vengono mai raggiunte, ma comunque possono creare allo stesso modo problemi di sicurezza. 3.1. Accoppiamento capacitivo Le condutture metalliche aeree situate in prossimità di sistemi elettrici di trasmissione di distribuzione di energia elettrica costituiti da linee elettriche aeree sono soggette a disturbi dovuti ad un accoppiamento di natura capacitiva. In tal caso, la tensione elettrica trasmessa alla struttura metallica, dovuta a questo particolare tipo di accoppiamento dipende essenzialmente dalla tensione di funzionamento della rete elettrica, dalla distanza tra i due sistemi e dalle condizioni di funzionamento (condizione di normale funzionamento o condizione di guasto). In figura 2 è riportata una semplice rappresentazione dell’accoppiamento capacitivo tra elettrodotto e tubazione metallica posata fuori terra. E’ evidente che le tubazioni metalliche interrate non sono soggette a questo particolare tipo di accoppiamento. Figura 2 – Rappresentazione schematica di un accoppiamento di tipo capacitivo (fonte Cigré) 3.2. Accoppiamento induttivo Una conduttura metallica, interrata o aerea, posta in prossimità di una o più linee elettriche aeree di trasmissione o distribuzione dell’energia elettrica, è soggetta a disturbi causati da un accoppiamento di natura induttiva. L’intensità di tale accoppiamento dipende essenzialmente dall’intensità della corrente che transita nell’elettrodotto, dalle condizioni di funzionamento dell’elettrodotto (condizioni di normale funzionamento, condizioni di guasto), dalla distanza tra i due sistemi, dalla lunghezza del parallelismo tra i due sistemi. La tensione elettrica indotta associata a tale fenomeno in condizioni di guasto, può raggiungere valori compresi tra un centinaio di Volt fino a diversi kV. Le tensioni indotte, in condizioni di normale funzionamento, raggiungono valori che si aggirano attorno alle decine di volt. In figura 3 è riportata una semplice rappresentazione dell’accoppiamento induttivo tra elettrodotto e tubazione metallica. pag. 6 di 40 Figura 3 – Rappresentazione schematica di un accoppiamento di tipo induttivo (fonte Cigré) 3.3. Accoppiamento conduttivo Le correnti di guasto che fluiscono attraverso la terra posso anch’esse influenzare negativamente le condutture metalliche, qualora esse siano direttamente collegate a terra. Lo strato isolante che avvolge interamente la conduttura può essere notevolmente danneggiato dalle tensioni trasmesse alla struttura metallica a causa di tale accoppiamento. In figura 4 è riportata una semplice rappresentazione dell’accoppiamento conduttivo tra elettrodotto e tubazione metallica. Figura 4 – Rappresentazione schematica di un accoppiamento di tipo conduttivo (fonte Cigré) pag. 7 di 40 4. EFFETTI PRODOTTI DALL’INTERFERENZA ELETTROMAGNETICA Gli effetti prodotti dalle interferenze elettromagnetiche tra linee elettriche e tubazioni metalliche interrate sono: pericolo per le persone che vengono a contatto con le tubazioni metalliche o le apparecchiature connesse; danno delle tubazioni o delle apparecchiature connesse; disturbi alle apparecchiature elettriche/elettroniche collegate alle tubazioni. Gli effetti causati dalle interferenze sono riassunti in Tabella 1. Tabella 1 – Effetti prodotti dall’interferenza elettromagnetica 4.1. Problemi di sicurezza Il primo problema concerne il pericolo per le persone che vengono in contatto con le condutture metalliche o le sue parti. Il pericolo è funzione dell’intensità e della durata della corrente che fluisce attraverso il corpo umano. Solitamente è utile esprimere il pericolo in funzione dei limiti di tensione ammissibili. La conversione dalla corrente alla tensione richiede una buona conoscenza dell’impedenza di tutti gli elementi costituenti il circuito elettrico conduttura metallica – corpo umano – terreno circostante. Il rischio per le persone dipende anche dalla probabilità di esposizione a valori di tensione pericolosi (ovvero la probabilità di contatto con parti metalliche che durante un guasto sono soggette a valori della tensione di contatto che superano di gran lunga i limiti di sicurezza ammissibili). Tale problema potrebbe derivare da ciascuno dei tre meccanismi di interferenza: capacitivo, induttivo e conduttivo. 4.2. Danni allo strato isolante della conduttura metallica Danni allo strato isolante della conduttura metallica potrebbe essere prodotto dall’accoppiamento induttivo o conduttivo. Esistono importanti differenze in funzione del materiale utilizzato per lo strato isolante, che generalmente è costituito da polietilene o bitume. Valori di tensione relativamente bassi possono causare scariche elettriche e conseguenti danni sufficientemente estesi allo strato di isolante in bitume. Nel caso del polietilene, tensioni di breakdown si verificano per valori ben più alti rispetto al rivestimento in bitume e generalmente in zone abbastanza localizzate. 4.3. Danni alla struttura metallica Durante un guasto, possono verificarsi danni alla parte della struttura metallica di una conduttura che passa nelle immediate vicinanze dell’impianto di terra dei tralicci delle linee elettriche. Se il valore del potenziale elettrico del terreno supera il valore della tensione di breakdown del rivestimento della conduttura, si può verificare una scarica elettrica tra l’impianto di terra del traliccio elettrico e la conduttura in grado di danneggiarne la parte metallica. Nelle condizioni peggiori si può verificare la perforazione della conduttura metallica. Questo problema è essenzialmente dovuto all’accoppiamento resistivo. 4.4. Danni ai giunti e alle protezioni catodiche Le flange dei giunti usate per isolare le sezioni di una conduttura potrebbero essere danneggiate a causa della differenza di potenziale che si potrebbe instaurare alle estremità del giunto. Questi valori di tensione possono essere pag. 8 di 40 prodotti da accoppiamenti induttivi e conduttivi che si possono verificare durante un funzionamento in condizioni di guasto. Gli accoppiamenti induttivi e conduttivi possono, infine, recare danni a tutti i sistemi e impianti interconnessi con la tubazione metallica, come ad esempio i sistemi di protezione catodica. 4.5. Generalità sugli effetti delle correnti vaganti e corrosione da corrente alternata La corrosione delle strutture metalliche è un problema decisamente complesso, in quanto, buona parte del territorio nazionale è sede di intensi campi elettrici e magnetici variabili dovuti alle correnti di ritorno di ferrovie e tranvie funzionanti in corrente continua e alternata e da correnti indotte da linee elettriche in alta tensione. Le strutture interrate, d’altro canto, costituiscono un ingente patrimonio che deve essere mantenuto efficiente nel tempo e pertanto deve essere difeso dal pericolo della corrosione. L’attuazione di un’efficace e completa protezione è motivata non solo da aspetti puramente economici ma anche da esigenze di continuità di esercizio e di sicurezza delle persone e delle opere. Notevole attenzione è stata posta negli ultimi anni, in tutti i Paesi europei, alle tubazioni metalliche interrate che corrono parallelamente a linee elettriche di alta tensione e a sistemi di trazione eserciti in corrente alternata. Questa decisa rivalutazione della corrente alternata si è avuta da una parte per il notevole incremento della potenza, del numero delle linee e dei consumi energetici, dall’altra per l’adozione di nuovi tipi di rivestimento, in particolare il polietilene che presenta valori di resistenza di isolamento verso terra molto elevati. Questo stato di cose si traduce in un notevole incremento della tensione verso terra della parte metallica della tubazione comportando tutta una serie di problematiche: problemi di sicurezza elettrica per le persone; processi corrosivi da corrente alternata; malfunzionamenti di tutte le apparecchiature connesse alla tubazione; danni alla struttura in particolare al rivestimento isolante; perforazione di giunti isolanti con pericolo di perdite. L’effetto corrosivo della corrente alternata su tubazioni metalliche interrate è stato finora ritenuto trascurabile o inesistente anche perché, con i rivestimenti di vecchio tipo (ad es. catrame di carbone, bitume ecc.) i valori di isolamento verso terra delle condotte risultavano molto bassi. Infatti, essendo tali tipi di rivestimento costituiti da materiali costituzionalmente porosi, pur in presenza di incroci o estesi parallelismi con linee elettriche ad alta tensione, la tensione indotta sulla tubazione metallica interrata viene attenuata dalla presenza di questa porosità distribuita che determina una dispersione verso terra praticamente uniforme della corrente alternata lungo la condotta. I meccanismi che stanno alla