Elisa Paganini Dispense per il corso di filosofia del linguaggio Russell e le descrizioni Il filosofo gallese Bertrand Russell (1872-1970) ha messo seriamente in discussione molte delle idee di Frege e nello stesso tempo ha condiviso con Frege molti dei suoi progetti filosofici. Per esempio ha condiviso con Frege il progetto logicista (ovvero il progetto di mostrare che la matematica è derivabile dalla logica) e tuttavia ha messo profondamente in crisi l’apparato teorico introdotto da Frege a tal fine. Noi non prenderemo in considerazione questo aspetto della filosofia di Russell. Un altro progetto filosofico che Russell ha condiviso con Frege è il progetto di fornire un’analisi logica del linguaggio. Tuttavia egli si differenzia da Frege perché non sempre condivide l’analisi logica che Frege propone. Il testo che prendiamo in considerazione, intitolato “Le descrizioni”, propone un modo alternativo di intendere l’analisi logica degli enunciati che contengono alcune espressioni linguistiche, le cosiddette “descrizioni definite”. Anche se Russell non è sempre esplicito, con la sua analisi logica delle descrizioni definite si propone di mostrare che è superfluo introdurre la distinzione freghiana fra “senso” e “significato” per tali espressioni. Queste dispense sono così suddivise. Nel capitolo 1 si ricostruiscono le ragioni che hanno spinto Frege a distinguere fra “senso” e “significato” e nel capitolo 2 si ricostruisce brevemente l’analisi logica e semantica degli enunciati proposta da Frege. Nel capitolo 3 si presenta la strategia argomentativa di Russell nel testo in considerazione; la strategia può essere così sintetizzata: egli mette a confronto gli enunciati che contengono descrizioni indefinite con gli enunciati che contengono descrizioni definite. Nel capitolo 4 si presenta l’analisi degli enunciati che 2 contengono descrizioni indefinite e nel capitolo 5 si mettono a confronto le analisi di Frege e Russell degli enunciati che contengono le descrizioni definite. Nel capitolo 6 si presentano le ragioni che hanno spinto Frege a non adottare l’analisi logica di Russell e la replica di Russell a Frege. Nel capitolo 7 infine si prende in considerazione perché l’analisi logica di Russell rende inutile la distinzione fra senso e significato per le cosiddette descrizioni definite: in particolare risulta superfluo introdurre un “senso” per tali espressioni. 1. Frege: la distinzione fra senso e significato Prima di prendere in considerazione l’analisi di Russell, è opportuno considerare come Frege analizza quelle che Russell chiama descrizioni definite. Frege le considera nomi propri. E’ opportuno innanzitutto tener presente qual è la definizione di “nome proprio” proposta da Frege; egli scrive (“Senso e significato”, p.19): “L’espressione che designa un oggetto individuale può constare anche di più parole e di segni d’altro genere: per brevità la chiamerò “nome proprio””. Quindi per Frege sotto la denominazione nome proprio rientrano sia le espressioni che comunemente sono considerate tali come “Aristotele”, “Bucefalo”, “Platone”, “Odisseo”, ecc., ma anche espressioni come “il punto di intersezione del segmento a e del segmento b” (p.19). Tutte le espressioni che Frege chiama “nomi propri”, Russell le chiama “termini singolari”. Fra i termini singolari Russell distingue i nomi propri come “Aristotele”, “Platone”, “Giorgio Napolitano”, “Ulisse”, ecc. e le “descrizioni definite” ovvero tutte quelle espressioni che, oltre a poter fungere da soggetto grammaticale, sono precedute da un articolo determinativo singolare. Esempi di descrizioni definite sono: “il maestro di Alessandro Magno”, “la montagna più alta del mondo”, “l’Oceano che separa l’Europa dall’America”, “l’uomo che ha scoperto la penicillina”, ecc. 3 Attenzione! Non bisogna confondere le descrizioni definite con gli enunciati che le contengono. Talvolta, quando si chiede agli studenti di fornire un esempio di descrizione definita, si ricevono risposte del tipo di "Il fratello di Ada è biondo". Una risposta del genere è sbagliata: "Il fratello di Ada è biondo" non è una descrizione definita, bensì un enunciato che contiene al suo interno una descrizione definita, cioè "il fratello