Eserciziario ITIS seconda parte

Compiti di Matematica
per le Vacanze Estive
Scopo di questo eserciziario è quello di permetterti un ripasso di alcuni argomenti che
hai sicuramente studiato nei tre anni delle scuole medie e che sono considerati elementi
indispensabili per proseguire i tuoi studi di Matematica. Con i tuoi quaderni e i libri che hai
utilizzato in questi anni, puoi rivedere i concetti, le proprietà e le regole delle operazioni che di
volta in volta ti vengono richiesti per affrontare la soluzione degli esercizi. Puoi anche ripassare
le regole fondamentali guardando le video-lezioni segnalate al fondo di questi esercizi, a
cui potrai accedere andando sul sito http://videolezioni.matematicamente.it/ .
Ti consigliamo inoltre di utilizzare un quaderno, da tenere sempre perfettamente in
ordine, dove passare in bella copia gli esercizi svolti e annotare quelli che non sei riuscito a
completare o di cui non hai trovato il risultato esatto. Nelle prime settimane di lezione verrà
svolta una correzione di gran parte degli esercizi proposti e quindi potrai risolvere i dubbi che ti
sono venuti durante il ripasso. Questa è una buona premessa per iniziare bene l’anno scolastico
e per una buona riuscita dei tuoi studi.
Buon lavoro!
Gli insegnanti di Matematica dell’I.I.S.”J.C.MAXWELL”
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
LE ESPRESSIONI CON LE QUATTRO OPERAZIONI
IN N
1
COMPLETA
Semplifica la seguente espressione:
{[10 ⭈ (2 ⫹ 2)] ⬊ [16 ⫺ (3 ⭈ 2)]} ⫹ 3 ⭈ (4 ⫺ 2).
{[10 ⭈ (2 ⫹ 2)] ⬊ [16 ⫺ (3 ⭈ 2)]} ⫹ 3 ⭈ (4 ⫺ 2) ⫽
⫽ {[10 ⭈ (…)] ⬊ [16 ⫺ (…)]} ⫹ 3 ⭈ (…) ⫽
Esegui le operazioni nelle parentesi tonde.
⫽ {[…] ⬊ […]} ⫹ 6 ⫽
Esegui le operazioni nelle parentesi quadre.
⫽ {… ⬊ …} ⫹ 6 ⫽
Esegui le operazioni nelle parentesi graffe
⫽…⫹6⫽…
2
e scrivi il risultato
PROVA TU
Semplifica la seguente espressione:
{[(24 ⫺ 6 ⭈ 3) ⫹ 5 ⭈ 3] ⬊ (9 ⭈ 2 ⫺ 15) ⫺ 3 ⫹ 10} ⬊ 2.
{[(24 ⫺ 6 ⭈ 3) ⫹ 5 ⭈ 3] ⬊ (9 ⭈ 2 ⫺ 15) ⫺ 3 ⫹ 10} ⬊ 2 ⫽
⫽ {[(24 ⫺ …) ⫹ 15] ⬊ (18 ⫺ …) ⫺ 3 ⫹ 10} ⬊ 2 ⫽
⫽ {[… ⫹ 15] ⬊ … ⫺ 3 ⫹ 10} ⬊ 2 ⫽
⫽ {… ⬊ … ⫺ 3 ⫹ 10} ⬊ 2 ⫽
⫽ {… ⫺ 3 ⫹ 10} ⬊ 2 ⫽
⫽…⬊2⫽
Semplifica le seguenti espressioni.
3
[4 ⭈ (7 ⫺ 3) ⫹ 5 ⭈ (6 ⫺ 2)] ⫺ 3 ⭈ 10
[6]
7
[(12 ⬊ 3) ⭈ 4 ⫺ 2 ⭈ (3 ⫹ 1)] ⫺ 4 ⫹ 3
[7]
4
[(2 ⭈ 4 ⫹ 7) ⫹ (2 ⫹ 8 ⬊ 2) ⭈ 5] ⫺ (6 ⫹ 2) ⭈ 5
[5]
8
12 ⬊ (3 ⭈ 4) ⫹ (2 ⫹ 3) ⭈ 5 ⫺ [6 ⭈ (7 ⫹ 1 ⫺ 5)]
[8]
5
(12 ⫹ 8 ⫺ 5) ⬊ 5 ⫺ (6 ⫹ 4 ⫺ 9 ⫹ 1)
[1]
9
{[(13 ⫹ 8 ⫺ 6) ⬊ 3] ⫺ (7 ⫹ 3 ⫺ 8 ⫹ 1)} ⭈ 2
[4]
6
{[2 ⭈ (4 ⫹ 8)] ⬊ [16 ⫺ 4 ⭈ 2]} ⫹ 3 ⭈ (5 ⫺ 2)
[12]
10 [5 ⭈ (5 ⭈ 4 ⫺ 4 ⭈ 4) ⫺9] ⫺ {4 ⭈ (32 ⬊ 8 ⫹ 4) ⬊ [(6 ⭈ 4) ⬊ 12] ⫺ 4 ⭈ 4}
11 [3 ⭈ (6 ⫹ 2)] ⫹ [(13 ⫹ 7 ⫹ 10) ⬊ 2] ⫺ 12 ⫺ [2 ⭈ (10 ⫹ 2)] ⫺ 3
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
[11]
[0]
1
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
DALLE PAROLE ALLE ESPRESSIONI IN N
1
COMPLETA
Traduci in espressione la frase: «Aggiungi b al doppio di a e poi sottrai il triplo di b».
Calcola il valore dell’espressione per a ⫽ 4 e b ⫽ 2.
«doppio di a»: 2 ⭈ a «triplo di b»: … b
2a … b … b
2⭈…⫹…⫺3⭈…⫽
8 ⫹ … ⫺ 6 ⫽ 4.
2
Traduci le parti della frase.
Scrivi l’espressione.
Sostituisci i valori di a e b.
Esegui i calcoli.
PROVA TU
Traduci in espressione la frase: «Sottrai b al triplo di a e poi aggiungi il quadrato di b».
Calcola il valore dell’espressione per a ⫽ 2 e b ⫽ 3.
triplo di a : …
quadrato di b : …
…a…b⫹…
3 ⭈ … ⫺ 3 ⫹ … ⫽ … ⫺ 3 ⫹ … ⫽ 12.
Traduci in espressioni le seguenti frasi e calcola quanto valgono per i valori di a e b indicati a fianco.
3
«Al triplo di a aggiungi il doppio della differenza tra b e a.»
a ⫽ 4,
b ⫽ 7.
[18]
4
«Al quintuplo di a sottrai la somma tra il doppio di b e a.»
a ⫽ 3,
b ⫽ 2.
[8]
5
«Moltiplica il doppio di a per la somma di a e b e poi sottrai il triplo di b.»
a ⫽ 3,
b ⫽ 2.
[24]
6
«Dividi la somma di a e b per il doppio di a.»
a ⫽ 1,
b ⫽ 5.
[3]
7
«Moltiplica la somma di a e b per il doppio di a e poi aggiungi il triplo di b.»
a ⫽ 2,
b ⫽ 1.
[15]
8
«Dividi il doppio di a per la differenza tra a e b.»
a ⫽ 3,
b ⫽ 1.
[3]
9
«Moltiplica la differenza tra a e b per il doppio della loro somma.»
a ⫽ 4,
b ⫽ 3.
[14]
10 «Sottrai il doppio di b dal prodotto del quadruplo di a con b.»
a ⫽ 3,
b ⫽ 5.
[50]
11 «Dividi la somma di a e del doppio di b per la differenza tra a e b.»
a ⫽ 4,
b ⫽ 2.
[4]
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
2
I NUMERI NATURALI E I NUMERI INTERI
ESERCIZI IN PIÙ
LE PROPRIETÀ DELLE POTENZE IN N
COMPLETA le seguenti uguaglianze.
.......
1
70 5. ;
(2 3) 2 (2 2 ). . . . . ;
(2 . . . . . ) 2 . . . . . 2 7.
2
3 4 4 3 (. ..... ) 1;
(1 6). . . . . 5 0;
(15 . .......) 2 ⬊ 15 15 5.
3
....... 3
(73) 4 ⬊ 7.
4
34 ⬊3. . . . . 34;
. ...... 3 63;
......
77;
(18 ⬊ 3)3 183 ⬊ . . . . . ;
(3 . . . . . ) 4 3 24.