base del fenomeno non sono stati ancora completamente chiariti. Un altro fattore che ha finora impedito di sospettare l’eventuale presenza di un qualsiasi rischio di corrosione su tubazioni metalliche interrate interferite da sistemi in corrente alternata è rappresentato dal fatto che, nelle stesse zone di metallo nudo dove la densità di corrente alternata è elevata, è anche elevata la densità di corrente continua fornita dal sistema di protezione catodica. Nel campo della corrosione è fondamentale poter attribuire ad un certo fenomeno corrosivo le ragioni che l’hanno causato. Ciò viene fatto attraverso misure in sito o anche mediante prelievi di campioni che vengono analizzati successivamente in laboratorio. Nei casi di corrosione dovuta a corrente alternata, questo tipo di analisi è particolarmente importante, soprattutto per quanto riguarda i parametri da misurare direttamente in campo. Alcuni dei fattori caratteristici distintivi di una corrosione dovuta a corrente alternata possono essere riconosciuti nei seguenti tipi: presenza di una tensione in c.a. sulla tubazione; presenza di un difetto nel rivestimento (solitamente una falla aperta di piccole dimensioni); presenza di corrosione; resistività del terreno molto bassa, specialmente nelle vicinanze del difetto. Ai fini dell’accertamento delle condizioni di protezione di una tubazione metallica interrata, quando la stessa sia anche interessata da tensione alternata, l’esperienza in campo e le prove di laboratorio finora eseguite hanno dimostrato che: pag. 9 di 40 il rischio di corrosione è più elevato su tubazioni aventi resistenza di isolamento più elevata (ad es. tubi rivestiti in polietilene); 2 presenza di piccoli difetti (alcuni cm ) nel rivestimento; la composizione chimica e la resistività del terreno adiacente i difetti del rivestimento hanno una forte influenza sulla velocità di corrosione. pag. 10 di 40 5. NORMATIVA E DOCUMENTAZIONE TECNICA Di seguito si riporta l’elenco delle Normative e Guide Tecniche (nazionali e internazionali) maggiormente significative per effettuare studi di interferenza elettromagnetica tra linee elettriche e reti urbane di distribuzione del gas per le Smart Grids: [1] [2] [3] [4] [5] [6] [7] [8] [9] 5.1. CEI 11.1 – Impianti elettrici con tensione superiore a 1000 V in corrente alternata. CEI 103.6 – Protezione delle linee di telecomunicazione dagli effetti dell’induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto. CEI 304-1 – Interferenza Elettromagnetica prodotta da linee elettriche su tubazioni metalliche. Identificazione dei rischi e limiti di interferenza. CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 Paris – 1995. EPRI EL-904 Mutual Design Considerations for Overhead AC transmission Lines and Gas Transmission Pipelines, Volum 1: Enigneering Analysis – USA – 1978. EPRI EL-904 Mutual Design Considerations for Overhead AC transmission Lines and Gas Transmission Pipelines, Volum 2: Prediction and Mitigation Procedures – USA – 1978. ITU.T – Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines - K26 Volum 2: Calculating induced voltages and currents in practical cases 1999. ITU.T - Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines - ITU - vol.II, vol.III -1989. ITU-T Recommendation K.68 – Operator responsibilities in the management of electromagnetic interference by power systems on telecommunication systems – 2008. La normativa italiana di riferimento La norma CEI 304-1 del novembre 2005 (norma a livello sperimentale) rappresenta la normativa italiana di riferimento in materia di interferenza elettromagnetica prodotta da linee elettriche su tubazioni metalliche. Tale norma definisce le condizioni che devono essere analizzate e i limiti che devono essere rispettati in caso di interferenza elettromagnetica su tubazioni metalliche causata da linee elettriche in corrente alternata per differenti condizioni di funzionamento: Condizioni ordinarie di esercizio; Condizioni di guasto; e dovuta ai fenomeni di interferenza precedentemente descritti: Accoppiamento induttivo; Accoppiamento capacitivo; Accoppiamento conduttivo. La norma, che tratta gli effetti dell’interferenza relativi alla sicurezza delle persone che possono venire in contatto con la tubazione metallica o con apparati ad essa connessi, e al danno della tubazione, è applicabile per tutte le tubazioni metalliche, indipendentemente dal liquido o gas convogliato, per le quali è possibile il fenomeno dell’interferenza elettromagnetica. La tabella 2, estratta dalla norma CEI 304-1, fornisce i valori di tensione ammissibili in caso di guasto, in funzione del tempo di estinzione dello stesso. In condizioni di normale funzionamento la tensione indotta non deve superare i 60 V. Infine, da numerosi studi di natura empirica, per evitare il fenomeno della corrosione, la tensione trasmessa alla tubazione non deve superare i 10 V. Le normative a livello internazionale, ognuna delle quali pone differenti valori ai limiti di tensione ammissibili, forniscono un valore di riferimento per effettuare tali studi di interferenza con specifico riferimento alla dimensione del corridoio di influenza elettromagnetica da prendere in considerazione per effettuare i calcoli. pag. 11 di 40 Durata del guasto [s] t 0,1 0,1 < t 0,2 0,2 < t 0,35 0,35 < t 0,5 0,5 < t 1 1<t3 t>3 Valore efficace della Tensione [V] 2000 1500 1000 650 300 150 60 Tabella 2 – Valori di tensione ammissibili in caso di guasto 5.2. Corridoio di influenza Per quanto concerne le dimensioni del corridoio di influenza, su cui effettuare i calcoli, la norma CEI 304-1 prevede: per le aree rurali una distanza di 3000 m tra la linea elettrica aerea in c.a. e la tubazione metallica (nel caso di valori di resistività del terreno maggiore a 3000 Ωm, il valore della distanza di interferenza è uguale in metri al valore della resistività del suolo; nelle aree urbane le distanze di interferenza precedenti possono essere diminuite, tenendo conto del fattore di riduzione ambientale delle tubazioni metalliche esistenti in tali aree, fino ad una distanza di 300 m; per linee elettriche in cavo sotterraneo, si applica una distanza di interferenza di 30 m. Nel caso più generale, le normative di riferimento internazionale, e in particolare, la formulazione proposta dalla Guida Cigré del 1995 prevede una distanza di interferenza direttamente proporzionale alla radice quadrata della resistività del terreno secondo la formula: d 200 ρ dove indica il valore della resistività del terreno. Nel caso più generale possibile, dove sia lecito assumere come resistività del terreno il valore di 100 Ωm, la distanza di interferenza vale 2000 m. In figura 5 è riportato un esempio di corridoio determinato secondo il criterio proposto dalla Guida Cigré. Figura 5 – Rappresentazione di un corridoio di interferenza (fonte Cigré) pag. 12 di 40 6. METODOLOGIA DI STUDIO DELLE INTERFERENZE ELETTROMAGNETICHE 6.1. Accoppiamento induttivo Le condutture metalliche, aeree o interrate, installate in prossimità di linee elettriche di trasmissione e di distribuzione dell’energia elettrica (aeree o in cavo), sono soggette agli effetti prodotti dalle tensioni indotte dal campo magnetico variabile prodotto dalle correnti che attraversano le linee elettriche. Le forze elettromotrici (EMF – ElectroMotive Force) indotte causano la circolazione di correnti nella tubazione e l’insorgere di potenziali elettrici tra la tubazione e il terreno circostante. Il fenomeno dell’accoppiamento induttivo tra linee elettriche (aeree o in cavo) dipende essenzialmente da 4 parametri: Correnti che attraversano le linee elettriche e condizioni di funzionamento delle linee elettriche In condizioni di funzionamento normale le tensioni indotte dipendono dall’intensità delle correnti di linea. Nel caso di funzionamento in condizione di guasto, l’ampiezza delle tensioni indotte dipende dalla corrente di guasto monofase a terra. L’ampiezza della tensione indotta in caso di guasto sarà maggiore rispetto a quella indotta in condizioni normali ma la sua durata sarà breve in quanto i guasti sono fenomeni elettrici di breve durata (la maggior parte dei guasti hanno una durata inferiore ad 1 secondo). Distanza tra conduttura e sistema elettrico Le tensioni indotte si riducono con l’aumento della distanza di separazione tra tubazione e linee elettriche. Lunghezza di esposizione La lunghezza di esposizione è la lunghezza della zona dove l’influenza è maggiormente significativa. Sebbene la forza elettromotrice totale aumenti con la lunghezza di esposizione, la tensione indotta aumenta linearmente con l’aumentare della lunghezza di esposizione da 1 km fino a pochi chilometri in dipendenza del rivestimento della tubazione. Per lunghezze di esposizione considerevoli, l’ampiezza della tensione indotta è limitata dall’impedenza di dispersione del rivestimento della tubazione. Natura del sistema elettrico L’accoppiamento induttivo prodotto da linee elettriche aeree è differente da quello prodotto dalle linee elettriche in cavo. Le differenze sono essenzialmente dovute all’effetto dell’armatura dei cavi durante i guasti e alle distanze ridotte tra i conduttori di fase che nel caso dei cavi conduce a disturbi ridotti in condizioni di funzionamento normale. 