di Ada". In certi casi la confusione tra descrizioni definite e enunciati contenenti descrizioni definite è indotta dal fatto che in una descrizione definita possono comparire uno o più verbi: ad esempio, "il fratello di Ada che è biondo" è una descrizione definita in cui compare il verbo "è". Perché "il fratello di Ada che è biondo" è una descrizione definita mentre "Il fratello di Ada è biondo" non lo è? Perché, per definizione, una descrizione definita può fungere da soggetto grammaticale di un enunciato. Ora, tra le due espressioni "il fratello di Ada che è biondo" e "Il fratello di Ada è biondo", l’unica che può fungere da soggetto grammaticale è la prima, la seconda è un vero e proprio enunciato. Infatti a una descrizione definita può essere applicato un predicato per formare un enunciato, mentre ciò non accade nel caso di un enunciato: "Il fratello di Ada che è biondo gioca a scacchi" è conforme alle regole della sintassi al pari di "Piero gioca a scacchi", mentre "Il fratello di Ada è biondo gioca a scacchi" è un'ovvia sgrammaticatura. Nel testo “Senso e significato”, Frege si propone di definire il senso e il significato (1) di quelli che egli considera nomi propri e (2) degli enunciati. E’ opportuno intanto tener presente qual è il senso e il significato di quelli che Frege considera nomi propri. E, in secondo luogo, le ragioni di una tale distinzione. Consideriamo la distinzione fra senso e significato di un nome proprio proposta da Frege. Frege ritiene che il significato di un nome proprio sia un oggetto, l’oggetto che il nome designa, cioè il riferimento del nome (ad esempio il significato di “Giorgio Napolitano” è la persona Giorgio Napolitano in carne ed ossa, così come il riferimento di “la montagna più alta del mondo” è il monte Everest). Mentre il senso di un nome proprio è “il modo di darsi dell’oggetto” (“Senso e significato”, p. 19). Perché è opportuna questa distinzione riguardo ai nomi propri? Sempre in “Senso e significato” si possono individuare due ragioni: 1) la distinzione fra senso e significato serve per rendere conto dell’informatività di alcuni enunciati di identità 4 2) la distinzione fra senso e significato serve per rendere conto dei nomi propri senza significato Consideriamo innanzitutto il punto 1). Supponiamo che i nomi propri (nel senso di Frege) abbiano un significato, senza avere un senso. Consideriamo due enunciati di identità come: 1. La Stella del Mattino = la Stella del Mattino 2. La Stella del Mattino = la Stella della Sera Poiché i nomi propri “la Stella del Mattino” e “la Stella della Sera” hanno lo stesso significato (designano entrambi il pianeta Venere), allora i due enunciati di identità hanno lo stesso significato (infatti hanno lo stesso valore di verità, sono entrambi veri) e non si riesce a spiegare perché il secondo enunciato è informativo, mentre il primo non lo è. Se invece si riconosce che i due nomi propri “la Stella del Mattino” e “la Stella della Sera” hanno sensi diversi, allora si può spiegare perché il secondo enunciato è informativo mentre il primo non lo è. Infatti nel secondo enunciato lo stesso oggetto (il pianeta Venere) “ci è dato” in due modi diversi, mentre nel primo enunciato l’oggetto ci è dato in un unico modo. Quindi l’informatività del secondo enunciato dipende dai diversi sensi che sono associati ai due nomi propri “la Stella del Mattino” e “la Stella della Sera”. E il pensiero espresso dal secondo enunciato è diverso dal pensiero espresso dal primo enunciato. Consideriamo ora il punto 2). Succede talvolta che un nome proprio non abbia significato. Non c’è un oggetto che il nome designa. Frege in “Senso e significato” considera due esempi. Uno è “la serie meno convergente” e l’altro è il nome “Odisseo”. Frege prende in considerazione un enunciato che contiene il nome proprio “Odisseo”, ovvero “Odisseo approdò ad Itaca immerso in un sonno profondo” (p. 24). Frege scrive che è dubbio se il nome proprio “Odisseo” abbia un significato e quindi un riferimento e tuttavia noi possiamo comunque capire l’enunciato che contiene il 5 nome “Odisseo”. Noi capiamo questo enunciato anche se il nome “Odisseo” non avesse significato perché il nome ha un senso. Altri esempi (diversi da quelli proposti da Frege) di nomi propri che hanno un senso ma non hanno un significato sono: “il più grande numero naturale”, “la villa con piscina in cima al Cervino”, “l’ippopotamo che vola”, “Madame Bovary”, ecc. Ma cosa succede a un enunciato quando in esso compare un nome proprio che ha un senso ma non ha un significato? Per Frege, il significato di un enunciato è il suo valore di verità. E, per il noto principio di composizionalità, il significato di un enunciato si ottiene componendo il significato delle parti che lo compongono. Ora, se una delle parti dell’enunciato non ha significato, allora l’intero enunciato non ha significato. Quindi un enunciato in cui compare un nome che non ha significato non ha esso stesso significato, non ha quindi un valore di verità, non è cioè né vero né falso. Ma tuttavia esprime un pensiero e questo ci permette di comprenderlo. 2. Frege: forma logica e significato Consideriamo ora qual è la forma logica di un enunciato che contiene un nome proprio. La notazione usata da Frege non è più utilizzata. Come fa Kenny, utilizziamo la notazione introdotta da Peano, poi adottata da Russell e Whitehead, e ora di uso corrente. Prendiamo, ad esempio, gli enunciati "Luisa è alta", "Michele è biondo" e "Michele diverte Luisa". Anzitutto dobbiamo scegliere due simboli che corrispondano ai nomi propri "Luisa" e "Michele". Simboli del genere, la cui funzione è, come nel caso dei nomi propri, quella di designare un individuo o una singola entità di altro tipo, sono detti costanti individuali. Come costanti individuali si usano di solito lettere minuscole che non siano tra le ultime dell'alfabeto. Per tradurre rispettivamente i nomi propri "Luisa" e "Michele" possiamo scegliere le lettere l e m (ma qualsiasi altra scelta sarebbe stata egualmente legittima). In secondo luogo dobbiamo decidere come tradurre "è alta", "è biondo" e "diverte". A tale scopo introduciamo i simboli A, B e D. Simboli del genere si chiamano costanti 6 predicative. Nel ruolo di costanti predicative si usano di solito, come facciamo in questo caso, lettere maiuscole (peraltro, non c'è nessun vincolo su quale lettera usare per esprimere un certo significato; se qui, come traduzioni di "è alta", "è biondo" e di "diverte" avessimo scelto lettere diverse da A, B e D, sarebbe andato bene lo stesso). A questo punto, la traduzione simbolica dell'enunciato "Luisa è alta" si ottiene combinando la costante predicativa A e la costante individuale l nel modo seguente: A(l) Analogamente, la traduzione di "Michele è biondo" sarà B(m) Per ottenere invece la traduzione simbolica di "Michele diverte Luisa", dobbiamo combinare la costante predicativa D e le costanti individuali l e m così: D(m, l) Combinando diversamente i simboli appena introdotti, possiamo tradurre anche "Michele è alto", "Luisa è bionda" e "Luisa diverte Michele". Le traduzioni di questi tre enunciati saranno rispettivamente A(m), B(l) e D(l, m). Si noti che, una volta che abbiamo scelto il simbolo A per tradurre "è alta", possiamo usarlo anche per tradurre "è alto" e che analogamente, una volta che abbiamo scelto il simbolo B per tradurre "è biondo", possiamo usarlo anche per tradurre "è bionda": il motivo è che un linguaggio formale come quello che stiamo descrivendo non tiene conto delle distinzioni di genere. Si noti inoltre che l'ordine delle due costanti individuali che, in un enunciato, seguono la costante predicativa D è rilevante: infatti, D(m, l) significa una cosa diversa da D(l, m). Noi sappiamo inoltre che “Michele diverte Luisa” può essere tradotto non solo nel modo seguente D(m,l), ma può anche essere tradotto con la costate predicativa L che traduce “diverte Luisa” nel modo seguente L(m) oppure può essere tradotto con la costante predicativa M che traduce “Michele diverte” nel modo seguente M(l). Ciò che possiamo osservare è che quando in un enunciato compaiono uno o più nomi propri connessi da un predicato, allora la traduzione sarà costituita da una costante predicativa che si applica a una costante individuale (in questo caso si tratta 7 di una costante predicativa unaria) o a più costanti individuali (in questo caso si tratta di una costante predicativa