Calcolo Combinatorio e cenni di calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali Sergio Console Torna alla prima pagina Introduzione Fenomeno deterministico: se l’esperimento è condotto nelle stesse condizioni si trova lo stesso risultato Esempi: •Moto di un grave •Traiettoria di una pallina in un biliardo Fenomeno non deterministico: anche se gli esperimenti sono condotti nelle stesse condizioni si trovano risultati diversi Esempi: •Risultato del lancio di una moneta •Traiettoria di 100 palline in un biliardo •Vincita in una lotteria •Numero di lanci di un dado per ottenere un 6 La probabilità si occupa di fenomeni non deterministici Torna alla prima pagina Spazio campione: Insieme S di tutti i risultati dell’esperimento Esempio: •Nel caso del lancio di una moneta S={Testa, Croce} •Nel caso dei numeri di lanci di un dado necessari per avere 6 S=N (numeri naturali) Evento: Sottoinsieme E di S dato da un insieme di risultati caratterizzati dal godere di una stessa proprietà Esempio: •E={Testa} nel lancio di una moneta Torna alla prima pagina Esercizi • Si estrae a caso una carta da un mazzo di 52 carte. Si descriva lo spazio dei campioni quando (a) i semi non sono presi in considerazione, (b) solo i semi sono presi in considerazione. • Supponiamo di estrarre 2 carte da un mazzo di 52 e supponiamo di essere interessati a che vengano estratti 2 assi. Dire qual è lo spazio campione S e quale sottoinsieme E di S rappresenti l’evento cui siamo interessati. • Essendo di corsa per prendere il treno, Genoveffa prende a caso 2 libri gialli tascabili da uno scaffale che ne contiene 15. Di questi libri 4 li ha già letti. Rappresentare l’evento: “Geneveffa prende 2 libri che non ha letto”. Torna alla prima pagina Definizione classica Probabilità: regola che a ogni evento E associa un numero reale compreso tra 0 e 1 p: E p(E) Definizioni di probabilità: Classica (Pascal) Se un evento si può verificare in N modi mutuamente esclusivi ed ugualmente probabili, se m di questi possiede una caratteristica E, la probabilità di E è il rapporto tra il numero di casi favorevoli e il totale dei casi possibili (tutti equiprobabili) Torna alla prima pagina Esempi •Nel caso del lancio di una moneta S={Testa, Croce}. p(Testa)=1/2 (casi favorevoli 1, possibili 2) •Lanciamo due dadi e calcoliamo la probabilità che la somma dei punti sia 4 Per semplicità scriviamo i numeri estratti come coppie: Le coppie di 6 numeri sono 6 * 6= 36 = numero di casi possibili; I casi favorevoli sono dati dalle coppie (1,3), (2,2) e (3,1) e sono quindi 3. Pertanto p(somma 4 in 2 lanci)=3/36=1/12 Torna alla prima pagina Calcolo Combinatorio Problema: determinare il numero di elementi di un insieme finito elenco diretto (lungo!) Esempio:in un menù ho 3 antipasti, 2 primi, 4 secondi. Quanti sono i possibili pasti completi (includono tutte le 3 portate - scelte una sola volta)? Diagramma ad albero Torna alla prima pagina Diagramma ad albero S1 S2 P1 S3 A1 S4 P2 A2 P1 P2 P1 A3 3 ………. ………. ……….. P2 x 2 x 4 = 24 pasti completi Torna alla prima pagina “Contare le scelte” Se gli insiemi A1, A2, …, Ak contengono n1, n2, …, nk elementi Ho N= n1 n2 … nk modi di scegliere prima un elemento di A1 , poi un elemento di A2 … ... infine un elemento di Ak In particolare: se n1 = n2 =…= nk =n allora N=nk = numero delle disposizioni con ripetizione di n oggetti a gruppi di k Torna alla prima pagina Disposizioni = gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto e per l’ordine) Disposizioni con ripetizione: si può ripetere lo stesso oggetto Esempio: Determinare e schedine del totocalcio si devono giocare per essere sicuri di fare 13 Le possibili schedine sono 313=1.594.323 Torna alla prima pagina Disposizioni semplici (senza ripetizione) di n oggetti tra k (≤n) D(n,k) Non si può ripetere lo stesso oggetto Esempio: Ad un gran premio di formula 1 partecipano 20 piloti. I primi tre classificati vanno sul podio.. Quante sono le possibili terne di piloti sul podio? Il primo classificato può essere un qualunque pilota tra 20, Il secondo uno qualunque tra i restanti 19, il terzo uno tra 18 Quindi: D(20,3)=20*19*18 In generale: D(n,k)=n*(n-1)*…*(n-k+1) Torna alla prima pagina Permutazioni = numero dei modi in cui si possono ordinare n oggetti P(n) = D(n,n)=n*(n-1)*… 2*1=n! Esempio: Quanti anagrammi (non necessariamente di senso compiuto) si possono formare della parola FOGLI Ho 5 possibili scelte per la prima lettera, 4 per la seconda, … 1 per la quinta, quindi gli anagrammi sono P(5)=5*4*3*2*1=5!=120 Torna alla prima pagina Combinazioni = disposizioni a meno dell’ordine= gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto ma non per l’ordine)= Esempio Quante squadre di pallacanestro si possono formare con 8 giocatori Sono le combinazioni di 5 persone scelte tra 8 = Torna alla prima pagina Esercizi • In quanti modi 10 persone possono sedersi su una panchina che ha solo 4 posti? (Si risolva l'esercizio due volte, una volta considerando importante l'ordine in cui si siedono e una no). • In quanti modi diversi si possono sedere 7 persone in un tavolo rotondo? • Supponiamo di estrarre per 40 volte una pallina da un'urna contenente palline numerate da 1 a 365 ( dopo ciascuna estrazione la pallina estratta viene nuovamente messa nell'urna). Quanti sono i possibili risultati diversi? Quanti sono i possibili risultati in cui i 40 numeri estratti risultano tutti diversi tra loro? • Si deve costituire un comitato di 3 membri, rappresentanti ciascuno gli studenti, i docenti e il personale amministrativo. Se ci sono 4 candidati per gli studenti, 3 per i docenti e 2 per il personale amministrativo, si determini quanti comitati differenti si possono formare. Torna alla prima pagina Esercizi • Dovete preparare un dolce, disponete di una cesta con 10 uova di cui ve ne serviranno solo 2 per l'impasto. Ma vi ricordate che il giorno prima avete posto in quel cesto 4 uova vecchie di due settimane. Qual è la probabilità di aver utilizzato almeno un uovo non fresco? • Intorno ad un tavolo rotondo si dispongono a caso 5 uomini e 5 donne. Qual è la probabilità che ogni donna sia seduta tra due uomini? • Qual è la probabilità di fare tre volte 6 lanciando tre volte un dado non truccato? Torna alla prima pagina