6.1.1 Calcolo delle tensioni indotte Il calcolo delle tensioni indotte sulle tubazioni metalliche da linee elettriche avviene in due fasi: Fase 1) Calcolo delle forze elettromotrici indotte (EMF) lungo la tubazione metallica; fase 2) Calcolo delle tensioni e delle correnti che circolano all’interno della tubazione in funzione delle EMF calcolate durante la fase 1). Esiste una netta distinzione tra le forze elettromotrici indotte (EMF) e le tensioni indotte che influenzano la tubazione. Le EMF sono “generatori in c.a. virtuali” del circuito tubazione/terreno derivanti dall’accoppiamento induttivo. Queste EMF generano le tensioni sulla tubazione e solo queste tensioni rappresentano lo stress elettrico a cui sono sottoposte la tubazione e le sue apparecchiature. In figura 6 è rappresentato il circuito equivalente rappresentativo dell’accoppiamento induttivo. La zona di influenza generalmente comprende una successione di parallelismi, avvicinamenti e attraversamenti. Le espressioni utilizzate per il calcolo delle EMF fanno riferimento a condizioni di parallelismo tra la tubazioni e i circuiti elettrici inducenti (linee elettriche). Per poter effettuare il calcolo delle tensioni indotte sulla tubazione è necessario suddividere la tubazione in una successione di tratte tale da poter considerare ogni tratta della tubazione parallela al sistema interferente (linea elettrica). Infatti, nella maggior parte dei casi reali, il profilo della tubazione, non è perfettamente parallelo a quello del sistema interferente; infatti in alcuni punti la tubazione può avvicinarsi o allontanarsi dal sistema interferente, o addirittura incrociarsi con esso. pag. 13 di 40 Figura 6 - Circuito equivalente rappresentativo del sistema tubazione-terreno (fonte Cigré) Indicando con d1 e d2 le distanze degli estremi di una generica tratta di tubazione dal sistema interferente (vedi figura 7), a questa n-sima tratta è possibile sostituire una tratta equivalente parallela al sistema interferente posta ad una distanza pari alla media geometrica delle distanze d 1 e d2: d d1 d2 nel rispetto della condizione: 1 d1 3 3 d2 Linea elettrica AT d1 d2 Tubazione metallica Figura 7 –Esempio di avvicinamento del profilo della tubazione alla linea elettrica Nel caso di incrocio tra tubazione e linea elettrica, si distinguono due possibili configurazioni di incrocio: - incrocio con angolo acuto tra linea e tubazione maggiore di 45°; - incrocio con angolo acuto tra linea e tubazione minore di 45°. Mentre nel primo caso l’accoppiamento induttivo può essere trascurato, nel secondo caso bisogna considerare una tratta di tubazione che abbia un profilo di esposizione pari a 10 m di distanza da ciascun lato della linea elettrica. Tale tratta sarà sostituito con una tratta equivalente parallela al sistema inducente e posta ad una distanza da esso di 6 m. Completata la suddivisione della tubazioni in N tratte parallele alla linea elettrica è possibile procedere al calcolo delle EMF considerando le seguenti condizioni di funzionamento: condizioni di guasto (che da origine a EMF di elevata intensità ma di breve durata); condizione di funzionamento normale (le EMF hanno minore intensità ma risultano permanenti). Tra le diverse configurazioni di guasto, quella monofase a terra produce gli effetti induttivi maggiori. Nel caso più semplice (linea elettrica aerea senza funi di guardia), la EMF può essere calcolata mediante la seguente espressione: EMF = - Zm ∙ I dove Zm rappresenta la mutua impedenza per unità di lunghezza dei circuiti conduttore di fase–terra e tubazioneterra, mentre I rappresenta l’intensità della corrente inducente. La mutua impedenza dei due circuiti con ritorno nel terreno è funzione della: pag. 14 di 40 distanza tra i conduttori d; resistività del terreno ρ; frequenza f. Essa può essere espressa nella generica forma: Zm Rm j ω Lm ; Esistono diverse formule che consentono di calcolare l’impedenza mutua: Formula di Carson-Clem: Zm π μ0 f 2 1 jμ 0 f ln 4 g α d 2 [Ω/m] dove: - μ0 4 π 107 [H/m]; - f è la frequenza [Hz]; - g = 1.7811 è la costante di Eulero; ω μ0 ; ρ - è la resistività del terreno [Ωm]; - d è la distanza geometrica tra i conduttori [m]. - α La precedente formula può anche essere espressa nel seguente modo: Zm πω 1.85 jμ 0 f ln 8 αd [Ω/m] L’espressione di Carson-Clem vale per piccole distanze tra i due circuiti: d 90 ρ f Formula di Haberlan: 6 105 ρ 7 10 Zm ω ln 1 f d 2 che consente di calcolare il modulo della mutua impedenza. [Ω/m] Formula di Gary-Dubanton: Zm j ωf A 2 B2 B j arctg ln 2 2 d A dove: - A hi h j hi h j 2 2 ρ ; - B 2 δ hi h j 2 2 ρ ; - d è la distanza tra i conduttori i,j [m]; - hi è l’altezza dei conduttori [m]; - s è la distanza orizzontale tra i conduttori [m]; - δ 330 ρ ; f - μ 0 4 π 107 [H/m]. Formula suggerita dalle direttive CCITT (Comité Consultatif International Téléphonique et Télégraphique, ora noto come ITU-T International Telecommunication Union – Telecommunication Standardization Bureau): Zm f1(d) j f2 d109 j ω [Ω/m] dove: - f1 a1 a2d a3d2 a4d3 a5d4 a6d5 a7ed a8 ln(d) - f2 b1 b2d b3d2 b4d3 b5d4 b6d5 b7ed b8ed b9ed b9 ln(d) ; pag. 15 di 40 - d = distanza tra i conduttori [m]. La tabella 3 fornisce i valori dei coefficienti ai e bi. a1 a2 a3 a4 a5 a6 a7 a8 f1(d) 123.31 1.69 23.93 4.96 0.44 0.01 0.00 199.98 b1 b2 b3 b4 b5 B6 b7 b8 b9 f2(d) 330.03 193.67 49.76 6.97 0.52 0.01 180.41 0.00 0.27 Tabella 3 – Valori dei coefficienti ai e bi della formula CCITT Per quanto concerne il calcolo delle EMF nelle condizioni di normale funzionamento, la Guida Cigré suggerisce diverse formule nel caso di linea elettrica aerea senza o dotata di funi di guardia e per le linee elettriche in cavo. Per le linee elettriche aeree, le formulazioni proposte tengono conto della presenza o meno delle funi di guardia. La presenza di tali componenti sono decisamente importanti, infatti, se nelle condizioni di guasto la loro presenza è fondamentale ai fini della riduzione del valore della EMF per contro nelle condizioni di normale funzionamento esse possono addirittura incrementare tale valore. Formula per il calcolo della EMF in assenza di funi di guardia: E0 j f d 2p μ 0 I d 2p d 3p j 3ln ln 2 2 d 3p d1p [V/m] dove: - I è la corrente inducente; - dip (con i =1, 2, 3) è la distanza tra il generico conduttore di fase e la tubazione metallica. Nel caso di linea elettrica aerea provvista di 1 fune di guardia, la formula per il calcolo della EMF diventa la seguente: d 2p z 4p d 24 d 34 μ I d 2p d 3p d 24 [V/m] ln E1 j f 0 ln j 3ln j 3 ln 2 2 2 d 3p z 44 d 34 d1p d14 dove: - z4p rappresenta la mutua-impedenza del circuito fune di guardia – tubazione; - z44 rappresenta l’auto-impedenza relativa all’unica fune di guardia presente. Infine, nel caso di linea elettrica aerea provvista di due funi di guardia, la formulazione è data dalla seguente espressione: d 2p μ I d 2p d 3p [V/m] a c bd d a b c E 2 j f 0 ln j 3ln z 5p 2 z 4p 2 2 2 2 2 d 3p d1p a b a b dove: - a z 44 ; - b z 45 ; d d d - c ln 24 2 34 j 3 ln 24 ; d 34 d14 d d d - d ln 25 2 35 j 3 ln 25 ; d 35 d15 pag. 16 di 40 Nel caso di funzionamento in condizioni normali con correnti sbilanciate valgono le precedenti formulazioni suddividendo il sistema delle tre correnti sbilanciate mediante il sistema delle coordinate simmetriche in tre terne di correnti: correnti di sequenza diretta, di sequenza inversa e infine di sequenza omopolare (osservando che la componente omopolare può essere considerata alla stregua di una corrente di guasto monofase a terra). La EMF totale si ottiene mediante la sovrapposizione degli effetti derivanti dalle tre terne di correnti prese individualmente. Nel caso di accoppiamento induttivo dovuto a linee elettriche in cavo si considera la formula adottata per le linee elettriche aeree in assenza delle funi di guardia. Per ovvie considerazioni, l’accoppiamento induttivo in condizione di funzionamento normale sarà pressoché trascurabile a causa delle piccole distanze tra i conduttori di fase costituenti il cavo elettrico. La situazione potrebbe diventare degna di nota, nel caso di funzionamento normale con correnti sbilanciate. 