Le equazioni di I grado
ITIS Feltrinelli – anno scolastico 2007-2008
R. Folgieri 2007-2008
1
Le equazioni
• abbiamo una uguaglianza tra due quantità (espressioni algebriche,
perché nei due termini ci possono essere sia numeri che lettere)
• definite nell’insieme Q (insieme dei numeri razionali relativi)
• nelle espressioni compaiono delle incognite (cioè delle variabili – lettere –
di cui vogliamo conoscere il valore)
• Si dice che abbiamo una equazione
• Esempi:
2x + 3 = 0
3y + 2 = 5
3ax2 + x = 2
3bx2 – x + 4 = 0
x, y, z, ecc. sono variabili, cioè possono assumere vari valori. In
particolare, non conoscendo questi valori (dobbiamo trovarli), si dicono
INCOGNITE.
DEFINIZIONE di EQUAZIONE
Si dice EQUAZIONE una identità (uguaglianza) tra due espressioni
algebriche per la quale si vogliono determinare i valori delle
variabili che la rendono vera.
R. Folgieri 2007-2008
2
1
I termini delle equazioni
I numeri e le lettere che compaiono davanti alle incognite si dicono coefficienti.
Numeri e lettere che non sono seguite da variabili si dicono termini noti (conosciuti,
non dobbiamo trovare nulla).
incognite
2ax2 + 3x + 5 = 0
coefficienti
termine noto
Si dice grado di un’equazione l’esponente maggiore dell’incognita.
Es.
2x + 4 = 0
equazione di primo grado
3x2 – x + 5 = 0
equazione di secondo grado
Si dicono soluzioni (o radici) dell’equazione, i numeri che, sostituiti all’incognita,
rendono vera l’equazione, cioè l’annullano.
Il numero massimo di soluzioni che può avere un’equazione in una incognita è
uguale al suo grado:
Primo gradoÆ una soluzione secondo gradoÆ due soluzioni terzo gradoÆ tre soluzioni
… e così via…
R. Folgieri 2007-2008
3
Tipi e forme delle equazioni
Possiamo avere vari tipi di equazioni:
• Equazioni intere, quando non abbiamo incognita al denominatore
es. 2x + 3 = 0
• Equazioni fratte (o frazionarie), quando l’incognita è anche al denominatore
es. 2x + 3 = 0
x+1
• Equazioni numeriche, quando contengono incognite e numeri
• Equazioni letterali (o parametriche), quando contengono incognite, numeri e
lettere
es. 2abx + 3b + 6 = 0
Quando tutti i termini dell’equazione sono dalla parte sinistra dell’uguale e lo zero è
dalla parte destro, l’equazione si dice in forma canonica (o normale).
es. x + 2(x - 2) = x -8 non è in forma canonica
2x + 4 = 0 è in forma canonica
Quando due equazioni hanno le stesse soluzioni, si dicono equivalenti (ad es. le
due equazioni scritte sopra)
R. Folgieri 2007-2008
4
2
I due principi di equivalenza
Ci sono due principi che ci aiutano a trasformare un’equazione da forma non canonica a forma
canonica.
Primo principio di equivalenza: se si aggiunge o si sottrae ai due membri di un’equazione
una stessa quantità, si ottiene un’equazione equivalente a quella data.
A cosa ci serve questo principio?
Se ad esempio, abbiamo l’equazione: 2x + 3 = x + 5
Possiamo aggiungere a tutti e due i termini la quantità – 5, ottenendo: 2x + 3 – 5 = x + 5 – 5 e
cioè, svolgendo i calcoli: 2x – 2 = x. Possiamo farlo anche con le incognite (sono sempre
quantità) e quindi possiamo aggiungere ai due termini la quantità – x, ottenendo
2x – 2 – x = x – x che, svolgendo i calcoli, diventa x – 2 = 0.
Secondo principio di equivalenza: se si moltiplicano o dividono i due membri di un’equazione
per la stessa quantità, si ottiene un’equazione equivalente a quella data.
Se, ad esempio, abbiamo 1x = 5 possiamo moltiplicare entrambi i termini per la quantità 2
2
e ottenere 2 . 1x = 5 . 2 che, semplificando a sinistra e moltiplicando a destra, diventa: x = 10
2
R. Folgieri 2007-2008
5
Regole pratiche
Avrete già capito che dai due principi di equivalenza derivano alcune regole pratiche molto utili.
Dal primo principio, deriva la regola del trasporto: in ogni equazione un termine si può
spostare da un membro al’altro (cioè da una parte all’altra dell’uguale), cambiandone il segno.
Es. 2x + 5 = 0 portando il 5 a destra, diventa: 2x = -5
Se poi ho una stessa quantità da una parte all’altra dell’uguale, se ne porto una dall’altra parte,
i due termini si annullano: es 2x + 5 = 5, diventa 2x + 5 – 5 = 0 e quindi, siccome + 5 e – 5 si
annullano, quando ho due quantità uguali (anche in segno) nei due membri, posso eliminarle
direttamente.
Dal secondo principio di equivalenza (che dovrebbe ricordarvi la proprietà invariantiva!!!),
deriva la regola del cambiamento di segno: se si cambiano i segni di tutti i termini di
un’equazione, si ottiene un’equazione equivalente.