binaria, ternaria, ecc.). Nell’Ideografia Frege chiama funzione la parte insatura dell’enunciato che traduciamo con una costante predicativa. In “Funzione e concetto” egli chiama funzione o concetto il significato (o denotazione) della parte insatura dell’enunciato. Una funzione, proprio per la sua natura insatura, ha bisogno di un argomento per essere saturata. Qual è l’argomento della funzione? Se la funzione è considerata una parte insatura dell’enunciato (come nell’Ideografia) allora il suo argomento sarà un nome proprio (ad esempio nel caso dell’enunciato “Cesare conquistò la Gallia”, la funzione linguistica “conquistò la Gallia” si applica al nome proprio o argomento linguistico “Cesare”). Se invece, come in “Funzione e concetto” o in “Concetto e oggetto”, la funzione è considerata il significato della parte insatura dell’enunciato, allora l’argomento della funzione non è il nome proprio “Cesare”, ma è ciò che il nome significa, cioè l’oggetto denotato, nel caso specifico la persona Cesare. Una funzione mette in relazione argomenti con valori: per ogni argomento a cui si applica la funzione, c’è un valore che la funzione assume. Consideriamo ad esempio la funzione che è la denotazione (o il significato) di “conquistò la Gallia”: se applicata alla persona a cui si riferisce il nome proprio “Cesare” assume il seguente valore di verità: il Vero; se applicata alla persona a cui si riferisce il nome proprio “Caligola” assume il seguente valore di verità: il Falso. Emerge così che per Frege all’analisi logica degli enunciati corrisponde un’analisi semantica. Ogniqualvolta traduciamo una parte di un enunciato con una costante predicativa, allora consideriamo il significato di quella parte di enunciato un concetto, cioè una funzione che ha come argomenti, oggetti, e come valori, valori di verità. Tuttavia le funzioni che assumono come argomenti, oggetti, e come valori, valori di verità, non sono i soli concetti. Per Frege sono concetti tutte le funzioni che assumono come valori, valori di verità. Ci sono però funzioni che non hanno come 8 argomenti oggetti: si tratta delle funzioni di secondo livello. Per intendere tali funzioni occorre introdurre i quantificatori. Occorre innanzitutto considerare come tradurre in forma logica gli enunciati della lingua italiana in cui figurano le parole "qualche" e "ogni". Di enunciati del genere i logici si sono occupati da quando esiste la logica: basti ricordare che il cuore della logica aristotelica è costituito dalla teoria del sillogismo, e i sillogismi sono forme di ragionamento la cui validità dipende in modo essenziale proprio dal significato di parole come "qualche" e "ogni" ("Ogni uomo è mortale; ogni greco è uomo; dunque, ogni greco è mortale"; "Ogni ladro merita la prigione; qualche uomo politico è ladro; dunque, qualche uomo politico merita la prigione"). Fino all'Ottocento, tuttavia, i logici non sono riusciti a spiegare in modo davvero soddisfacente come queste parole funzionino. Li fuorviava la grammatica delle lingue naturali. Sintagmi come "qualche cosa", "ogni cosa", "qualche studente", "ogni studente", ecc. possono occupare più o meno le stesse posizioni sintattiche dei nomi propri e appartengono perciò alla medesima categoria grammaticale. Questo fatto ha indotto per secoli i logici a ritenere che gli enunciati contenenti le parole "qualche" e "ogni" dovessero essere analizzati in modo simile agli enunciati contenenti nomi propri. Frege fu il primo a rendersi conto che questo era un errore e la differenza da lui ravvisata tra gli enunciati dell'uno e dell'altro tipo si riflette nel diverso modo in cui li traduce nella sua Ideografia. Spieghiamo anzitutto come il nostro simbolismo debba essere arricchito per poter tradurre enunciati dell’italiano che contengono le espressioni “qualche cosa” e “ogni cosa”. A tale scopo, ci servono i simboli ∃ e ∀, chiamati rispettivamente quantificatore esistenziale e quantificatore universale. Questi due simboli si usano insieme con le cosiddette variabili. Come variabili si adoperano di solito lettere minuscole prese dal fondo dell’alfabeto: u, v, w, x, y, z (se queste lettere non bastano, si possono aggiungere indici numerici: u0, u1, u2, …, v0, v1, v2, …, ecc.). Le