6.2. Accoppiamento conduttivo Quando una installazione elettrica (traliccio, sottostazione, etc.) è sede di una guasto a terra, la corrente che fluisce attraverso l’elettrodo di terra (dispersore) crea un innalzamento del potenziale dell’elettrodo e del terreno circostante rispetto a un punto a potenziale zero (terra remota). Si parla di accoppiamento conduttivo, quando, nelle ipotesi innanzi menzionate di guasto: - la tubazione metallica è direttamente connessa all’impianto di terra del sistema elettrico ad alta tensione (ad es. all’interno di una sottostazione elettrica); - la tubazione metallica entra nella “zona di influenza” dell’installazione elettrica. Una rilevante differenza di potenziale può comparire sullo strato isolante della tubazione a causa del valore locale del potenziale di terra. Nella realtà pratica, questa seconda ipotesi è quella maggiormente riscontrata. 6.2.1 Condotte che attraversano zone interessate da una potenziale di terra Se la tubazione metallica non è soggetta ad accoppiamento capacitivo (ad es. tubazione interrata), e ad accoppiamento induttivo, il valore del normale potenziale può essere assunto pari al potenziale di riferimento (terra remota). Pertanto, una qualsivoglia distribuzione del potenziale nel terreno (EPR – Earth Potential Rise) in prossimità della tubazione causata da un guasto sull’installazione elettrica dislocata nelle vicinanze è applicata allo strato isolante della tubazione. In tali condizioni, se il valore locale dell’EPR supera quello della rigidità del dielettrico dell’isolante, si possono creare delle perforazioni localizzate dello strato isolante che vanno ad inficiare le proprietà isolanti dello stesso. Se la tubazione in questione, è molto vicina all’impianto di terra del sostegno (traliccio) della rete elettrica, in alcuni punti, oltre ad avere la perforazione del dielettrico, l’acciaio di cui è fatta la tubazione può addirittura fondere. Di considerevole pericolosità è la tensione che può essere trasferita in punti remoti della tubazione come ad es. le flange di isolamento o sistemi di protezione catodica. A seconda dell’ampiezza, il potenziale trasferito potrebbe generare oltre allo stress del dielettrico in corrispondenza delle flange di isolamento anche valori delle tensioni di passo e contatto pericolosi per gli addetti ai lavori che toccano parti accessibili della tubazione o che operano in prossimità degli stessi impianti. 6.2.2 Condotte collegate all’impianto di terra di una installazione elettrica Se la tubazione metallica è direttamente collegata all’elettrodo di dispersione (impianto di terra) di una centrale elettrica (un esempio è il caso delle centrali alimentate a olio combustibile) o attraversa la zona di influenza di un’installazione elettrica, il potenziale di terra (EPR) è direttamente trasferito alla tubazione in caso di guasto a terra. Se non sono attuate misure di protezione, il potenziale trasferito alla tubazione potrebbe essere la causa di shock elettrici per gli addetti ai lavori in contatto con parti accessibili della tubazione. pag. 17 di 40 6.2.3 Calcolo delle tensioni dovute all’accoppiamento conduttivo Per effettuare una valutazione numerica del fenomeno dell’accoppiamento conduttivo, dovranno essere calcolati: il valore dell’EPR in corrispondenza della tubazione, la tensione applicata allo strato isolante della tubazione, il valore della tensione trasferita alla parte metallica della tubazione e i valori delle tensioni trasferite alle flange di isolamento e ai sistemi di protezione catodica. 6.2.4 Calcolo del potenziale di terra (EPR) delle principali installazioni elettriche 6.2.4.1 Potenziale di terra in prossimità dei sostegni Il valore del potenziale di terra del dispersore del sostegno causato da un guasto a terra può essere calcolato mediante la seguente espressione: VE R E I E dove: - RE è la resistenza di terra del dispersore; - IE è la quota parte della totale corrente di guasto a terra che attraversa il dispersore di terra. Risulta inoltre che: IE IF IA IB La resistenza di terra dipende dalla resistività del terreno e dalla struttura del dispersore di terra. Essa può assumere valori compresi tra meno di 1 Ω fino a decine di ohm. In assenza di funi di guardia, la corrente che fluisce verso terra I E coincide con la corrente di guasto IF. Nel caso in cui l’elettrodotto sia provvisto di fune(i) di guardia, solo una parte della totale corrente di guasto fluisce verso terra attraverso il dispersore di terra del sostegno. Una sostanziale quota parte della stessa è distribuita tra i sostegni vicini o ritorna direttamente alle sottostazioni attraverso le funi di guardia. Nel caso in cui la linea è provvista di fune di guardia, un valore più preciso della corrente che fluisce verso terra attraverso il dispersore del sostegno, lo si ottiene conoscendo la resistenza dei dispersori di terra dei diversi sostegni e risolvendo i circuiti formati dalla queste resistenze e le funi di guardia dei sostegni. Figura 8 – Guasto a terra in prossimità di un sostegno Se la resistenza dei dispersori di terra dei sostegni presentano lo stesso ordine di grandezza è possibile utilizzare le seguenti espressioni che forniscono una buona approssimazione di I E e VT nell’ipotesi di guasti lontani di alcuni chilometri dalla più vicina sottostazione: pag. 18 di 40 dove: - k è un fattore di riduzione compreso tra 0.65 e 0.75 in funzione della resistenza delle funi di guardia e della posizione dei conduttori rispetto del guasto - ZT è l’impedenza del circuito formato dalle funi di guardia dei sostegni: Zs è l’impedenza del circuito formato dalle funi di guardia e la terra compresa tra le due sostegni successivi: dove: - R è la resistenza del conduttore per unità di lunghezza [Ω/m]; - h è l’altezza del conduttore dal suolo [m]; - r è il raggio del conduttore [m]; - µ0 è la permeabilità magnetica dell’aria 4∙π∙10 [H/m]; -7 - - 0 ; 330 ; h 2f - ρ è la resistività del terreno [Ω∙m]; - f è la frequenza [Hz]. 6.2.4.2 Potenziale di terra delle sottostazioni L’espressione VE=RE∙IE è valida anche nel caso delle sottostazioni. Generalmente, la corrente che fluisce verso terra attraverso il dispersore è molto più piccola della totale corrente di guasto in quanto: - la quota parte di corrente di guasto drenata a terra dai trasformatori ritorna direttamente alla sorgente attraverso la maglia di terra senza penetrare nel terreno (IB); - una parte della corrente di guasto torna alla sorgente attraverso le funi di guardia delle linee elettriche (I’A e I’C). La figura 9 illustra qualitativamente il percorso effettuato dalla corrente di guasto. Date le dimensioni della maglia di terra, la resistenza di terra della sottostazione è molto più piccola della resistenza di terra di ogni singolo sostegno. Il valore del potenziale di terra delle sottostazioni in condizioni di guasto varia da alcune centinaia di volt a diversi kV in funzione della resistenza di terra e della corrente di guasto. pag. 19 di 40 Figura 9 – Ripartizione della corrente di guasto a terra in una sottostazione 6.2.4.3 Calcolo del potenziale di terra locale (local EPR) In ogni caso di accoppiamento conduttivo, è necessario conoscere l’andamento del potenziale di terra lungo il tracciato della tubazione interrata (valore del potenziale di terra locale). Per semplicità, come primo caso consideriamo un elettrodo di dispersione emisferico interrato, con resistività del terreno costante. Si dimostra che, in caso di guasto, il luogo dei punti a uguale potenziale di terra è una superficie emisferica (superficie equipotenziale) concentrica al dispersore. Pertanto, l’espressione del potenziale di terra locale sarà data da: Ve (x) ρ IE 2π x La figura 10 fornisce una rappresentazione grafica della variazione del potenziale di terra in funzione della distanza dal dispersore di terra. Figura 10 – Variazione del potenziale di terra in funzione della distanza dall’elettrodo di terra (fonte Cigré) Ponendo x=a (raggio del dispersore emisferico), l’espressione precedente fornisce il valore del potenziale V a cui si porta il dispersore. Dividendo tale valore di tensione per la corrente di guasto I E si ottiene il valore della resistenza di terra del dispersore: RE 2 a Nel caso più generale di un dispersore avente una qualsivoglia geometria immerso in un terreno omogeneo, l’andamento del potenziale di terra si discosta da quello emisferico nel caso di brevi distanze per, poi, avvicinarsi all’andamento emisferico quando la distanza aumenta. Pertanto, laddove non è richiesta una precisa conoscenza del potenziale di terra, i dispersori possono essere assimilati a quello avente geometria emisferica. pag. 20 di 40 6.2.5 Tensione trasmessa a tubazioni vicine ad un sostegno o una sottostazione Quando una tubazione metallica attraversa una zona