Es. se alla fine di tutti i calcoli mi ritrovo con un’equazione –x = 5 , siccome a me interessa il
valore di x e non di –x, posso moltiplicare tutto per -1, ottenendo: (-1)(-x)=(-1)5 cioè x = - 5
Sempre dal secondo principio di equivalenza, deriva anche la regola: un’equazione con i
coefficienti frazionari si può trasformare in un’equazione equivalente con coefficienti interi
moltiplicando ciascun membro per il m.c.m. dei denominatori.
Es. x + 1 = 1
2
visto che il m.c.m. è 6, diventa: 3(x + 1) = 1.2
3
6
6
che, moltiplicando tutto per 6, diventa l’equazione equivalente 3x + 3 = 3 più facile da risolvere
R. Folgieri 2007-2008
6
3
Equazioni di I grado
•
Hanno la forma canonica ax + b = 0 (con a e b coefficienti, cioè, per il
momento, numeri)
•
La soluzione si trova ponendo x = -b/a
Possiamo avere più casi:
a ≠ o equazione determinata (la soluzione è b/a)
ax = b
b ≠ 0 equazione impossibile
(nessuna soluzione nell’insieme Q)
a=0
b = 0 equazione indeterminata
(ogni x ∈ Q è una soluzione valida)
Esempi di equazioni di primo grado:
5x – 2 = 6x + 3
3x + 2 = 0
1x + 3 + 2 = 5
2
7
R. Folgieri 2007-2008
7
Equazioni fratte (o frazionarie)
L’incognita compare anche al denominatore
Esempi:
3x + 2 = 0
x
x+2–1=8
x
2
y–2=y+3
y+2 y–3
Per trovare la soluzione dobbiamo
1. innanzitutto escludere i valori che annullano il denominatore (perché una
frazione con 0 al denominatore non ha senso) e quindi dobbiamo porre il
denominatore uguale a zero.
2. Fatto questo, si risolve il numeratore come se avessimo una funzione intera.
3. Se la soluzione del numeratore diverse da quelle del denominatore, si accettano,
altrimenti l’equazione è impossibile.
Es. 3x – 1 = 2 che corrisponde (dopo aver fatto il m.c.m.) a: 2x – 1 = 2(x + 2)
x+2
x+2 x+2
Il denominatore si annulla per x + 2 = 0, cioè deve essere x ≠ -2 altrimenti il
denominatore si annulla.
Ora prendiamo il numeratore: 2x – 1 = 2(x + 2) da cui 3x – 1 = 2x + 4
e cioè x = 5.
Possiamo accettare la soluzione perché è diversa da – 2 (che annullerebbe il
denominatore).
R. Folgieri 2007-2008
8
4
Equazioni letterali
Quelle INTERE si risolvono come le altre, però alla fine occorre fare
attenzione a stabilire quali valori ANNULLANO le lettere, se queste
compaiono al denominatore
Esempio 1:
3x + a - 1 = 0
la soluzione è x = 1 – a
3
In questo caso al denominatore compare un numero, quindi non abbiamo
problemi.
Esempio 2:
(a-1)x – 1 = 8 la soluzione sarà x = 9
a-1
In questo caso l’equazione ha senso se a≠0 e se a≠1 ( altrimenti sarebbe
impossibile)
Nelle equazioni fratte letterali, si procede come nelle equazioni fratte
senza espressioni letterali e alla fine, quando si pone il denominatore
uguale a zero, se ci sono lettere, si procede come sopra.
R. Folgieri 2007-2008
9
Equazioni riconducibili a
equazioni di I grado
Alcune volte equazioni di grado superiore al primo possono ridursi a
equazioni di primo grado applicando la legge di annullamento del prodotto.
Ad esempio:
x2 – 25 = 0
In realtà è l’equazione (x-5)(x+5) = 0 che, per la legge di annullamento del
prodotto, si risolve ponendo:
x - 5 = 0 da cui si ricava x = 5
e x + 5 = 0 da cui si ricava x = - 5
Si ricava allora la regola:
Data una qualsiasi equazione di grado n, se è possibile scomporre il
polinomio in n fattori di primo grado, applicando la legge di annullamento
del prodotto, la risoluzione dell’equazione si riduce alla soluzione delle
equazioni di primo grado ottenute, uguagliate a zero.
R. Folgieri 2007-2008
10
5
A cosa servono le equazioni?
Facciamo un esempio. Se io vi dico “prendi la tua età, moltiplicala per 2
e dividila per 4 e poi dimmi il risultato”, nessuno di voi ha problemi a
darmi la soluzione.
Se io però scrivo alla lavagna:
y=2x
2
Difficilmente vi rendete conto che quello che ho scritto è la traduzione in
simboli del problema scritto sopra. Infatti, se immaginate che y sia il
risultato da trovare e x la vostra età, la cosa è di immediata comprensione.
Si possono dunque tradurre i problemi in equazioni, assegnando
all’incognita il valore da trovare in funzione dei dati noti, cioè forniti
dal problema.
R. Folgieri 2007-2008
11
6