variabili possono comparire nelle posizioni in cui compaiono le costanti individuali, ma non 9 devono essere confuse con esse. A differenza delle costanti individuali, le variabili non designano individui o oggetti determinati: il loro ruolo assomiglia piuttosto a quello che, in certi contesi, hanno i pronomi. In che modo i quantificatori e le variabili possano essere usati per tradurre le frasi dell’italiano contenenti le espressioni “qualche cosa” e “ogni cosa”, può essere illustrato per mezzo di esempi. Prendiamo le frasi “Qualche cosa è eterna” e “Ogni cosa è fatta di materia”. Decidiamo di tradurre i predicati “è eterno” e “è fatto di materia” rispettivamente con E e M. La prima delle due frasi può allora essere tradotta come ∃vE(v) e la seconda come ∀zM(z) Per alleviare lo sconcerto che può suscitare questa notazione la prima volta che la si incontra, ragioniamo nel modo seguente. Ciò che esprimiamo con l'enunciato "Qualche cosa è eterna", possiamo riesprimerlo dicendo "Qualche cosa è tale che essa è eterna": questo secondo enunciato è meno naturale e meno elegante del primo, ma ha esattamente lo stesso significato. Una volta stabilito ciò, possiamo immaginare che l'enunciato simbolico ∃vE(v) sia costituito da due parti che corrispondono rispettivamente a "qualche cosa è tale che" e a "essa è eterna": ∃v E(v) qualche cosa è tale che essa è eterna Il fatto che qui E(v) sia concepito come corrispondente a "essa è eterna" chiarisce l'affermazione fatta sopra secondo cui il ruolo delle variabili è paragonabile a quello svolto in certi casi dai pronomi. Un discorso analogo vale per ∀zM(z). L'enunciato "Ogni cosa è fatta di materia" è parafrasabile come "Ogni cosa è tale che essa è fatta di materia", e noi possiamo 10 immaginare che ∀zM(z) sia costituito da due parti, una che corrisponde a "ogni cosa è tale che" e una che corrisponde a "essa è fatta di materia": ∀z M(z) ogni cosa è tale che essa è fatta di materia Nel gergo un po’ sgrammaticato dei logici, ∃vE(v) si può leggere anche “Qualche v è tale che v è eterno”, mentre ∀zM(z) si può leggere “Ogni z è tale che z è fatto di materia”. Un’osservazione importante: negli esempi appena fatti, abbiamo usato in un caso la variabile v e nell’altro la variabile z. Ma in entrambi i casi si sarebbe potuta usare qualsiasi altra variabile (invece di ∃vE(v) avremmo benissimo potuto scrivere ∃yE(y), o ∃zE(z), ecc.; analogamente, invece di ∀zM(z), avremmo potuto scrivere ∀vM(v), o ∀wM(w), ecc.). L’unica regola è che, in un enunciato, a ogni occorrenza di un quantificatore deve corrispondere una e una sola variabile, e inoltre non deve esserci nessuna confusione circa le variabili che corrispondono alle diverse occorrenze di quantificatori quando di occorrenze di quantificatori ce ne sono più d’una. E' opportuno aggiungere qualche altro esempio che aiuti il lettore ad acquistare familiarità con la nuova notazione. Usiamo s come costante individuale denotante il Sole e F come costante predicativa binaria avente il significato di “fa muovere”. Allora le frasi “Il Sole fa muovere ogni cosa”, “Qualche cosa fa muovere il Sole” e "Qualche cosa fa muovere se stessa" possono essere tradotte rispettivamente così: ∀vF(s, v) (“Ogni v è tale che il Sole fa muovere v”), ∃yF(y, s) (“Qualche y è tale che y fa muovere il Sole"), ∃yF(y, y) ("Qualche y è tale che y fa muovere y"). 11 Se usiamo = per indicare la relazione di identità, possiamo tradurre l'enunciato "Ogni cosa è identica a se stessa" scrivendo ∀v v = v (“Ogni v è tale che v è identico a v"). I quantificatori possono essere usati in combinazione con i connettivi enunciativi (i connettivi sono la negazione ∼ che si legge “non si dà il caso che”, ∧ che si legge “e”, ∨ che si legge “o”, → che si legge “se…allora”). Ecco qualche esempio: ∀v(M(v) ∨ E(v)) (“Ogni v è tale che v è fatto di materia oppure v è eterno”, cioè “Ogni cosa è fatta di materia oppure è eterna”), (∃vM(v) ∧ ∃wE(w)) (“Qualche v è tale che v è fatto di materia e qualche w è tale che w è eterno”, cioè “Qualche cosa è fatta di materia e qualche cosa è eterna”), ∼∃vE(v) (“Non si dà il caso che qualche v è tale che v è eterno”, cioè “Non si dà il caso che qualche cosa è eterna”). Quando