sottoposta ad un distribuzione di potenziale nel terreno per la vicinanza ad un sostegno o una sottostazione in condizioni di guasto a terra, la tensione trasmessa alla tubazione nel caso di deterioramento del rivestimento dipende da diversi fattori: - il valore locale del potenziale nel terreno in prossimità della tubazione (local EPR); - l’impedenza locale della tubazione verso terra che si compone di due termini: la resistenza verso terra della sezione della tubazione supposta in contatto con il terreno e la resistenza locale del rivestimento isolante. Nel caso in cui la parte metallica della tubazione è direttamente in contatto con il terreno attraverso un area s (corrispondente alla superficie s di perforazione dello strato isolante), il valore locale della resistenza verso terra può essere calcolato nel seguente modo: ρ π RE 4 S dove è la resistività del terreno); - l’impedenza del circuito tubazione/terra Zpe. Se la tubazione si estende per qualche km, senza atterramenti locali, l’impedenza Zpe è praticamente uguale a 0,5∙Zc dove Zc è l’impedenza caratteristica del circuito tubazione/terra. La figura 11 riassume in un circuito equivalente i fattori da cui dipende la tensione trasmessa alla tubazione V 0. Con riferimento al circuito di figura 11, la tensione trasmessa alla tubazione può essere calcolata mediante la relazione: Zpe V0 (EPR) 0 R E R C Zpe Figura 11 – Tensione trasmessa alla tubazione (fonte Cigré) 6.3. Parametri elettrici della tubazione Ai fini del calcolo delle tensioni e correnti trasmesse alle tubazioni metalliche interrate a causa di un accoppiamento induttivo o conduttivo, è necessario calcolare i parametri elettrici della tubazione in termini di impedenza e ammettenza. Nel caso di tubazione metallica non interrata, l’impedenza serie può essere calcolata applicando la seguente formula: 1 1 ωμ0 ωμ0 3.7 ρω μ 0 z zint j ln 8 2π D [Ω/m] pag. 21 di 40 Se invece, la tubazione oggetto di studio non è aerea bensì interrata, l’impedenza serie può essere calcolata applicando la seguente formula: z z int ωμ 0 ωμ j 0 ln 8 2π 1.85 1 a' γ 2 jω0 jω ρ [Ω/m] si può notare che l’impedenza serie dipende in questo caso dalla costante di propagazione associata alla tubazione. Solitamente con una buona approssimazione si può utilizzare la prima espressione anche per le tubazioni interrate (ad eccezione del caso di tubazioni nude o con basso valore della resistenza specifica dello strato isolante) Il valore dell’impedenza interna “zint” può essere calcolato mediante la seguente espressione: ρμ 0μ r ω z int πD 2 1 j Nelle precedenti espressioni, si è indicato con: - pulsazione [rad/s]; - 0 permeabilità magnetica dell’aria che è circa pari a 4 10^-7 - r permeabilità relativa della tubazione metallica; - resistività del terreno [ohm∙m]; - D diametro della tubazione metallica [m]. [H/m]; Una formulazione compatta prevede il calcolo della parte reale e della parte immaginaria dell’impedenza serie della tubazione raggruppando i termini equivalenti: z r jm dove: r ρpμ 0μrω πD 2 μ ω 0 8 e ωm ρpμ 0μrω πD 2 1 1 μ 0ω 3.7 ρω μ 0 ln 2π D Nel caso di tubazione non interrata l’ammettenza può essere calcolata con la seguente espressione: y jω 2π 0 h h a p p ln a 2 2 [ -1/m] dove hp indica l’altezza dal suolo dell’asse della tubazione. pag. 22 di 40 Nel caso di tubazione metallica interrata, il calcolo dell’ammettenza si riduce alla seguente espressione approssimata: y ε ε πD πD -1 [Ω /m] jω 0 r ρcδC δc dove: - c indica la resistività relativa allo strato isolante della tubazione; - c è lo spessore dello strato isolante. L’impedenza caratteristica della tubazione è data dall’espressione: mentre la costante di propagazione è data dall’espressione: Zc z [ ] y z y [m-1 ] pag. 23 di 40 7. CASO STUDIO Il caso studio è riferito all’analisi degli effetti delle interferenze elettromagnetiche tra linee elettriche e reti urbane di distribuzione del gas. L’analisi è stata condotta considerando come gli effetti delle interferenze elettromagnetiche prodotte da due linee elettriche a 150 kV su tratti di condotte della rete AMGAS spa che si diramano lungo via Caldarola al quartiere Japigia della città di Bari. Sono stati presi in esame le seguenti tipologie di accoppiamento: - 7.1. Induttivo; Conduttivo; Capacitivo. Accoppiamento induttivo L’accoppiamento induttivo è la tipologia di accoppiamento elettromagnetico di primaria importanza in questo studio, a causa di lunghi e stretti avvicinamenti di linee elettriche con la tubazione. Lo studio di interferenza per l’accoppiamento induttivo è condotto in due fasi, distinte ma connesse. a 1 Fase In questa fase l’assetto elettrico della condotta (posizione dei giunti isolanti e condizione del loro shuntaggio, posizione delle messe a terra di linea, posizione degli scaricatori e delle celle di polarizzazione, ecc.) non è dipendente da eventuali interferenze elettromagnetiche. I calcoli che si svolgono in questa fase hanno il fine di evidenziare il rispetto dei limiti di interferenza elettromagnetica. Se per tutte le linee elettriche inducenti tutti i limiti di interferenza sono rispettati, l’esecuzione della seconda fase dello studio non è necessaria. a 2 Fase Se anche per una sola linea elettrica inducente, un solo limite di interferenza non è rispettato deve essere eseguita la seconda fase dello studio, che consiste nell’individuazione di interventi atti a mitigare le interferenze inaccettabili e nella verifica dell’efficacia degli interventi stessi. L’accoppiamento induttivo deve essere considerato sia in condizioni di normale funzionamento che in condizioni di guasto monofase a terra delle linee elettriche inducenti. Le linee elettriche interferenti sono quelle presenti in un corridoio di 1 km centrato rispetto alla tubazione. 7.2. Accoppiamento conduttivo Lo studio di interferenza per accoppiamento conduttivo, considerato solo in condizione di guasto monofase a terra delle linee elettriche inducenti, è condotto al fine di valutare se esista una condizione di danno per la tubazione o per le apparecchiature ad essa connesse nonché per valutare, se necessario, quale tratta di tubazione, in vicinanza di sostegni della linea elettrica, debba essere resa inaccessibile, in superficie, alle persone. Per il calcolo sono stati esaminati tutti i sostegni di ciascuna linea elettrica verificando che nel raggio di lunghezza pari alla distanza limite funzione della tensione di contatto ammissibile a vuoto (U STp – secondo la norma CEI 11-1) ricada un tratto di tubazione, e successivamente calcolando per questo tratto di tubazione le tensioni trasmesse. 7.3. Accoppiamento capacitivo In questo studio l’accoppiamento capacitivo non è stato considerato in quanto le condotte in esame sono interrate. pag. 24 di 40 7.4. Esecuzione dei calcoli I calcoli sono stati eseguiti nel rispetto della Guida CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 - Paris – 1995. Ciascuna tubazione è descritta come una serie di celle della medesima lunghezza: gli estremi delle celle sono chiamati punti. In accordo con questa descrizione, come mostrato in Figura 12, l’impianto indotto è suddiviso in N celle ed ha N+1 punti. Il numero N di celle è strettamente dipendente dai dati in ingresso relativi alla tubazione. Pertanto, la precisione e quantità dei dati in ingresso riferiti alla geometria della tubazione (ovvero la discretizzazione delle coordinate x, y, z della geometria della condotta) incide direttamente sulla precisione richiesta per i calcoli, e quindi sul dettaglio dei risultati finali e sulla precisione inerente la posizione dei punti di messa a terra e dei giunti isolanti. In questo studio i dati in ingresso relativi alla geometria di ciascuna tubazione hanno una discretizzazione di 10 m. Il numero N di celle è dato dalla lunghezza totale di ciascuna condotta diviso il passo di discretizzazione. Dal punto di vista elettrico l’impianto indotto è descritto come un insieme di impedenze longitudinali (un’impedenza longitudinale per ciascuna cella) ed un insieme di impedenze trasversali (un’impedenza trasversale per ciascun punto). L’impedenza longitudinale è l’impedenza propria della tubazione (dipende dal materiale, dal diametro e dallo spessore della tubazione) a cui si somma l’impedenza del ritorno a terra. L’impedenza trasversale rappresenta l’impedenza tra ciascuna tubazione e la terra, tenuto conto dell’esistenza dell’isolamento e delle messe a terra quando si innescano eventuali scaricatori installati sulla tubazione. In generale, le messe a terra di linea sono collegate alla condotta o tramite scaricatore “messe a terra indirette” o tramite cella di polarizzazione “messe a terra dirette”. L’impedenza trasversale in un punto senza messa a terra diretta