.......
(2452)2 2. . . . . 4. 5. . . . . .
Applicando le proprietà delle potenze, calcola il valore delle seguenti espressioni.
5
[(86 164) 643] ⬊ (29 45) ⬊ (87 44)
[16]
6
(94 67) ⬊ 545 (36 183) ⬊ (94 33)
[28]
7
(125 244) ⬊ (723 84) 63 93 ⬊ 542
[108]
8
[272 ⬊ (22 20)5]10 ⬊ 94 (23 3)4 ⬊ (273 ⬊ 94 2)3
[14]
9
(204 203) ⬊ 203 {242 ⬊ 32 (5 24)2 ⬊ [(74)2 ⬊ 76 9]2} (50 22 1)3 52
[27]
10 {649 ⬊ [(43 8 27)2 ⬊ 83]} ⬊ (45 24)2 22
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
[4]
3
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
ESPRESSIONI E PROPRIETÀ DELLE POTENZE IN N
1
COMPLETA
Semplifica la seguente espressione:
2
2
4
2
2
4
(23) ⬊ (22) ⭈ [(23) ⬊ (26)2] 5.
(23) ⬊ (22) ⭈ [(23) ⬊ (26)2] 5 ⫽
6
…
…
⫽ 2 ⬊ 2 ⭈ [2 ⬊ 2…] ⫽
…
⫽ 2 ⬊ [2…] ⫽
⫽…⬊1⫽…
2
Applica la proprietà della potenza di potenza.
Applica la proprietà del quoziente di potenze con la stessa base.
Sviluppa le potenze ed esegui la moltiplicazione.
PROVA TU
Semplifica la seguente espressione:
6
4
2
2
6
4
2
2
[(2 ⬊ 24) ⫺ 3] ⭈ [(6 ⭈ 63) ⬊ (6 ⭈ 63)] ⬊ (2 ⫺ 1).
[(2 ⬊ 24) ⫺ 3] ⭈ [(6 ⭈ 63) ⬊ (6 ⭈ 63)] ⬊ (2 ⫺ 1) ⫽
…
…
⫽ [2 ⫺ 3] ⭈ [6 ⬊ 6…] ⬊ (4 ⫺ 1) ⫽
…
⫽ [… ⫺ 3] ⭈ 6 ⬊ 3 ⫽
⫽…⭈…⬊3⫽ …
Semplifica le seguenti espressioni.
3
2
2
3
(33) ⬊ (33) ⭈ [(36) ⬊ (33)4]
4
{[(23) ⭈ (22)3] ⬊ (23)3} ⬊ (2 ⭈ 2)2
5
{[(34) ⬊ (35)4] ⭈ (34)2} ⬊ [3 ⭈ (32)3]
6
6 ⭈ 4 ⬊ (3 ⭈ 82) ⬊ 84
7
[2 ⭈6 ⬊ (3 ⭈ 42)] ⬊ 64
8
[(6 ⭈ 2 ⬊ 43)] ⭈ [(23) ⬊ (22)3] ⬊ 33
9
[(5 ⬊ 54) ⭈ (5 ⬊ 52)] ⬊ 512 ⫹ 15
4
[27]
3
[2]
5
6
6
6
2
6
3
[81]
2
3
[16]
3
8
4
[3]
2
[8]
7
0
3
2
[6]
3
10 (4 ⫺ 43) ⭈ 4 ⫹ 4 ⬊ 4 ⫺ (5 ⬊ 52)
5
2
6
2
[3]
2
11 [(3 ⬊ 34) ⭈ 32] ⭈ [(4 ⬊ 44) ⭈ 4] ⬊ (3 ⭈ 42)3
5
3
3
3
3
12 (2 ⬊ 42) ⬊ 2 ⭈ [(6 ⬊ 32) ⭈ 25] ⬊ (22) ⭈ 20
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
[1]
[12]
4
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
IL MASSIMO COMUNE DIVISORE
E IL MINIMO COMUNE MULTIPLO
1
COMPLETA
Determina il M.C.D. e il m.c.m. di 9, 36, 96.
9 3
3 3
1
36
18
9
3
1
2
…
…
3
96
48
24
12
6
3
1
2
2
…
…
…
3
Scomponi in fattori primi.
9 ⫽ 3…
…
…
36 ⫽ 2 ⭈ 3 M.C.D.(9, 36, 96) ⫽ …
…
…
…
96 ⫽ 2 ⭈ 3 m.c.m.(9, 36, 96) ⫽ 2 ⭈ 3 ⫽ …
2
PROVA TU
Determina il M.C.D. e il m.c.m. fra 18, 24, 112.
18 2
9 3
3 …
1
24
12
6
3
1
2
2
…
…
112
56
28
14
7
1
2
2
…
…
7
18 ⫽ 2…⭈ 3…
24 ⫽ 2… ⭈ 3
112 ⫽ 2 ⭈ 7
M.C.D. (18, 24, 112) ⫽ …
m.c.m.(18,24,112) ⫽ 2… ⭈ 3… ⭈ …
Determina il M.C.D. e il m.c.m. dei seguenti numeri naturali.
3
5; 35; 21.
[M.C.D.: 1; m.c.m.: 3 ⭈ 5 ⭈ 7 ⫽ 105]
4
40; 24; 8.
[M.C.D.: 2 ⫽ 8; m.c.m.: 2 ⭈ 3 ⭈ 5 ⫽ 120]
5
18; 36; 45.
[M.C.D.: 9; m.c.m.: 180]
6
15; 21; 25.
[M.C.D.: 1; m.c.m.: 525]
7
9; 15; 63.
[M.C.D.: 3; m.c.m.: 315]
8
16; 24; 36.
[M.C.D.: 4; m.c.m.: 144]
9
8; 24; 48.
[M.C.D.: 8; m.c.m.: 48]
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
3
3
5
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
LE ESPRESSIONI CON LE QUATTRO OPERAZIONI
IN Z
1
COMPLETA
Semplifica la seguente espressione:
(3 ⭈ 5) ⫺ {3 ⫺ [8 ⫺ (4 ⫹ 2) ⫺ 7] ⭈ (13 ⫺ 7) ⫹ (⫺ 13 ⫹ 2)}.
(3 ⭈ 5) ⫺ {3 ⫺ [8 ⫺ (4 ⫹ 2) ⫺ 7] ⭈ (13 ⫺ 7) ⫹ (⫺ 13 ⫹ 2)} ⫽
⫽ … ⫺ {3 ⫺ [8 ⫺ … ⫺ 7] ⭈ (…) ⫹ (⫺ 11)} ⫽
Esegui le operazioni nelle parentesi tonde.
⫽ … ⫺ {3 ⫺ [⫺ 5](…) ⫺ 11} ⫽
Esegui le operazioni nelle parentesi quadre.
⫽ … ⫺ {3 ⫺ (⫺ …) ⫺ 11} ⫽
Moltiplica il numero in parentesi quadra con quello
in parentesi tonda.
⫽ … ⫺ {3 ⫹ … ⫺ 11} ⫽
⫽ … ⫺ {…} ⫽ ⫺ 7.
2
Applica la regola dei segni.
Esegui le operazioni nella parentesi graffa e scrivi il risultato.
PROVA TU
Semplifica la seguente espressione:
[7 ⫺ (⫺ 12 ⫹ 7 ⫺ 6 ⫹ 8) ⫺ (⫺ 3 ⫹ 7 ⫹ 4)] ⭈ (⫺ 14 ⫹ 6) ⬊ (⫺ 4).
[7 ⫺ (⫺ 12 ⫹ 7 ⫺ 6 ⫹ 8) ⫺ (⫺ 3 ⫹ 7 ⫹ 4)] ⭈ (⫺ 14 ⫹ 6) ⬊ (⫺ 4) ⫽
⫽ [7 ⫺ (…) ⫺ (…)] ⭈ (…) ⬊ (⫺ 4) ⫽
⫽ […] ⭈ (…) ⬊ (⫺ 4) ⫽
⫽ (…) ⬊ (⫺ 4) ⫽
⫽…
Semplifica le seguenti espressioni.