in un enunciato compaiono insieme un quantificatore e il simbolo della negazione, è importante fare attenzione all’ordine in cui sono disposti. Ad esempio, ∼∃vE(v) dice una cosa molto diversa da ∃v∼E(v). Supponiamo che nel mondo ci siano tanto cose eterne quanto cose non eterne: allora ∼∃vE(v) (“Non si dà il caso che qualche cosa è eterna”) è falso, mentre ∃v∼E(v) (“Qualche v è tale che v non è eterno”, cioè “Qualche cosa non è eterna”) è vero. Bisogna fare attenzione, inoltre, alla differenza che c’è tra due enunciati come “(∃vM(v) ∧ ∃wE(w))” e “∃v(M(v) ∧ E(v))”. Supponiamo che al mondo ci siano tanto cose fatte di materia quanto cose immateriali, e che inoltre solo le cose immateriali siano eterne: allora (∃vM(v) ∧ ∃wE(w)) (“Qualche cosa è fatta di materia e qualche cosa è eterna”) è vero, mentre ∃v(M(v) ∧ E(v)) (“Qualche v è tale che v è fatto di materia e v è eterno”, cioè “Qualche cosa è fatta di materia ed eterna”) è falso. I due quantificatori sono interdefinibili: quello esistenziale è definibile a partire da quello universale e viceversa. Invece di ‘∃x’ potremmo scrivere ‘∼∀x∼’, e invece di ‘∀x’ potremmo scrivere ‘∼∃x∼’. Ad esempio, invece di ∃vE(v) potremmo scrivere 12 ∼∀v∼E(v) (perché “Qualche cosa è eterna” ha lo stesso significato di “Non è vero che ogni cosa non è eterna”), e invece di ∀vE(v) potremmo scrivere ∼∃v∼E(v) (perché “Ogni cosa è eterna” ha lo stesso significato di “Non si dà il caso che qualche cosa non è eterna”). Volendo risparmiare sul numero dei simboli, potremmo perciò scegliere uno dei due quantificatori e servirci solo di quello. Ma, in pratica, è più comodo disporre di entrambi. Fin qui ci siamo occupati di come si possano tradurre in notazione simbolica le frasi contenenti le espressioni “qualche cosa” e “ogni cosa”. In italiano, però, le parole “qualche” e “ogni” sono usate spesso in combinazione non con “cosa”, bensì con altri nomi comuni o anche con espressioni complesse (“qualche studente”, “ogni numero”, “qualche numero dispari”, “ogni studente che ha superato l’esame”, ecc.). Vediamo dunque come si possano tradurre in simboli le frasi contenenti espressioni siffatte. Prendiamo la frase (1) “Qualche tigre è feroce”. Un altro modo di esprimere ciò che è espresso da (1) è (2) “Qualche cosa è una tigre ed è feroce”: (2) è una frase un po’ insolita, ma ha esattamente lo stesso significato di (1). Usando T e F come controparti simboliche rispettivamente di “è una tigre” e di “è feroce”, (2) può essere tradotta scrivendo ∃v(T(v) ∧ F(v)) Ma siccome (1) e (2) hanno lo stesso significato, questa è anche una traduzione adeguata di (1). Consideriamo adesso l’enunciato (3) “Ogni tigre è feroce”. Frege considera (3) come equivalente dal punto di vista logico a (4) “Ogni cosa, se è una tigre, allora è feroce”. (3) e (4) sono tradotti così: ∀v(T(v) → F(v)). In generale, la ricetta è la seguente. Supponendo che X e Y siano le traduzioni simboliche di “essere P” e “essere Q”, “Qualche P è Q” si traduce come ∃v(X(v) 13 ∧ Y(v)), e “Ogni P è Q” si traduce come ∀v(X(v) → Y(v)) (naturalmente qui come altrove la scelta della variabile è arbitraria,e invece di v se ne può usare un'altra). Talvolta, gli studenti che cercano di imparare le cose a memoria senza sforzarsi di capirle si confondono e scrivono ∧ invece di → o viceversa: ad esempio, dovendo tradurre in simboli “Ogni tigre è feroce”, scrivono ∀v(T(v) ∧ F(v)). Ma basta riflettere un attimo per rendersi conto che questa è una traduzione sbagliata: ∀v(T(v) ∧ F(v)) vuole dire non che ogni tigre è feroce, bensì che ogni cosa è una tigre ed è feroce, il che è molto diverso (forse è vero che ogni tigre è feroce, ma è certamente falso che ogni cosa è una tigre ed è feroce: il computer su cui scrivo, ad esempio, non è una tigre e non è feroce). Pensandoci su un po’, si vede facilmente che sarebbe sbagliato anche tradurre “Qualche tigre è feroce” come ∃v(T(v) → F(v)). La ricetta che abbiamo illustrato può servire per tradurre anche frasi di forma diversa da “Qualche P è Q” e “Ogni P è Q”. In italiano “Almeno una tigre è feroce”, “C’è una tigre feroce”, “C’è almeno una tigre che è feroce” e “Una tigre è feroce” sono tutte frasi che dal punto di vista logico sono equivalenti