della tubazione è l’impedenza trasversale delle due mezze celle poste a monte e a valle del punto in questione mentre l’impedenza trasversale in un punto con messa a terra diretta è il parallelo tra la resistenza della messa a terra e l’impedenza trasversale delle due mezze celle poste a monte e a valle del punto in questione. La corrente longitudinale è quella che fluisce nelle celle, ovvero attraverso le impedenze longitudinali. La corrente trasversale è quella che fluisce nei punti, ovvero attraverso le impedenze trasversali. La tensione tra tubazione e terra è quella nei punti. Le grandezze indotte, correnti e tensioni, sono sinusoidali con frequenza pari a 50 Hz. Nella presente relazione, i valori delle grandezze indotte (correnti e tensioni) sono espresse in forma polare ovvero descritte per mezzo del modulo e della fase. La fase è riferita a quella della corrente inducente assunta convenzionalmente uguale a 0°. I diagrammi rappresentano i moduli delle grandezze indotte. Figura 12 – Descrizione dell’impianto indotto X – Y per mezzo di celle e punti. pag. 25 di 40 8. LIMITI APPLICATI I limiti applicati sono in accordo con le Norme e i documenti indicati al cap. 5. Circa l’applicazione dei limiti, occorre ricordare i seguenti aspetti: - i limiti si applicano all’interferenza totale. Pertanto, quando esistono più linee elettriche inducenti, i limiti di interferenza per la situazione di funzionamento normale devono essere confrontati con la tensione indotta totale, opportunamente calcolata a partire dalle tensioni indotte da ciascuna linea elettrica (Norma CEI 304-1: Allegato E). I limiti di interferenza per la situazione di guasto monofase a terra devono essere invece confrontati con le tensioni indotte da ciascuna linea, in quanto si suppone che la probabilità di guasto contemporaneo delle linee inducenti sia estremamente bassa o, in altri termini, che una sola linea inducente alla volta sia in condizioni di guasto; - i limiti relativi al danno alla tubazione si applicano a tutti i punti della tubazione; - i limiti relativi al danno o al disturbo alle apparecchiature elettriche/elettroniche connesse alla tubazione si applicano nei punti in cui le suddette apparecchiature sono installate; - i limiti relativi al pericolo per le persone si applicano a quelle parti di tubazioni metalliche o apparecchiature ad esse connesse che siano accessibili alle persone, con l’ipotesi che codeste persone indossino vestiario comune e non dispongano di dispositivi di protezione individuale contro le tensioni (ad esempio guanti isolanti). Nella Tabella 4 sono indicati i limiti utilizzando la simbologia riportata nell’allegato C della Norma CEI 11-1. Durata del guasto - t [s] 0,45 0,5 0,6 0,2 0,35 0,65 UTp [V] 500 350 250 220 155 140 ZB [Ω] 862 937 993 1012 1106 1162 IB [A] 0,58 0,37 0,25 0,22 0,14 0,12 Ra [Ω] 1150 1150 1150 1150 1150 1150 USTp [V] 1167 779 539 470 316 278 Tabella 4 - Limiti secondo norma CEI 11-1 La tensione di contatto (UTp) ammissibile è calcolata dalla curva di Figura 9-1 dell’allegato C. L’impedenza totale del corpo umano (ZB) è calcolata dalla tabella C-2, considerando il fattore di correzione 0,75. La differenza di potenziale (USTp) che agisce come una sorgente nel circuito di contatto, di valore limitato, garantisce la sicurezza di una persona quando faccia uso di resistenze aggiuntive. Quando non si considerano resistenze aggiuntive USTp è uguale a UTp. La corrente che attraversa il corpo umano (IB) è calcolata nel seguente modo: IB = UTp / ZB Ra denominata resistenza aggiuntiva = Ra1 + Ra2= 1150 Ω dove: Ra1 = 1000 Ω per le scarpe Ra2 = 150 Ω, essendo stato assunto per la resistività del suolo un valore: ρ = 100 Ωm Quindi: USTp = UTp + Ra·IB pag. 26 di 40 di conseguenza sostituendo nell’espressione di USTp il termine IB = UTp / ZB , si ricava l’espressione utilizzata per calcolare USTp: USTp = UTp·( 1 + Ra / ZB ) Per il calcolo della distanza di esposizione per accoppiamento conduttivo sono stati esaminati tutti i sostegni di ciascuna linea elettrica secondo il criterio di seguito precisato. Per ciascun sostegno della linea elettrica è stato calcolato il potenziale nel terreno nell’ipotesi che la totale corrente di guasto sia completamente dispersa nel terreno attraverso il sostegno in esame. Così facendo è stata individuata la distanza limite dal sostegno interessato oltre la quale il valore del potenziale nel terreno è inferiore al valore limite di tensione funzione del tempo di eliminazione del guasto secondo quanto indicato nella norma CEI 11-1. Successivamente, si è verificato se all’interno della circonferenza avente centro nel sostegno e raggio pari alla distanza limite precedentemente calcolata ricade un tratto della condotta. In caso affermativo, si è proceduto allo studio dell’effetto conduttivo per tale linea elettrica in corrispondenza del sostegno selezionato. La Norma CEI 304-1 indica per la distanza di esposizione il valore di 20 m: tale distanza è connessa con i limiti indicati dalla stessa. Il criterio adottato nello studio risulta essere più dettagliato e conservativo rispetto a quanto riportato nella tabella 1 della norma CEI 304-1 che impone di considerare l’accoppiamento conduttivo in caso di attraversamento o avvicinamento ad una distanza minore di 20 m. I limiti applicati sono riportati nella Tabella 5. EFFETTO DELL’INTERFERENZA CONDIZIONE DELLA LINEA ELETTRICA normale guasto monofase a terra accoppiamento induttivo accoppiamento conduttivo 1167 V (t = 0,2 s) 779 V (t = 0,35 s) 539 V (t = 0,45 s) 470 V (t = 0,5 s) 316 V (t = 0,6 s) 278 V (t = 0,65 s) Pericolo elettrico per le persone 60 V 1500 V (t = 0,2 s) 1000 V (t = 0,35 s) 650 V (t = 0,45 s) 650 V (t = 0,5 s) 300 V (t = 0,6 s) 300 V (t = 0,65 s) Danni alla tubazione (rivestimento) o alle apparecchiature connesse 60 V 2000 V 2000 V Disturbi alle apparecchiature connesse alla tubazione 60 V ------ ------ Corrosione in c.a. della tubazione 15 V ------ ------ Tabella 5 - Limiti secondo norma CEI 304-1 pag. 27 di 40 9. DESCRIZIONE DELLA SITUAZIONE DI INTERFERENZA L’elenco delle condotte oggetto di studio sono riportate nella Tabella 6. ID CONDOTTA DENOMINAZIONE A2 METANODOTTO MEDIA PRESSIONE DN 150 (6''), Via Caldarola angolo Ponte di via Oberdan Bari (Japigia) A3 METANODOTTO BASSA PRESSIONE DN 80 (3''), Via Caldarola angolo Ponte di via Oberdan Bari (Japigia) Tabella 6 - Denominazione condotte 9.1. Descrizione geometrica generale Il corridoio di interferenza considerato in questo studio è di ampiezza pari a 1 km, centrato rispetto all’asse della tubazione (dunque due fasce di ampiezza di 500 m, da un lato e dall’altro di ciascuna tubazione). All’interno di suddetto corridoio sono inclusi i tronchi delle linee elettriche inducenti. Una rappresentazione schematica degli avvicinamenti tra tubazione e linee elettriche inducenti è mostrata nelle figure 13 e 14. Condotta A2 Linea 23-873A2-1 Linea 23-873A2-2 4553 ID_SOST 23 4552,8 ID_SOST 23 4552,6 ID_SOST 24 ID_SOST 25 asse y [km] 4552,4 ID_SOST 25 ID_SOST 26 4552,2 ID_SOST 26 4552 ID_SOST 27 ID_SOST 27 4551,8 ID_SOST 28 ID_SOST 28 4551,6 ID_SOST 29 ID_SOST 29 4551,4 658,4 658,6 658,8 659 659,2 659,4 659,6 asse x [km] Figura 12 - Rappresentazione schematica dell’avvicinamento tra la condotta A2 e le linee elettriche inducenti. pag. 28 di 40 Condotta A3 Linea 23-873A2-1 Linea 23-873A2-2 4553 ID_SOST 23 4552,8 ID_SOST 23 4552,6 ID_SOST 24 ID_SOST 25 asse y [km] 4552,4 ID_SOST 25 ID_SOST 26 4552,2 ID_SOST 26 ID_SOST 27 4552 ID_SOST 27 4551,8 ID_SOST 28 ID_SOST 28 4551,6 ID_SOST 29 ID_SOST 29 4551,4 658,4 658,6 658,8 659 659,2 659,4 asse x [km] Figura 13 - Rappresentazione schematica dell’avvicinamento tra la condotta A3 e le linee elettriche inducenti. 9.2. Descrizione elettrica 9.2.1 Resistività del suolo In accordo con le caratteristiche geologiche dei terreni presenti nel corridoio di interferenza si assume il valore standard di 100 Ω∙m per la resistività elettrica del suolo considerato omogeneo. 