3
[(⫺ 2) ⭈ (⫺ 3) ⫹ (6 ⫹ 3) ⬊ (⫺ 3) ⫺ 2]
4
[2 ⭈ (⫺ 4) ⫺ 16 ⬊ (⫺ 8) ⫹ 7] ⭈ (⫺ 1) ⫺ 5
[⫺ 6]
5
{[(⫺ 10 ⫹ 4) ⬊ (⫺ 3) ⫺ 3] ⭈ (⫺ 8)} ⬊ (⫺ 6 ⫹ 4)
[⫺ 4]
6
16 ⫹ [(⫺ 8 ⫹ 6) ⭈ 2 ⫹ 16 ⬊ 2] ⭈ (⫺ 2 ⫺ 1)
7
(⫺ 5 ⫹ 1) ⭈ (5 ⫺ 6) ⫹ 2 ⫺ 3 ⭈ [2 ⫺ 9 ⬊ (⫺ 2 ⫺ 1)]
[⫺ 9]
8
(⫺ 18) ⬊ 3 ⫺ 8 ⫹ 12 ⬊ (⫺ 6) ⫺ (7 ⭈ 3 ⫺ 10) ⫹ 8 ⭈ 2
[⫺ 11]
9
(⫺4 ⫺ 1) ⭈ (4 ⫺ 5) ⫹ 2 ⫺ 3 ⭈ [2 ⫺ 8 ⬊ (⫺ 3 ⫺ 1)]
[⫺ 5]
[1]
[4]
10 {[(⫺ 10 ⫹ 6) ⬊ (⫺ 2) ⫺ 2] ⬊ 8} ⬊ 15 ⫹ [(⫺ 4 ⫹ 6) ⭈ 2 ⫹ (15 ⬊ 3)] ⬊ (⫺ 3)
[⫺ 3]
11 3 ⭈ 4 ⫹ {3 ⫺ [2 ⫺ (1 ⫺ 3) ⫹ 7] ⭈ (10 ⫺ 7) ⫺ (⫺ 13 ⫹ 3)}
[⫺ 8]
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
6
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
LE PROPRIETÀ DELLE POTENZE IN Z
1
COMPLETA
Semplifica la seguente espressione:
2
3
2
2
3
2
[(⫺ 3)2] ⬊ {[(⫺ 3)2] ⭈ [(⫺ 3)2] ⬊ [(⫺ 3)4]2}.
[(⫺ 3)2] ⬊ {[(⫺ 3)2] ⭈ [(⫺ 3)2] ⬊ [(⫺ 3)4]2} ⫽
4
…
…
⫽ (⫺3) ⬊ {(⫺3) ⭈ (⫺ 3) ⬊ (⫺ 3)…} ⫽
4
…
⫽ (⫺ 3) ⬊ {(⫺ 3) ⬊ (⫺ 3) } ⫽
4
…
…
⫽ (⫺ 3) ⬊ (⫺ 3) ⫽
Applica la proprietà della potenza di potenza.
Applica la proprietà del prodotto di potenze con la stessa base.
Applica la proprietà del quoziente di potenze con la stessa base due volte.
…
⫽ (⫺ 3) ⫽ ⫹ 9.
2
Calcola la potenza.
PROVA TU
Semplifica la seguente espressione, applicando le proprietà delle potenze:
2
4
2
4
…
…
[(⫺ 21)3] ⬊ [3 ⭈ (⫺ 3)2] ⬊ (⫺ 7)5.
5
[(⫺ 21)3] ⬊ [3 ⭈ (⫺ 3)2] ⬊ (⫺ 7) ⫽
5
⫽ (⫺ 21) ⬊ 3 ⬊ (⫺ 7) ⫽
…
5
⫽ (…) ⬊ (⫺ 7) ⫽
⫽⫺…
Semplifica le seguenti espressioni applicando le proprietà delle potenze.
6
4
3
[(⫺ 12) ⬊ (4)6] ⬊ (⫺ 3)21
4
[(⫺ 16) ⬊ 84] ⬊ (⫺ 2)22
5
[21 ⬊ (⫺ 7)4] ⬊ (⫺ 3)9
6
{[(64) ⬊ (6)4] ⭈ 64}0
7
(4 ⬊ 42) ⫺ (⫺ 3) ⬊ ( ⫺ 1 ⫺ 2)2
8
(⫺ 32) ⬊ [(⫺ 12 ⬊ 4) ⭈ (⫺ 3)4] ⫺ 30
4
6
4
3
2
3
3
3
3
3
2
3
2
2
3
3
2
2
4
[⫺ 1]
3
[3]
2
2
3
14 (4 ⫺ 5) ⫺ [(⫺ 3) ⭈ (⫺ 2) ⬊ 18] ⬊ (4 ⫺ 2) [ ⫺ 3]
16 (2 ⬊ 22) ⭈ (⫺ 5 ⫺ 5 ⭈ 3 ⫹ 13 ⫹ 3) ⫹ (2 ⭈ 32) ⬊ (⫺ 6)2
3
2
[16]
13 (6 ⫹ 2) ⬊ 4 ⫺ (⫺ 2 ⫺ 1) ⬊ (⫺ 3)
15 [(18 ⫺ 7 ⭈ 2) ⬊ 42] ⬊ (⫺ 3 ⫺ 1) ⫺ 1
4
2
3
[8]
3
3
12 [(⫺ 2) ⭈ (⫺ 2) ⬊ (⫺ 2)4] ⫺ (3 ⫺ 3 ⫺ 1) [⫺ 13]
[19]
2
0
[⫺ 2]
11 [(⫺ 4)2] ⭈ [(⫺ 4)2] ⬊ (⫺ 44)2
[1]
3
4
2
[⫺ 27]
2
3
{[2 ⭈ (10 ⫺ 8)2] ⬊ (6 ⫺ 4)3} ⬊ (⫺ 2)
10 {[(⫺ 4)3] ⬊ [(⫺ 4)2]3} ⫺ {[(⫺ 6) ⬊ (⫺ 3)3]} [⫺ 7]
[4]
3
3
9
[⫺ 27]
4
2
17 [(⫺ 4) ⭈ (⫺ 4) ⬊ (⫺ 4)6] ⫺ (2 ⫺ 2 ⫺ 9) ⭈ (4 ⬊ 4 ⫺ 20)
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
[⫺ 7]
[⫺ 4]
7
I NUMERI NATURALI E I NUMERI INTERI Recupero
RECUPERO
DALLE PAROLE ALLE ESPRESSIONI LETTERALI IN Z
1
COMPLETA
Traduci in espressione la seguente frase: «Aggiungi al triplo di a il doppio del quadrato di b e poi sottrai il quadruplo di a».
Calcola il valore dell’espressione per a 5 e b 2.
triplo di a: 3a
Traduci le parti della frase.
quadrato di b: b
…
doppio del quadrato di b: …b2
quadruplo di a: … a
2
3a …b … a
Scrivi l’espressione.
2
3 (…) 2 (…) 4 (…) Sostituisci i valori di a e di b.
…2……
Esegui i calcoli.
….
2
PROVA TU
Traduci in espressione la seguente frase: «Sottrai il quadrato di b al cubo di a poi aggiungi il quadrato
della differenza tra a e b».
Calcola il valore dell’espressione per a 2 e b 4.
cubo di a: a …; quadrato di b: b …; differenza tra a e b: … …;
quadrato della differenza tra a e b: (a b)….
…
…
a b (a b)….
…
…
…
( 2) ( 4) ( 2 …) ……4…
Traduci in espressioni le seguenti frasi e poi calcola i valori delle espressioni per i valori di a e b indicati a fianco.
3
«Moltiplica la differenza tra a e b per il triplo della loro somma.»
a 4,
b 3.
[21]
4
«Sottrai il quadruplo di b dal prodotto del doppio di a con b.»
a 3,
b 5.
[ 10]
5
«Dividi la somma del doppio di a e di b per la somma tra a e b.»
a 4,
b 2.
[3]
6
«Al triplo di a aggiungi il quadrato del doppio di b.»
a 3,
b 2.
[7]
7
«Al doppio del quadrato di b sottrai il quadruplo di a.»
a 3,
b 2.
[ 4]
8
«Dividi il doppio della somma di a e b per il quadrato di b.»
a 6,
b 2.
[ 4]
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
8
I NUMERI NATURALI E I NUMERI INTERI
DALLE IMMAGINI ALLE ESPRESSIONI
1
ESERCIZIO GUIDA
Esprimiamo con un’espressione letterale la misura dell’area del rettangolo ABCD.
AFED è un quadrato;
a indica la misura di FB;
b indica la misura di BC.
