altri 5 esercizi sulla probabilità File - TED

Liceo Sigonio
Classe seconda C
Risolvere i problemi di calcolo delle probabilità
(i risultati finali vanno espressi anche come probabilità percentuale):
1b..
Un’urna contiene 8 palline bianche, 12 rosse e 10 verdi. Si estraggono a caso una dopo l’altra, senza
reimmetterle, 3 palline.
Calcola la probabilità che:
a) nessuna estratta sia bianca
b) tutte le estratte siano rosse
..........................................................................................................................................................................…
2b..
Sono date tre urne: nell’urna A ci sono 8 palline rosse e 4 verdi; nell’urna B ci sono 6 palline
bianche e 3 verdi; nell’urna C ci sono 2 palline rosse, 1 verde e 1 bianca.
Viene estratta a caso una pallina dall’urna A e viene quindi messa nell’urna B; a questo punto si
estrae a caso una pallina dall’urna B e viene quindi messa nell’urna C; a questo punto si estrae a
caso una pallina dall’urna C.
Calcola le probabilità che si verifichino i seguenti casi di estrazione:
a) 1° pallina rossa, 2° bianca, 3° bianca
b) 1° pallina verde, 2° rossa, 3° bianca
..........................................................................................................................................................................…
3b..
Sono dati due dadi ottaedrici con facce numerate da 1 a 8. Calcolare la probabilità che
lanciandoli:
a) la somma delle cifre uscite sia  15
c) la somma delle cifre uscite sia  15
..........................................................................................................................................................................…
4b..
Si pescano quattro carte da un mazzo di 40. Calcolare la probabilità che:
a) le quattro carte siano tutte di cuori
b) le quattro carte siano tutte dello stesso seme
............................................................................................................................................................................
5b..
Un’urna contiene i 37 numeri della roulette. Estraendo un numero dall’urna sono dati i tre eventi:
A  il numero estratto è pari
B  il numero estratto è  20
C  il numero estratto è  16
Calcolare le probabilità che il numero estratto:
a) soddisfi A o C
b) soddisfi sia C che B
c) soddisfi A o B o C
..........................................................................................................................................................................…
Buon lavoro