9.2.2 Linee elettriche inducenti L’interferenza elettromagnetica per accoppiamento induttivo con i tronchi di metanodotto in esame è prodotta da due linee elettriche trifase aeree aventi le caratteristiche riportate nelle tabelle 7 e 8. CARATTERISTICA ID Linea Denominazione VALORE 22-873A2-1 Bari sud-Bari Loseto Tensione nominale 150 kV Portata 570 A Geometria traliccio Delta Presenza funi di guardia 1 fune di guardia Tabella 7 - Caratteristiche della linea elettrica inducente ID Linea 22-873A2-1 pag. 29 di 40 CARATTERISTICA ID Linea VALORE 22-873A2-2 Denominazione Bari sud-Bari Loseto Tensione nominale 150 kV Portata 570 A Geometria traliccio Delta Presenza funi di guardia 1 fune di guardia Tabella 8 - Caratteristiche della linea elettrica inducente ID Linea 22-873A2-2 Correnti inducenti in condizione operativa normale In queste condizioni la terna delle correnti di linea è una terna equilibrata (bilanciata) cioè i vettori rappresentativi delle correnti sono di uguale ampiezza e sfasati tra loro di 120°. In questo caso, il valore della corrente inducente è pari al valore della corrente di linea secondo le informazioni acquisite. Le correnti inducenti in condizioni operative normali sono riassunte in Tabella 9. LINEA ELETTRICA CORRENTE INDUCENTE [A] 22-873A2-1 570 22-873A2-2 570 Tabella 9 - Correnti inducenti per accoppiamento induttivo in condizioni di esercizio normali Correnti in condizione di guasto Le correnti in condizione di guasto utilizzate nei calcoli di accoppiamento induttivo e conduttivo sono le correnti di guasto monofase a terra. Il valore massimo di tali correnti per ciascuna linea elettrica è stato stimato pari a 9,768 kA con una durata del guasto pari a 0,5 s. 9.2.3 Tubazione indotta Caratteristiche della tubazione I dati della tubazione A2 utilizzati nei calcoli di interferenza sono riassunti nella Tabella 10. CARATTERISTICA Denominazione condotta Diametro esterno della tubazione VALORE TMP-317 6” (150 mm) Spessore della tubazione 4 mm Spessore del rivestimento (bituminoso) 4 mm pag. 30 di 40 180 ·mm /km 2 Resistività della tubazione Permeabilità relativa della tubazione Impedenza longitudinale della tubazione 300 0,8546·10 /m -3 1000 ·m Resistenza di isolamento Ammettenza trasversale della tubazione Permettività relativa 2 -3 0,4712·10 S/m 5 Tabella 10 - Dati della condotta A2 I dati della tubazione A3 utilizzati nei calcoli di interferenza sono riassunti nella Tabella 11. CARATTERISTICA Denominazione condotta VALORE TBP-X1 Diametro esterno della tubazione 3” (80 mm) Spessore della tubazione 3 mm Spessore del rivestimento (bituminoso) 3 mm 180 ·mm /km 2 Resistività della tubazione Permeabilità relativa della tubazione Impedenza longitudinale della tubazione 300 1,1396·10 /m -3 1000 ·m Resistenza di isolamento Ammettenza trasversale della tubazione Permettività relativa 2 -3 0,2513·10 S/m 5 Tabella 11 - Dati della condotta A3 I tronchi delle condotte in esame non presentano giunti e sistemi di messa a terra diretta e indiretta. pag. 31 di 40 10. RISULTATI DEI CALCOLI ESEGUITI 10.1. Risultati dei calcoli di accoppiamento induttivo I risultati dei calcoli sono valutati per ciascuna condotta considerando le seguenti condizioni di esercizio di ciascuna linea elettrica inducente: - funzionamento normale; - guasto monofase a terra. Per ciascuna condizione di esercizio, in dettaglio, i risultati dei calcoli includono: - la corrente longitudinale che fluisce nella tubazione; - la corrente trasversale scambiata tra tubazione e terra; - la tensione tra tubazione e terra. I diagrammi delle tensioni verso terra della tubazione sono presentati insieme con una sintesi dei risultati nel seguito di questo capitolo. I risultati relativi alla condizione di guasto monofase a terra sono il frutto di calcoli eseguiti separatamente per ciascuna linea elettrica inducente ed ogni risultato è confrontato con i limiti accettabili. La situazione di guasto è un evento casuale di brevissima durata ed è, pertanto, ragionevole ignorare la possibilità di avere guasti simultanei su due o più linee elettriche inducenti (vedi CENELEC prEN 50443). La posizione in cui collocare il punto di guasto per ottenere le condizioni più gravose è stata individuata sulla base dei criteri indicati nella Guida CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 - Paris - 1995. Considerati gli andamenti delle due componenti delle correnti di guasto (da monte e da valle della linea elettrica) si assume come posizione del punto di guasto sulla linea elettrica quello in corrispondenza della intersezione delle due componenti. Nel caso in cui l’andamento di una componente si mantiene sempre al di sotto dell’altro lungo tutta la zona di interferenza si assume come posizione del punto di guasto sulla linea elettrica quello corrispondente ad una delle due estremità della zona di interferenza secondo le indicazioni riportate nella Guida CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 - Paris - 1995. Il valore dell’interferenza finale calcolata in condizioni di funzionamento normale di ciascuna linea inducente è il risultato dell’interferenza combinata di tutte le linee elettriche interessate e operanti in funzionamento normale. Il risultato del calcolo deve essere confrontato con i limiti ammissibili. 10.2. Risultati dei calcoli di accoppiamento conduttivo Per ciascuna condotta, preliminarmente è stato effettuato uno screening delle linee elettriche per individuare quelle che sono significative ai fini dello studio dell’accoppiamento conduttivo. Per ciascun sostegno della linea elettrica è stato calcolato il potenziale nel terreno circostante il sostegno stesso nell’ipotesi che la totale corrente di guasto venga completamente dispersa nel terreno attraverso il sostegno in esame. Così facendo è stata individuata la distanza limite dal sostegno interessato oltre la quale il valore del potenziale nel terreno scende al di sotto del valore limite di tensione che è funzione del tempo di eliminazione del guasto. Successivamente, verificato che all’interno dell’area della circonferenza avente centro nel sostegno e raggio pari alla distanza limite precedentemente calcolata ricade un tratto della condotta, si procede allo studio dell’effetto conduttivo per tale linea elettrica in corrispondenza del sostegno selezionato. Così come definito nella Guida CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 - Paris - 1995, nel caso di linea elettrica provvista di funi di guardia, il valore della corrente di guasto che attraverso il sostegno si disperde nel terreno è stato calcolato moltiplicando la totale corrente di guasto per un fattore correttivo riportato in appendice J.3 della Guida. Tale fattore porta in conto la resistenza di atterramento del sostegno, l’impedenza del circuito formato da funi di guardia e sostegni ed il coefficiente di riduzione dovuto alla presenza delle funi di guardia. pag. 32 di 40 Agli effetti del calcolo è stato utilizzato come valore della corrente dispersa attraverso il sostegno selezionato, quello più grande tra il valore di corrente calcolato secondo le indicazioni della Guida ed il valore di corrente ottenuto dividendo la totale corrente di guasto per il numero di sostegni della linea elettrica in esame. Il valore del potenziale calcolato rappresenta la tensione che sollecita l’isolamento della tubazione o, nel caso in cui il punto di tubazione in questione sia accessibile a persone, la tensione che sollecita il corpo della persona in contatto con la tubazione. I risultati dei calcoli, che devono essere confrontati con i limiti ammissibili, sono riportati nella Tabella 13. 10.3. Risultati della prima fase I risultati dell’interferenza per accoppiamento induttivo relativi alla prima fase dello studio sono riassunti in Tabella 12. Nessun valore di tensione indotta sulla tubazione supera i limiti riportati in Tabella 5 per il caso di accoppiamento induttivo in condizioni di funzionamento normale e di guasto monofase a terra. Le Figure da 14 a 19 mostrano i diagrammi delle tensioni verso terra indotte sugli allacciamenti, relative alla prima fase dello studio. MAX TENSIONE INDOTTA CONDOTTA LINEA ELETTRICA INDUCENTE ID condotta PER ACCOPP. INDUTTIVO modulo [V] Tutte le linee elettriche inducenti Condizione di funzionamento normale (caso bilanciato) A2 Linea 23-873-A2-1 150 kV Condizione di guasto monofase a terra Linea 23-873-A2-2 150 kV Condizione di guasto monofase a terra 1,31 473,68 422,03 Tutte le linee elettriche inducenti Condizione di funzionamento normale (caso bilanciato) A3 Linea 23-873-A2-1 150 kV Condizione di guasto monofase a terra Linea 23-873-A2-2 150 kV Condizione di guasto monofase a terra 0,96 215,87 183,44 Tabella 12 - Sintesi dei risultati dei calcoli di accoppiamento induttivo relativi alla prima fase dello studio pag. 33 di 40 La situazione di interferenza prodotta sul tronco della tubazione A2 in esame da tutte le linee elettriche in condizione di funzionamento normale (caso bilanciato) è tale da non superare i limiti di tensione ammissibili. tensione indotta limite 16 14 tensione indotta [V] 12 10 8 6 4 2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 posizione lungo la tubazione [km] Figura 14 – Tronco della condotta A2. Tensione tra tubazione e terra, indotta per accoppiamento induttivo da tutte le linee elettriche inducenti in condizioni di funzionamento normale (caso bilanciato). Prima fase dello studio. pag. 34 di 40 tensione indotta limite 700 tensione