La misura dell’area del rettangolo ABCD è data
dalla somma di quelle delle due figure:
2
● quadrato AFED, di area b ;
● rettangolo FBCE, di area 2ab .
L’espressione richiesta è: b ⫹ ab.
D
C
E
b
A
F
B
a
Per ognuna delle figure seguenti scrivi l’espressione relativa alla misura di ciò che è indicato.
2
Lunghezza del segmento AB.
7
Lunghezza del segmento CB.
b
u
A
A
3
a
B
Lunghezza del segmento AC.
x
8
B
C
Area del quadrato ABCD.
y
A
C
Lunghezza del segmento AD.
b
c
X
a
X
4
B
C
X
D
C
D
Lunghezza del segmento AC.
X
A
A
B
9
C
Lunghezza del segmento AC.
a
C
X
D
b
A
X
B
Area del rettangolo ABCD.
C
=
6
X
y
b
=
a
=
5
B
X
A
a =
B
A
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
B
9
I NUMERI NATURALI E I NUMERI INTERI
10 Area del rettangolo AEFD.
4a
D
15
C
c
D
F
C
b
=
b
=
E
A
A
B
a
x
16
x
A
B
C
C
Lunghezza di BC.
12
B
Perimetro del rettangolo ABCD e area del triangolo
AED.
y
11
a
E
a
A
C
x
H
a
b
B
b
Area dei triangoli ABC, ACH e CHB.
b
17
A
x
a
D
B
C
x
Area del triangolo ABC.
A
x
y
13
D
B
K
H
Area del trapezio isoscele ABCD.
C
18 Area del:
● quadrato AEFG;
● quadrato IFHC;
● rettangolo EDHF.
B
D
Perimetro e area del quadrato ABCD.
E
A x
14
E x
D
a
C
H
I
F
C
b
A
A
a
F
G
b
B
B
Perimetro e area del rettangolo AFED.
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
10
I NUMERI RAZIONALI
LE ESPRESSIONI CONTENENTI
SOMME ALGEBRICHE
1
COMPLETA
Semplifica la seguente espressione:
1
3
1
1
1
⫺ 3 ⫹ 2 ⫹ ᎏᎏ ⫺ ᎏᎏ ⫹ 2 ⫺ ᎏᎏ ⫺ ⫺ ᎏᎏ ⫹ ᎏᎏ .
3
2
3
2
3
冤 冢
冣
冥 冢
冤 冢
冣 冥 冢
冤
冥 冢
冤 冢 冣 冥 冢 冣
冤
冥
冤
冥
冣
冣
1
3
1
1
1
⫺ 3 ⫹ 2 ⫹ ᎏᎏ ⫺ ᎏᎏ ⫹ 2 ⫺ ᎏᎏ ⫺ ⫺ ᎏᎏ ⫹ ᎏᎏ ⫽
3
2
3
2
3
2⫺…⫹…
1
⫺3⫹…
⫽ ⫺ 3 ⫹ 2 ⫹ ᎏᎏ ⫺ ᎏᎏ ⫺ ᎏᎏ ⫽
6
3
6
…
1
…
⫽ ⫺ 3 ⫹ 2 ⫹ ᎏᎏ ⫺ ᎏᎏ ⫺ ⫺ ᎏᎏ ⫽
6
3
6
…
1
1
⫽ ⫺ 3 ⫹ 2 ⫹ ᎏᎏ ⫺ ᎏᎏ ⫹ ᎏᎏ ⫽
6
3
6
12 ⫹ … ⫺ …
1
⫽ ⫺ 3 ⫹ ᎏᎏ ⫹ ᎏᎏ ⫽
6
6
…
1
⫽ ⫺ 3 ⫹ ᎏᎏ ⫹ ᎏᎏ ⫽
6
6
⫺ 18 ⫹ … ⫹ 1
⫽ ᎏᎏ ⫽
6
…
⫽ ⫺ ᎏᎏ ⫽
6
1
⫽ ⫺ ᎏᎏ.
3
冣
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
Esegui le operazioni tra frazioni
nelle parentesi tonde.
Togli le parentesi tonde cambiando
eventualmente i segni.
Esegui le operazioni tra frazioni
nella parentesi quadra.
Esegui le operazioni tra frazioni.
11
I NUMERI RAZIONALI
2
PROVA TU
Semplifica la seguente espressione:
冢ᎏ21ᎏ ⫺ ᎏ34ᎏ冣 ⫹ 冢ᎏ21ᎏ ⫹ ᎏ31ᎏ冣 ⫺ 冤冢⫺ ᎏ11ᎏ2 ⫹ ᎏ45ᎏ冣 ⫺ 冢ᎏ21ᎏ ⫹ ᎏ61ᎏ冣冥.
冢ᎏ21ᎏ ⫺ ᎏ34ᎏ冣 ⫹ 冢ᎏ21ᎏ ⫹ ᎏ31ᎏ冣 ⫺ 冤冢⫺ ᎏ11ᎏ2 ⫹ ᎏ45ᎏ冣 ⫺ 冢ᎏ21ᎏ ⫹ ᎏ61ᎏ冣冥 ⫽
3⫺…
3⫹…
⫺1⫹…
3⫹…
⫽ 冢ᎏᎏ冣 ⫹ 冢ᎏᎏ冣 ⫺ 冤冢ᎏᎏ冣 ⫺ 冢ᎏᎏ冣冥 ⫽
6
6
12
6
⫺…
…
…
4
⫽ 冢ᎏᎏ冣 ⫹ 冢⫹ ᎏᎏ冣 ⫺ 冤冢ᎏᎏ冣 ⫺ 冢ᎏᎏ冣冥 ⫽
6
6
12
6
…
4
…
…
⫽ ⫺ ᎏᎏ ⫹ ᎏᎏ ⫺ 冤ᎏᎏ ⫺ ᎏᎏ冥 ⫽
6
6
12
6
…
…
…⫺8
⫽ ⫺ ᎏᎏ ⫹ ᎏᎏ ⫺ 冤ᎏᎏ冥 ⫽
6
6
12
…
…
⫽ ⫺ 冤ᎏᎏ冥 ⫽ ⫺ ᎏᎏ .
12
2
Semplifica le seguenti espressioni.
3
4
5
6
7
8
9
10
11
冢3 ⫹ ᎏ23ᎏ冣 ⫺ 冢ᎏ32ᎏ ⫺ ᎏ49ᎏ冣
1
5
3
1
7
ᎏᎏ ⫹ 冤冢1 ⫺ ᎏᎏ冣 ⫹ 冢ᎏᎏ ⫺ ᎏᎏ冣冥 ⫺ ᎏᎏ
2
6
2
4
3
1
3
4
17
1
冢ᎏ12ᎏ ⫺ ᎏ1ᎏ0 冣 ⫹ 冢⫺ ᎏ5ᎏ ⫹ ᎏ2ᎏ0 ⫺ ᎏ4ᎏ冣 ⫺ ᎏ2ᎏ
冢⫺ ᎏ34ᎏ ⫹ 6冣 ⫺ 冢ᎏ29ᎏ ⫺ ᎏ58ᎏ冣 ⫺ ᎏ14ᎏ
冤2 ⫹ 冢⫺ 1 ⫹ ᎏ12ᎏ冣 ⫹ 冢⫺ 1 ⫺ ᎏ34ᎏ冣冥 ⫹ 1
冤2 ⫹ 冢ᎏ12ᎏ ⫺ 1冣 ⫺ 冢⫺ ᎏ14ᎏ ⫹ 2冣冥 ⫺ 1
7
冦⫺ 冤⫺ ᎏ34ᎏ⫹ 冢⫺ ᎏ56ᎏ ⫺ ᎏ18ᎏ冣冥 ⫺ ᎏ12ᎏ冧
1
4
3
2
1
7
冢ᎏ4ᎏ ⫺ ᎏ5ᎏ冣 ⫺ 冢ᎏ2ᎏ ⫹ 1冣 ⫺ ᎏ2ᎏ0 ⫹ 冢ᎏ5ᎏ ⫹ ᎏ5ᎏ冣
冢⫺ 2 ⫹ ᎏ21ᎏ冣 ⫹ 冤⫺ 2 ⫹ 冢ᎏ43ᎏ ⫺ ᎏ81ᎏ冣 ⫹ 冢5 ⫹ ᎏ27ᎏ冣冥
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
冤ᎏ417ᎏ8 冥
冤⫺ ᎏ15ᎏ2 冥
冤⫺ ᎏ45ᎏ冥
冤ᎏ89ᎏ冥
冤ᎏ34ᎏ冥
冤⫺ ᎏ54ᎏ冥
冤ᎏ89ᎏ冥
3
冤⫺ ᎏ5ᎏ冥
冤ᎏ48ᎏ5 冥
12
I NUMERI RAZIONALI
LE ESPRESSIONI CON LE QUATTRO OPERAZIONI
1
COMPLETA
Semplifica la seguente espressione:
1
冤ᎏ31ᎏ ⫹ ᎏ56ᎏ ⬊ 冢⫺ ᎏ1ᎏ08 冣冥 ⬊ 冤冢ᎏ11ᎏ4 ⫺ ᎏ76ᎏ ⫹ 1冣 ⭈ 冢ᎏ14ᎏ5 ⫺ ᎏ34ᎏ ⫹ ᎏ52ᎏ冣冥.