a “Qualche tigre è feroce”: perciò, possiamo tradurle tutte come ∃v(T(v) ∧ F(v)). Analogamente, “Tutte le tigri sono feroci”, “Le tigri sono feroci”, “Qualunque tigre è feroce”, ecc. sono tutte frasi equivalenti dal punto di vista logico a “Ogni tigre è feroce”: dunque, possono tutte essere tradotte scrivendo ∀v(X(v) → Y(v)). Ora che abbiamo considerato la forma logica di enunciati che contengono espressioni come “tutti”, “ogni”, “qualche”, “un”, “una”, “uno” occorre considerare come questa analisi logica sia utile per comprendere il significato delle espressioni linguistiche coinvolte. Riconsideriamo ad esempio l’enunciato “Qualcosa è eterno”. La sua forma logica è: ∃x (Ex) 14 Nella forma logica è riconoscibile la costante predicativa E. E traduce in forma logica la parte dell’enunciato “è eterno” il cui significato è un concetto, cioè una funzione di primo livello. Ma come dobbiamo interpretare la parte restante della forma logica dell’enunciato, cioè “∃x (…x)”? Questa è la forma logica che corrisponde alla parola “qualcosa”. Qual è il significato del termine che viene tradotto con questa forma logica? Frege direbbe che si tratta di una funzione di secondo livello: una funzione che assume come argomenti, funzioni (cioè funzioni di primo livello), e come valori, valori di verità. In particolare se applichiamo la funzione di secondo livello denotata da “qualcosa” alla funzione di primo livello denotata da “è eterno” si ottiene come valore il Vero se c’è almeno una cosa eterna nell’universo e il Falso altrimenti. Per dirlo altrimenti, se il concetto denotato da “è eterno” cade nel concetto di secondo livello denotato da “essere posseduto da almeno una cosa”, allora l’enunciato “qualcosa è eterno” ottiene come valore il Vero, ottiene come valore il Falso altrimenti. Riassumiamo. La parola “qualcosa” è tradotta in simboli logici con ∃x(…x) e ha come significato un concetto (cioè una funzione di secondo livello). E’ molto importante notare che la parola “qualcosa” non denota un oggetto, ma un concetto. Consideriamo ora l’enunciato “Una tigre è feroce”. La sua forma logica è la seguente: ∃x (Tx∧Fx). Qual è la forma logica della descrizione indefinita “una tigre”? La sua forma logica è la seguente: ∃x (Tx∧…x). E qual è il significato della descrizione indefinita? Frege direbbe che il suo significato è un concetto, cioè una funzione di secondo livello (quella denotata da “essere posseduto da almeno una tigre” che può essere applicata alla funzione di primo livello denotato da “è feroce”). Ripetiamolo ancora: una funzione di secondo livello è una funzione che assume come argomenti, funzioni (cioè funzioni di primo livello), e come valori, valori di verità. Quindi la descrizione indefinita “una tigre” non ha come significato un oggetto, bensì un concetto. 15 Frege, in “Funzione e concetto”, fornisce un criterio generale per distinguere fra espressioni che denotano oggetti e espressioni che denotano concetti (si veda Kenny p. 125): l’articolo determinativo singolare indica sempre un oggetto, mentre l’articolo indeterminativo accompagna i termini concettuali (i termini cioè che hanno come significato un concetto). Esercizio 1- Tenendo presente la teoria di Frege, lo studente è invitato a tradurre in forma logica e a definire il significato delle espressioni coinvolte nei seguenti enunciati: “Un uomo con la giacca verde è simpatico”, “L’uomo con la giacca verde è simpatico”, “Un coniglio viola vola nel cielo”, “Il coniglio viola vola nel cielo”, “Ho incontrato un unicorno”, “Ho incontrato l’unicorno”. 3. Russell: le descrizioni definite e le descrizioni indefinite Come si è visto, per Frege le descrizioni definite sono considerate nomi propri. Bertrand Russell chiama termini singolari quelle espressioni che Frege chiama nomi propri. Russell inoltre distingue, all’interno dei termini singolari, nomi propri e descrizioni definite. L’obiettivo di Russell è dimostrare che la forma logica che assumono le descrizioni definite è diversa da quella dei nomi propri. Bertrand Russell, nel testo “Le descrizioni”, paragona le descrizioni definite alle descrizioni indefinite. Le descrizioni indefinite sono tutte quelle espressioni che sono precedute da un