indotta [V] 600 500 400 300 200 100 0 0,01 0,11 0,21 0,31 0,41 0,51 0,61 0,71 0,81 0,91 posizione lungo la tubazione [km] Figura 15 – Tronco della condotta A2. Tensione tra tubazione e terra, indotta per accoppiamento induttivo dalla linea elettrica 23-873A2-1 - 150 kV in condizione di guasto monofase a terra. Prima fase dello studio. tensione indotta limite 700 tensione indotta [V] 600 500 400 300 200 100 0 0,01 0,11 0,21 0,31 0,41 0,51 0,61 0,71 0,81 0,91 posizione lungo la tubazione [km] Figura 16 – Tronco della condotta A2. Tensione tra tubazione e terra, indotta per accoppiamento induttivo dalla linea elettrica 23-873A2-2 - 150 kV in condizione di guasto monofase a terra. Prima fase dello studio. pag. 35 di 40 La situazione di interferenza prodotta sul tronco della tubazione A3 in esame da tutte le linee elettriche in condizione di funzionamento normale (caso bilanciato) è tale da non superare i limiti di tensione ammissibili. tensione indotta limite 16 14 tensione indotta [V] 12 10 8 6 4 2 0 0,01 0,06 0,11 0,16 0,21 0,26 0,31 0,36 posizione lungo la tubazione [km] Figura 17 – Tronco della condotta A3. Tensione tra tubazione e terra, indotta per accoppiamento induttivo da tutte le linee elettriche inducenti in condizioni di funzionamento normale (caso bilanciato). Prima fase dello studio. pag. 36 di 40 tensione indotta limite 700 tensione indotta [V] 600 500 400 300 200 100 0 0,01 0,06 0,11 0,16 0,21 0,26 0,31 0,36 posizione lungo la tubazione [km] Figura 18 – Tronco della condotta A3. Tensione tra tubazione e terra, indotta per accoppiamento induttivo dalla linea elettrica 23-873A2-1 - 150 kV in condizione di guasto monofase a terra. Prima fase dello studio. tensione indotta limite 700 tensione indotta [V] 600 500 400 300 200 100 0 0,01 0,06 0,11 0,16 0,21 0,26 0,31 0,36 posizione lungo la tubazione [km] Figura 19 – Tronco della condotta A3. Tensione tra tubazione e terra, indotta per accoppiamento induttivo dalla linea elettrica 23-873A2-2 - 150 kV in condizione di guasto monofase a terra. Prima fase dello studio. pag. 37 di 40 I risultati dell’interferenza per accoppiamento conduttivo relativi alla prima fase dello studio sono riassunti in Tabella 13. Evidenziati in rosso sono riportati i valori di tensione trasmessa alla tubazione che superano i limiti riportati in Tabella 5 per il caso di accoppiamento conduttivo. CONDOTTA ID Condotta MASSIMA TENSIONE DI CONTATTO LINEA ELETTRICA INDUCENTE PER ACCOPPIAMENTO CONDUTTIVO ID Sostegno Corrente di guasto [kA] Tempo di eliminazione del guasto [s] Distanza minima tra sostegno e condotta [m] 23 9,8 0,5 203 104 24 9,8 0,5 68 310 25 9,8 0,5 188 114 23 9,8 0,5 212 100 24 9,8 0,5 85 248 25 9,8 0,5 207 103 23 9,8 0,5 99 213 24 9,8 0,5 44 484 25 9,8 0,5 115 185 23 9,8 0,5 114 186 24 9,8 0,5 61 347 25 9,8 0,5 129 165 Condizioni della linea ID Linea 23-873A2-1 – 150 kV Condizione di guasto monofase a terra Tensione calcolata [V] Tensione limite [V] Distanza limite di sicurezza [m] 470 45 470 45 470 45 470 45 A2 23-873A2-2 – 150 kV Condizione di guasto monofase a terra 23-873A2-1 – 150 kV Condizione di guasto monofase a terra A3 23-873A2-2 – 150 kV Condizione di guasto monofase a terra Tabella 13 - Sintesi dei risultati dei calcoli di accoppiamento conduttivo relativi alla prima fase dello studio pag. 38 di 40 11. CONCLUSIONI Allo scopo di valutare se i disturbi dovuti all’interferenza elettromagnetica sono accettabili, i valori delle tensioni indicati nelle Tabelle 12 e 13 sono confrontati con gli opportuni limiti, riassunti in Tabella 5. Come si può notare, nella prima fase dello studio i disturbi dovuti all’interferenza elettromagnetica per accoppiamento induttivo sono accettabili, in quanto, per le condotte A2 e A3, la tensione indotta in condizione di guasto monofase a terra delle linee elettriche non è superiore ai valori limite di tensione imposti dalla norma CEI 11-1 e, nelle condizioni di funzionamento normale, il valore limite di tensione (15 V) riferito alla protezione dai rischi di corrosione in c.a. non è stato violato. Pertanto, non è necessario ricorrere alla seconda fase dello studio (finalizzata alla scelta degli opportuni provvedimenti di mitigazione dei disturbi prodotti dall’interferenza). I risultati dei calcoli relativi ai disturbi dovuti all’interferenza elettromagnetica per accoppiamento conduttivo evidenziano (vedi tabella 13) quanto segue: con riferimento alla linea 23-873A2-1 150 kV, il tronco della condotta A3 compresa in una fascia avente raggio minimo di 44 m e raggio massimo di 189 m dal centro del sostegno identificato dal codice ID_sost 24 è interessata da un valore massimo di tensione (484 V) che supera il limite ammesso (470 V). In conclusione, i risultati dello studio di interferenza mostrano che nella condizione iniziale (prima fase dello studio) i profili della tensione indotta lungo la tubazione sia in condizioni di funzionamento normale e sia in condizioni di guasto monofase a terra sono tali da non violare rispettivamente il valore limite di tensione fissato pari a 15 V per il rischio di corrosione in corrente alternata e il valori limite di tensione imposto dalla norma CEI 11-1. In considerazione dei valori di tensione calcolati per quanto concerne l’accoppiamento conduttivo è necessario che: nell’intorno del sostegno identificato dal codice ID_sost 24 dell’elettrodotto 23-873A2-1 150 kV le opere accessorie della tubazione A3 (sfiati, punti di misura della PC, ecc.) che distano meno di 45 m dall’asse del sostegno non siano accessibili alle persone. L’interazione tra reti energetiche differenti (ad es. tra reti elettriche e reti del gas) include, nell’ottica dello sviluppo di reti cosiddette intelligenti (smart grids), la necessità di esaminare la natura dei possibili disturbi causati da interferenze che si possono innescare. Per poter operare in modo intelligente un sistema di reti energetiche che possano meglio interagire tra loro è necessario studiare anche i possibili disturbi prodotti dall’interferenza che una rete può causare sull’altra. La natura e l’entità dei disturbi potrebbe essere tale condizionare il buon funzionamento di una o di entrambe le reti energetiche e creare anche possibili situazioni pericolose per le persone che con esse interagiscono. Un esempio specifico analizzato è stato quello di studiare i possibili disturbi legati ai fenomeni di interazione elettromagnetica che possono innescarsi tra reti elettriche e reti del gas e nel contempo mostrare in forma numerica e grafica i risultati dello studio di questo tipo di interferenza con specifico riferimento all’interazione elettromagnetica tra linee elettriche aeree (reti elettriche) e reti urbane di distribuzione del gas. Dai risultati ottenuti si può evincere che i parametri da tenere sotto stretto controllo per limitare i disturbi di natura elettromagnetica esaminati sono: - l’intensità della corrente elettrica che transita sulle reti elettriche; - la distanza di interferenza tra reti energetiche; - la natura dei mezzi che si frappongono tra i vari sistemi energetici come ad es. la resistività del terreno attraverso il quale il disturbo può propagarsi. pag. 39 di 40 12. RIFERIMENTI [1] [2] CEI 11.1 – Impianti elettrici con tensione superiore a 1000 V in corrente alternata. CEI 103.6 – Protezione delle linee di telecomunicazione dagli effetti dell’induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto. [3] CEI 304-1 – Interferenza Elettromagnetica prodotta da linee elettriche su tubazioni metalliche. Identificazione dei rischi e limiti di interferenza. [4] CIGRE - Guide on influence of high voltage a.c. power systems on metallic pipelines – Working Group 36.02 Paris – 1995. [5] EPRI EL-904 Mutual Design Considerations for Overhead AC transmission Lines and Gas Transmission Pipelines, Volum 1: Enigneering Analysis – USA – 1978. [6] EPRI EL-904 Mutual Design Considerations for Overhead AC transmission Lines and Gas Transmission Pipelines, Volum 2: Prediction and Mitigation Procedures – USA – 1978. [7] ITU.T – Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines - K26 Volum 2: Calculating induced voltages and currents in practical cases 1999. [8] ITU.T - Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines - ITU - vol.II, vol.III -1989. [9] ITU-T Recommendation K.68 – Operator responsibilities in the management of electromagnetic interference by power systems on telecommunication systems – 2008. [10] Linea Guida per l’applicazione del § 5.1.3 (Procedimento semplificato: calcolo della distanza di prima approssimazione) dell’Allegato al DM 29 maggio 2008 (GU n. 156 del 5 luglio 2008) “Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti”, ENEL Distribuzione S.p.A QSA/IUN. pag. 40 di 40