冤ᎏ31ᎏ ⫹ ᎏ56ᎏ ⬊ 冢⫺ ᎏ11ᎏ08 冣冥 ⬊ 冤冢ᎏ11ᎏ4 ⫺ ᎏ76ᎏ ⫹ 1冣 ⭈ 冢ᎏ14ᎏ5 ⫺ ᎏ34ᎏ ⫹ ᎏ52ᎏ冣冥 ⫽
1
6
…
1 ⫺ … ⫹ 14
4⫺…⫹6
⫽ 冤ᎏᎏ ⫹ ᎏᎏ ⭈ 冢⫺ ᎏᎏ冣冥 ⬊ 冤冢ᎏᎏ冣 ⭈ 冢ᎏᎏ冣冥 ⫽ Esegui le operazioni nelle parentesi tonde e
3
5
…
14
15
semplifica in croce la prima moltiplicazione.
1
…
…
10
Esegui la prima moltiplicazione e semplifica
⫽ 冤ᎏᎏ ⫺ ᎏᎏ冥 ⬊ 冤冢ᎏᎏ冣 ⭈ 冢⫺ ᎏᎏ冣冥 ⫽
3
…
14
15
in croce nella seconda parentesi quadra.
1⫺…
…
⫽ 冤ᎏᎏ冥 ⬊ 冤⫺ ᎏᎏ冥 ⫽
Esegui la sottrazione nella prima parentesi quadra.
3
…
…
…
…
7
⫽ ⫺ ᎏᎏ ⬊ 冢⫺ ᎏᎏ冣 ⫽ ⫺ ᎏᎏ ⭈ (⫺ 7) ⫽ ⫹ ᎏᎏ.
Trasforma la divisione in moltiplicazione.
3
…
3
3
2
PROVA TU
Semplifica la seguente espressione:
3
冦冤冢ᎏ43ᎏ ⫺ ᎏ81ᎏ冣 ⬊ 冢ᎏ18ᎏ3 ⫺ 1冣 ⫹ 4冥 ⬊ 冢⫺ ᎏ25ᎏ冣 ⫹ 4冧 ⭈ ᎏ23ᎏ ⫺ ᎏ16ᎏ.
冦冤冢ᎏ43ᎏ ⫺ ᎏ81ᎏ冣 ⬊ 冢ᎏ18ᎏ3 ⫺ 1冣 ⫹ 4冥 ⬊ 冢⫺ ᎏ25ᎏ冣 ⫹ 4冧 ⭈ ᎏ23ᎏ ⫺ ᎏ16ᎏ3 ⫽
…⫺…
13 ⫺ …
5
3
13
⫽ 冦冤冢ᎏᎏ冣 ⬊ 冢ᎏᎏ冣 ⫹ 4冥 ⬊ 冢⫺ ᎏᎏ冣 ⫹ 4冧 ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
8
8
2
2
6
… …
5
3
13
⫽ 冦冤ᎏ ᎏ ⬊ ᎏ ᎏ ⫹ 4冥 ⬊ 冢⫺ ᎏᎏ冣 ⫹ 4冧 ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
8
8
2
2
6
… 8
2
3
13
⫽ 冦冤ᎏ ᎏ ⭈ ᎏᎏ ⫹ 4冥 ⭈ 冢⫺ ᎏ ᎏ冣 ⫹ 4冧 ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
8 5
…
2
6
2
3
13
⫽ 冦… ⭈ 冢⫺ ᎏᎏ冣 ⫹ 4冧 ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
5
2
6
3
13
⫽ 冦⫺ … ⫹ 4冧 ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
2
6
3
13
⫽ … ⭈ ᎏᎏ ⫺ ᎏᎏ ⫽
2
6
13
⫽ … ⫺ ᎏᎏ ⫽
6
… ⫺ 13
⫽ ᎏᎏ ⫽ …
6
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
13
I NUMERI RAZIONALI
Semplifica le seguenti espressioni.
3
4
5
6
7
8
9
10
11
12
冤ᎏ13ᎏ ⫹ ᎏ65ᎏ ⬊ 冢⫺ ᎏ18ᎏ0 冣冥 ⫹ 1
1
7
4
2
4
冤冢ᎏ1ᎏ2 ⫹ ᎏ6ᎏ ⫺ 1冣 ⭈ 冢ᎏ1ᎏ5 ⫺ ᎏ3ᎏ ⫹ ᎏ5ᎏ冣冥
9
5
4
冤冢⫺ ᎏ45ᎏ ⫺ ᎏ1ᎏ0 ⫹ ᎏ3ᎏ冣 ⬊ 冢⫺ ᎏ1ᎏ5 冣冥
冦ᎏ23ᎏ ⬊ 冤ᎏ18ᎏ ⬊ 冢ᎏ52ᎏ ⫺ ᎏ94ᎏ冣冥冧
冢⫺ ᎏ23ᎏ ⫺ ᎏ12ᎏ冣 ⬊ 冢ᎏ43ᎏ ⫹ 1冣
3
3
1
1
冤⫺ 冢1 ⫺ ᎏ4ᎏ冣 ⫹ ᎏ5ᎏ ⬊ 冢ᎏ2ᎏ0 冣冥 ⭈ 冢ᎏ7ᎏ ⫺ 1冣
7
3
3
冦ᎏ34ᎏ ⭈ 冤冢ᎏ2ᎏ0 ⫺ ᎏ5ᎏ ⫹ 1冣 ⬊ ᎏ5ᎏ冥冧
3
1
1
冤冢1 ⫹ ᎏ12ᎏ ⫺ ᎏ23ᎏ冣 ⬊ 冢ᎏ4ᎏ ⫹ ᎏ2ᎏ冣冥 ⬊ 冢⫺ ᎏ3ᎏ冣
冤冢ᎏ81ᎏ ⫹ ᎏ21ᎏ冣 ⬊ 冢ᎏ21ᎏ ⫺ ᎏ43ᎏ冣冥 ⬊ 冤ᎏ94ᎏ ⬊ 冢ᎏ34ᎏ ⫺ 2冣冥
2
1
2
1
4
冦冤⫺ ᎏ45ᎏ ⫺ 2冢⫺ ᎏ3ᎏ ⫹ ᎏ6ᎏ冣冥 ⭈ 冢2 ⫹ ᎏ3ᎏ冣 ⫺ 1冧 ⬊ 冢ᎏ3ᎏ ⫺ 2冣 ⫺ ᎏ3ᎏ
1
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
冤ᎏ23ᎏ冥
冤ᎏ11ᎏ0 冥
冤ᎏ18ᎏ冥
冤ᎏ43ᎏ冥
冤⫺ ᎏ12ᎏ冥
1
冤⫺ ᎏ3ᎏ冥
冤ᎏ115ᎏ6 冥
[⫺ 2]
冤ᎏ14ᎏ5 冥
冤⫺ ᎏ31ᎏ冥
14
I NUMERI RAZIONALI
ESPRESSIONI E PROPRIETÀ DELLE POTENZE
1
COMPLETA
Semplifica la seguente espressione:
冤冢ᎏ54ᎏ ⫺ ᎏ19ᎏ0 ⫹ ᎏ35ᎏ冣 ⬊ 冢⫺ ᎏ14ᎏ5 冣冥 ⭈ 冢⫺ ᎏ43ᎏ7 冣 ⫹ ᎏ4ᎏ ⫺ 2.
2
2
1
冤冢ᎏ54ᎏ ⫺ ᎏ19ᎏ0 ⫹ ᎏ35ᎏ冣 ⬊ 冢⫺ ᎏ14ᎏ5 冣冥 ⭈ 冢⫺ ᎏ43ᎏ7 冣 ⫹ ᎏ41ᎏ ⫺ 2 ⫽
24 ⫺ … ⫹ …
4
3
1
⫽ 冤冢ᎏᎏ冣 ⬊ 冢⫺ ᎏᎏ冣冥 ⭈ 冢⫺ ᎏᎏ冣 ⫹ ᎏᎏ ⫺ 2 ⫽ Esegui le operazioni dentro le parentesi tonde.
30
15
47
4
…
15
3
1
⫽ 冤冢ᎏ ᎏ冣 ⭈ 冢⫺ ᎏᎏ冣冥 ⭈ 冢⫺ ᎏᎏ冣 ⫹ ᎏᎏ ⫺ 2 ⫽
Trasforma la divisione in moltiplicazione.
30
4
47
4
…
3
1
Esegui la moltiplicazione e applica la proprietà
⫽ 冢ᎏᎏ冣 ⭈ 冢⫺ ᎏᎏ冣 ⫹ ᎏᎏ ⫺ 2 ⫽
8
47
4
del prodotto di potenze con lo stesso esponente.
…
1
⫽ 冢ᎏᎏ冣 ⫹ ᎏᎏ ⫺ 2 ⫽
Calcola la potenza ed esegui le operazioni.
…
4
2
2
2
2
2
2
2
2
2
…
1
… ⫹ 16 ⫺ …
103
⫽ ᎏᎏ ⫹ ᎏᎏ ⫺ 2 ⫽ ᎏᎏ ⫽ ⫺ ᎏᎏ.
64
4
64
64
2
PROVA TU
Semplifica la seguente espressione:
冤冢
冣冢
冣冥 冢 冣 冤冢 冣 冢 冣 冥 ⫹ ᎏ49ᎏ.
2
1
5 ⫹ ᎏᎏ ⬊ 9 ⫺ ᎏᎏ
3
2
2
5 2
3 4 3
⭈ ᎏᎏ ⫺ ᎏᎏ ⬊ ᎏᎏ
2
2
2
2
冤冢5 ⫹ ᎏ32ᎏ冣 ⬊ 冢9 ⫺ ᎏ21ᎏ冣冥 ⭈ 冢ᎏ25ᎏ冣 ⫺ 冤冢ᎏ23ᎏ冣 ⬊ 冢ᎏ23ᎏ冣 冥 ⫹ ᎏ49ᎏ ⫽
…⫹2
…⫺ 1
5
3
9
⫽ 冤冢ᎏᎏ冣 ⬊ 冢ᎏᎏ冣冥 ⭈ 冢ᎏᎏ冣 ⫺ 冢ᎏᎏ冣 ⫹ ᎏᎏ ⫽
3
2
2
2
4
… …
5
9
9
⫽ 冤ᎏᎏ ⬊ ᎏᎏ冥 ⭈ 冢ᎏᎏ冣 ⫺ ᎏᎏ ⫹ ᎏᎏ ⫽
3
2
2
4
4
… 2
5
⫽ 冤ᎏᎏ ⭈ ᎏᎏ冥 ⭈ 冢ᎏᎏ冣 ⫽
3 17
2
…
5
⫽ 冤ᎏᎏ冥 ⭈ 冢ᎏᎏ冣 ⫽
3
2
… 5
⫽ 冢ᎏᎏ ⭈ ᎏᎏ冣 ⫽
3 2
…
⫽ 冢ᎏᎏ冣 ⫽ …
3
2
2
2
2
2
2
…
2
2
2
4
2
2
2
2
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
15
I NUMERI RAZIONALI
Semplifica le seguenti espressioni applicando le proprietà delle potenze.
3
4
5
6
7
8
9
10
11
冤冢ᎏ32ᎏ冣 冥 ⬊ 冦冤冢ᎏ32ᎏ冣 冥 ⬊ 冢⫺ 1 ⫹ ᎏ13ᎏ冣 冧
冤冢ᎏ53ᎏ冣 ⭈ 冢ᎏ53ᎏ冣 冥 ⬊ 冤冢1 ⫹ ᎏ23ᎏ冣 冥 ⫺ 1
3
1
冤冢⫺ ᎏ12ᎏ ⫹ ᎏ34ᎏ ⫺ ᎏ3ᎏ冣 ⬊ 冢⫺ 1 ⫹ ᎏ4ᎏ冣 冥
冦冤ᎏ15ᎏ ⬊ 冢1 ⫺ ᎏ35ᎏ冣 ⫺ ᎏ12ᎏ冥 ⬊ 冢ᎏ34ᎏ冣 冧
冤冢1 ⫺ ᎏ16ᎏ冣 ⭈ 冢ᎏ56ᎏ冣 ⬊ 冢ᎏ113ᎏ2 ⫺ ᎏ14ᎏ冣 冥
1
1
1
冤冢⫺ ᎏ2ᎏ ⫺ ᎏ4ᎏ冣 ⬊ 冢⫺ 1 ⫹ ᎏ2ᎏ冣 冥 ⫺ 2
3
5
1
1
冤冢ᎏ15ᎏ ⫺ ᎏ12ᎏ冣 ⬊ 冢ᎏ8ᎏ ⫺ ᎏ4ᎏ ⫹ ᎏ2ᎏ冣 冥 ⬊ 冢1 ⫺ ᎏ5ᎏ冣
4
4
3
3
1
冢ᎏ32ᎏ冣 ⬊ 冤冢ᎏ3ᎏ冣 ⬊ 冢ᎏ3ᎏ冣冥 ⫹ 冢⫺ ᎏ4ᎏ冣 ⬊ 冤冢⫺ ᎏ4ᎏ冣 冥 ⬊ 冢⫺ 1 ⫹ ᎏ4ᎏ冣
3
1
冤冢ᎏ54ᎏ ⫺ 2冣 ⭈ 冢⫺ ᎏ5ᎏ冣 冥 ⬊ 冤( ⫺ 2) ⬊ 冢⫺ ᎏ2ᎏ冣 冥 ⫹ 1
3 2
1⫹
5
2 1
2 2
4
2 6
2
2
2
3
3
2
3
3
3
4
3
⫺4
冤ᎏ196ᎏ冥
冤ᎏ19ᎏ冥
3
3
2
2
2
[2]
⫺4
3 2
⫺4
[1]
冤ᎏ235ᎏ6 冥
1
冤ᎏ4ᎏ冥
冤ᎏ126ᎏ5 冥
冤⫺ ᎏ21ᎏ冥
3 ⫺3
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
[⫺ 1]
16
I NUMERI RAZIONALI
ESPRESSIONI CON
POTENZE
A ESPONENTE NEGATIVO
Calcola il valore delle seguenti espressioni applicando le proprietà delle potenze.
1
2
3
4
5
6
7
8
9
10
1
3 ⫺1
冦冤3 ⭈ 冢ᎏ3ᎏ冣 冥
3
3
3
⫺6
冧 冤冢ᎏ2ᎏ冣 ⭈ 冢ᎏ2ᎏ冣 冥
1
1
⫺ (⫺ 3) ⬊ 3 ⫹ 3 ⭈ 冢⫺ ᎏᎏ冣 ⫹ 冢⫺ ᎏᎏ冣
3
3
3
4
3
冤冢⫺ ᎏ4ᎏ冣 冥 ⭈ 冢ᎏ3ᎏ冣 ⬊ 冢⫺ ᎏ4ᎏ冣 ⫹ 冤冢⫺ ᎏ34ᎏ冣 ⬊ 冢ᎏ43ᎏ冣 冥 ⭈ 冢ᎏ34ᎏ冣
2
⫺4
⭈ 32 ⭈
⫺2
⫺1
⫺2 ⫺2
⫺3
2
3
5
5
⫺2
⫺3
{[(35 ⭈ 3)⫺2 ⬊ (3 ⭈ 33)⫺1] ⭈ (3⫺2 ⭈ 33) ⬊ 32}⫺1 ⭈ 3⫺6
2 2
1 ⫺2
1 3
⫺ ᎏᎏ ⬊ ⫺ ᎏᎏ ⬊ 162
⬊ (⫺ 4)5
4
4
7 ⫺2 ⫺2 7 ⫺3
7 5
49
⫺ ᎏᎏ
⭈ ᎏᎏ ⬊ ⫺ ᎏᎏ ⫹ ⫺ ᎏᎏ
3
3
3
9
冦冤冢 冣 冢 冣 冥 冧
冤冢 冣 冥 冢 冣 冢 冣 冢
冤⫺ ᎏ14ᎏ冥
冣
⫺2
[0]
[4]
3 4
3 2 8 2
⫺ ᎏᎏ ⬊ ⫹ ᎏᎏ
ᎏᎏ
2
2
7
⫺1
⫺2
⫺3
3
0
4
1
4
(⫺ 3)⫺2 ⫹ ⫺ ᎏᎏ
⭈ ⫺ ᎏᎏ ⫹ ⫺ ᎏᎏ ⬊ ⫺ ᎏᎏ
2
3
3
3
93 ⭈ 26
2 3 2 2 ⫺3 724
2
ᎏᎏ⫺
ᎏᎏ ⭈ ᎏᎏ
⭈ ᎏᎏ
⭈ ᎏ4 ᎏ
4
8
18
3
9
9
27 ⭈ 95
冦冤 冢 冣 冥 冧 冦冤冢 冣 冢 冣 冥冢 冣 冧
冦冤
冢 冣 冥冢 冣 冢 冣 冢
冤冢
冣 冢 冣冥 冢
冣
2
⬊ 23
⫺1
⭈
冣 冧
⫺2 ⫺1
2 3
4
2
ᎏᎏ ⬊ 2 ⫺ ᎏᎏ 1 ⫹ ᎏᎏ
3
3
7
5
7
11 2 ⫺ ᎏᎏ ⫺ ᎏᎏᎏᎏᎏ ⫹ ᎏᎏ
⫺2
1
3
2
2
1
2
6
6
⫺ ᎏᎏ ⬊ ᎏᎏ ⫹ ᎏᎏ ⬊ ᎏᎏ ⭈ ᎏᎏ ⬊ ᎏᎏ ⫹ 1
3
4 2
3
9 3
冢
冢 冣 冢 冣冢 冣
冣 冤
冢 冣
冥
12
9 3
2 3
4 3
⫺ ᎏᎏ ⭈ 1 ⫹ ᎏᎏ ⬊ 1 ⫹ ᎏᎏ
7
5
5
ᎏᎏᎏᎏᎏ
⫺2
3
3
1
1
2
1 2
3⫺3 ⭈ ⫺ ᎏᎏ ⫹ ⫹ ᎏᎏ ⭈ ⫺ ᎏᎏ ⬊ ⫺ ᎏᎏ
3
2
5
5
13
1 2
4 2
1 2 ⫺1
4 2
2 ⫹ ᎏᎏ ⭈ 3 ⫺ ᎏᎏ ⫺ 1 ⫺ ᎏᎏ
⬊ ⫺ 1 ⫹ ᎏᎏ
2
3
5
5
ᎏᎏᎏᎏᎏᎏ
1 ⫺2
1 2
3 ⫺2
3 2 5
1
ᎏᎏ ⫺ ᎏᎏ ⫹ ᎏᎏ 1 ⫺ ᎏᎏ ⬊ 1 ⫺ ᎏᎏ ⫺ ᎏᎏ
2
3
4
8
5
2
冢 冣 冢 冣 冢 冣
冢 冣 冢 冣 冢 冣 冢 冣
冤冢
冣 冢 冣冢
冢 冣 冢 冣冢
冣冥 冢
冣 冢 冣
冤⫺ ᎏ19ᎏ冥
冤⫺ ᎏ215ᎏ6 冥
[27]
{[4 ⬊ (⫺ 2)⫺4 ⬊ (⫺ 8)]2}3 ⬊ [(⫺ 16)⫺1]⫺4
1
23 ⬊ ᎏᎏ
2
[8]
冤ᎏ34ᎏ69 冥
冤⫺ ᎏ11ᎏ12 冥
1
⫺
ᎏ
冤 4ᎏ冥
[1]
15
冤⫺ ᎏ2ᎏ冥
冣
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
冤ᎏ31ᎏ冥
17
I NUMERI RAZIONALI
LE ESPRESSIONI LETTERALI
1
COMPLETA
Traduci in espressione la seguente frase:
4
16
2
«Dividi la differenza tra i del quadrato di a e i del quadrato di b per il quadrato dei di a».
9
25
3
9
5
Calcola il valore dell’espressione per a e b .
4
4
quadrato di a: a 2
4
4
del quadrato di a: …
9
9
quadrato di b: b 2
16
…
del quadrato di b: b 2
25
25
2
2
di a: a
3
3
2
2
quadrato di di a: a
3
3
Traduci le parti della frase.
冢 冣
…
冢94 a …25 b 冣 ⬊ 冢32 a冣
2
…
2
Scrivi l’espressione.
冤94 冢 49冣 …25冢45冣 冥 ⬊ 冤32 冢 …9冣冥 2
…
冤
冥 冤
2
Sostituisci i valori di a e b.
冥
4 …
16 25
… 2
⬊ Eleva al quadrato i valori dentro le parentesi tonde ed esegui la
moltiplicazione tra frazioni nella seconda parentesi quadra.
9 16
25 …
2
冤
冥
…
…
1 ⬊ 4
4
9…
…
⬊ 4
4
5 …
5 …
5
⬊ .
4
4
4
9
9
冤
2
冥
Esegui le moltiplicazioni semplificando in croce ed eleva
al quadrato il valore dentro la seconda parentesi quadra.
Esegui la sottrazione tra frazioni dentro la parentesi quadra.
Trasforma la divisione in moltiplicazione.
PROVA TU
Traduci in espressione la seguente frase:
2
1
5
«Aggiungi ai di a il cubo della differenza tra di a e i di b. Eleva il risultato ottenuto al numero
3
3
7
intero 1».
9
7
Calcola il valore dell’espressione per a e b .
4
10
2
2
di a: a;
3
3
1
1
di a: a;
3
…
5
…
di b: b;
7
7
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
18
I NUMERI RAZIONALI
1
5
1
…
differenza tra di a e i di b: a b;
3
7
3
7
…
1
…
cubo della differenza: a b .
3
7
2
1
… …
L’espressione cercata è a a b
3
3
7
冢
冤
冣
冢
冣冥
…
9
7
Calcoliamo il valore dell’espressione per a e b :
4
10
…
1
9
5
… 3 …
2
3
4
3
4
7
10
…
…
1 3 …
2
4
…
…
… 2 3 …
2
4
…
1 …
2
…
… 1 …
64
… …
64
64 …
…
…
冦 冢 冣 冤 冢 冣 冢
冦
冤
冥冧
冦
冤
冥冧
冦
冧
冦
冧
冦 冧
冦 冧
冣冥 冧
Traduci in espressioni le seguenti frasi e calcola quanto valgono per i valori di a e b indicati a fianco.
3
3
3
«Dividi il quadrato di di a per il quadrato di di b.»
4
16
1
a ,
3
4
b .
3
4
2
1
«Dividi il quadrato della differenza dei di a e di b per il cubo del doppio di a.»
3
4
冥
1
3
a , b .
2
4
冤18冥
2
«Calcola il doppio del quadrato della differenza fra la metà di a e i di b.»
3
6
4
3
«Dividi la somma tra i del quadrato di a e i del quadrato di b per il doppio di a.»
9
2
1
a 3, b .
2
«Sottrai alla somma di a e b la terza parte del cubo di a.»
1
a ,
2
Copyright © 2010 Zanichelli editore SpA, Bologna [6821 der]
Questo file è una estensione online dei corsi di matematica di Massimo Bergamini, Anna Trifone e Graziella Barozzi
3
a , b 2 .
4
8
27
冤
5
7
[1]
3
b .
2
冤 3458 冥
冤2254 冥
19
Animali da soma
(da L’uomo che sapeva contare, di Malba Tahan, ed Salani, 1966, pagg. 10-13)
Del singolare episodio di trentacinque cammelli da dividere fra tre fratelli arabi. In che modo
Beremiz Samir, l'Uomo Che Contava, riuscì a fare una suddivisione che sembrava impossibile e che
invece lasciò del tutto soddisfatti i litiganti. L'inatteso guadagno che ci venne da questa operazione.
Avevamo viaggiato senza fermarci per qualche ora, quando ci capitò un episodio degno di venir
raccontato, in cui il mio compagno Beremiz utilizzò le sue doti di esperto conoscitore dell'algebra.
Vicino a una vecchia locanda semiabbandonata scorgemmo tre uomini che discutevano
animatamente presso un branco di cammelli. Tra urla e insulti costoro litigavano
gesticolando con violenza e noi potevamo udire le loro grida astiose.
«Non è così! »
«Questo è un furto! »
«Non sono d'accordo! »
L'abile Beremiz domandò perché mai stessero litigando.
«Siamo fratelli» spiegò il più vecchio, «e abbiamo ricevuto in eredità questi trentacinque cammelli.
Secondo l'espresso desiderio di nostro padre, la metà di essi mi appartiene, un terzo spetta a mio
fratello Hamed e la nona parte a Harim, il più giovane. Però non sappiamo come fare la divisione, e
qualsiasi suggerimento fatto da uno di noi viene respinto dagli altri. Nessuna delle soluzioni finora
escogitate si è rivelata accettabile. Come è possibile fare questa divisione se la metà di 35 è 17 e 1/2,
e se né un terzo né un nono di 35 sono numeri interi?»
« Ma è semplicissimo» disse l'Uomo Che Contava. « Mi impegno a fare la suddivisione equamente,
ma permettetemi prima di aggiungere all'eredità questo splendido animale che ci ha portato qui nel
momento più opportuno ».
A questo punto intervenni. «Non posso permettere una simile follia. Come potremo continuare il
viaggio se non avremo più il nostro cammello? » '
«Non ti preoccupare, amico di Baghdad » mi sussurrò Beremiz, «so esattamente ciò che sto
facendo. Dammi il tuo cammello e vedrai il risultato alla fine».
Tale era la sicurezza della sua voce che gli consegnai senza la minima esitazione il mio bellissimo
Jamal, che fu quindi aggiunto al gruppo dei cammelli che bisognava dividere fra i tre fratelli.
«Amici miei» disse, «ora farò una giusta ed esatta divisione dei cammelli che, come vedete, sono
adesso 36 »; e rivolgendosi al più anziano dei fratelli: «Avresti dovuto» disse, «ricevere la metà di 35,
cioè 17 e 1/2. Avrai invece la metà di 36, che fa 18. Non hai proprio di che lamentarti, dal momento
che ci guadagni».
Rivolto al secondo così continuò: «A te, Hamed, spetterebbe un terzo di 35, cioè 11 e qualcosa.
Ti toccherà invece un terzo di 36, ovverosia 12. Non hai motivo di protestare, poiché anche tu ci
guadagni da questa ripartizione »;
Infine così parlò all'ultimo dei tre: «Giovane Harim Namir, secondo le ultime volontà di tuo padre
dovresti ricevere un nono di 35, ovvero sia tre cammelli e una parte di cammello. Ti darò invece un
nono di 36, il che fa quattro. In tal modo hai conseguito un bel vantaggio e dovresti essermene grato».
E concluse con grande sicurezza: «Con questa vantaggiosa suddivisione, da cui tutti han tratto
beneficio, 18 cammelli vanno al maggiore, 12 al secondo e 4 al più giovane, per un totale di 18+
12+4=34 cammelli. Dei 36 cammelli ne avanzano quindi due. Uno appartiene, come sapete, al mio
20
amico di Baghdad. L'altro mi spetta di diritto dal momento che ho risolto con soddisfazione di tutti il
complicato problema dell'eredità »;
«Straniero, sei veramente molto intelligente» esclamò il maggiore dei fratelli, «e noi accettiamo la
tua soluzione sicuri della sua giustizia ed equità »,
L'abile Beremiz, l'Uomo Che Contava, s'impossessò di uno dei più begli animali del branco e,
porgendomi le redini del mio cammello, disse: «Adesso, caro amico, puoi continuare il viaggio
comodamente da solo sul tuo cammello. lo viaggerò sul mio».
E riprendemmo la strada per Baghdad.
21
Scheda di lavoro: Animali da soma
Riflettiamo
insieme
A. COMPRENSIONE
1.
2.
3.
4.
5.
6.
Chi sono i protagonisti del brano?
Dove si svolge il racconto?
Qual è la motivazione che spinge Beremiz a risolvere il problema?
Quale soluzione troverà Beremiz? Individua i dati.
La soluzione data da Beremiz fa guadagnare tutti, perché?
Fai un riassunto del brano in 20 righe.
B. AUTORE
1. Fai una breve ricerca sull’autore del libro da cui è stato tratto questo racconto
2. Lo stile della narrazione è:
vivace, immediato, in prima persona
vivace, immediato, in terza persona
formale, difficile
C. VALUTAZIONI
1. Che messaggio hai tratto dalla lettura del racconto?
2. Dai un giudizio sull’interesse che ha suscitato in te questo brano (un voto da 1 a 10 )
22
D ASPETTI MATEMATICI
1. Riflettiamo sul problema di Beremiz:
a. La parte dei 35 cammelli che spetta al primo figlio è
35
1
 17 
2
2
b. La parte dei 35 cammelli che spetta al secondo figlio è
35
2
 11 
3
3
c. La parte dei 35 cammelli che spetta al terzo figlio è
35
8
 3
9
9
d. La somma è pertanto
e. Quanto avanza?
33 
...
...
f. Ripeti il ragionamento il cammello di Beremiz e quindi con 36 cammelli
g. Tutti ci guadagnano è così …Qual è l’errore commesso dal padre?
Costruire la frazione significa dividere un segmento in ……………….. parti uguali e prendere ………….
parti
2. Rispondi alle domande: a) 7/5 è un numero?
3.
Scegliendo come unità grafica un
b) 3/5 è un numero?
segmento, rappresenta le frazioni seguenti
3/8; 1/3; 2/5; ; 5/4; 6/3
4. Scrivi quattro frazioni equivalenti a ciascuna delle seguenti, calcola il numero decimale
corrispondente (fermandoti in ogni caso ai centesimi) e rappresentale sulla retta
numerica:3/5; 4/9; 4/14; 2/5
Un mezzo
Tre quarti
Due terzi
5. Scrivi le frazioni che corrispondono ai punti indicati dalle frecce nella seguente retta
numerica:
6. Dividendo opportunamente il segmento unitario, individua sulla retta numerica i punti
corrispondenti ai seguenti valori numerici:0,25; 0,5; 1,6; 1,2;
7. Trova un numero compreso a) fra 1 e 2.
3 1 1 1 3 7
;
;
; ;
4 4 2 10 5 5
b) fra 0 e 0,1.
VIDEO LEZIONI SU INTERNET
Andando al sito http://videolezioni.matematicamente.it/ potrai accedere ad alcune video lezioni di
matematica ( alcune sono libere, altre a pagamento ma noi faremo riferimento solo a quelle libere).
A partire dal riquadro in blu sul lato sinistro clicca nell’ordine
1) Secondaria 1° grado  classe prima: aritmetica  e puoi consultare le lezioni su
•
•
•
•
•
•
I numeri naturali
Espressioni
Potenze
Divisibilità e scomposizione in fattori primi
Minimo comune multiplo
Somma di frazioni
2) Secondaria 1° grado  classe seconda: aritmetica  e puoi consultare le lezioni su
•
•
•
Ripasso generale delle operazioni con le frazioni
Dalle frazioni ai numeri decimali
Come trasformare i numeri decimali in frazioni
3) Secondaria 1° grado  classe terza: algebra  e puoi consultare le lezioni su
• I numeri naturali, ripasso
•
•
•
•
•
Somma di numeri relativi
Somma algebrica di numeri relativi
Prodotto di numeri relativi
Somma di frazioni
Prodotto di frazioni
4) Secondaria 1° grado  classe prima: geometria  e puoi consultare le lezioni su
•
•
•
•
•
Enti fondamentali della geometria
Semirette e segmenti
Primi elementi sugli angoli
Come si misurano gli angoli
Angoli consecutivi e adiacenti
5) Secondaria 1° grado  classe seconda: geometria  e puoi consultare le lezioni su
•
•
•
•
Cerchio e circonferenza: prime definizioni
Teorema di Pitagora
Rettangolo
Quadrato
6) Secondaria 1° grado  classe terza: geometria  e puoi consultare le lezioni su
•
•
Parallelepipedo
Prisma retto