articolo indeterminativo singolare (un, una, uno) e che possono fungere da soggetto grammaticale. Esempi di descrizioni indefinite sono: “un uomo”, “un cappello con le piume”, “un libro interessante”, “una scatola che contiene gioielli”. E’ bene tener presente la distinzione fra descrizioni indefinite e enunciati che contengono descrizioni indefinite: ad esempio “un uomo sta leggendo il giornale in piazza Duomo a Milano” non è una descrizione indefinita, ma un enunciato che contiene una descrizione indefinita (la descrizione definita è “un uomo”). Invece “un uomo che sta leggendo il giornale in piazza Duomo a Milano” è una descrizione indefinita (infatti può formare un enunciato insieme a un predicato come ad esempio “un uomo che sta leggendo il giornale in piazza Duomo a Milano è ricercato dalla polizia”). 16 La strategia argomentativa di Russell è la seguente: così come Frege sarebbe disposto ad ammettere che la forma logica di una descrizione indefinita non è una costante individuale e il suo significato non è un oggetto, si deve riconoscere che (contrariamente a quanto sosteneva Frege) anche la forma logica di una descrizione definita non è una costante individuale e il suo significato non è un oggetto. 4. La forma logica degli enunciati che contengono descrizioni indefinite Consideriamo il seguente enunciato “Una tigre di Mario è feroce”. Qual è la forma logica di tale enunciato? Se introduciamo M come costante predicativa per “essere tigre di Mario” e F come costante predicativa per “essere feroce”, abbiamo la seguente traduzione: (A) ∃x (M(x) ∧ F(x)) Ora qual è la forma logica della descrizione indefinita “una tigre di Mario”? La forma logica è la seguente: ∃x (M(x) ∧ …(x)) Qual è il significato di un’espressione di questo tipo per Frege? Frege direbbe che il suo significato è un concetto, cioè una funzione di secondo livello. Ora, come è evidente, se un’espressione linguistica ha come significato una funzione, non ha come significato un oggetto. Una descrizione indefinita, per Frege come per Russell, non ha come significato un oggetto, bensì un concetto. La forma logica di un enunciato come “una tigre di Mario è feroce”, come abbiamo visto, è la seguente: ∃x (M(x) ∧ F(x)) Un tale enunciato è quindi falsificato dalla seguente condizione: - Non esiste qualcosa che è tigre di Mario ed è feroce La forma logica che corrisponde tale condizione è la seguente (si noti che (B) è la contraddittoria di (A)): (B) ∼ ∃x (M(x) ∧ F(x)) 17 Fin qui Frege e Russell sarebbero fondamentalmente d’accordo. Sarebbero cioè d’accordo che non è necessario che Mario abbia una tigre affinché l’enunciato “una tigre di Mario è feroce” abbia significato. Se Mario è un tranquillo professore universitario che non possiede una tigre, l’enunciato è semplicemente falso, sarebbe vero cioè (B). 5. La forma logica degli enunciati che contengono descrizioni definite La differenza fra Frege e Russell emerge quando si considera un enunciato che contiene una descrizione definita come ad esempio “La tigre di Mario è feroce”. In questo caso per Frege la forma logica dell’enunciato è la seguente: F(a) “a” è una costante individuale e traduce la descrizione definita “la tigre di Mario”. Per Frege, una descrizione definita è un nome proprio e il suo significato è un oggetto: l’oggetto che la descrizione descrive. Se Mario non ha tigri o se Mario possiede più di una tigre, allora la descrizione definita non ha significato e quindi l’intero enunciato è privo di valore di verità: non è né vero né falso. Russell invece pone l’accento sull’analogia fra descrizioni indefinite e descrizioni definite. Così come accettiamo che l’enunciato “Una tigre di Mario è feroce” abbia un valore di verità anche se Mario non possiede alcuna tigre, allo stesso modo dobbiamo accettare che l’enunciato “La tigre di Mario è feroce” abbia un valore di verità anche se Mario non ha alcuna tigre. Tuttavia Russell riconosce che c’è una differenza fra descrizioni indefinite e descrizioni definite; in particolare c’è una differenza fra “una tigre di Mario” e “la tigre di Mario”. Ogniqualvolta utilizziamo la descrizione definita “la tigre di Mario” ci aspettiamo che Mario non abbia più di una tigre (mentre non lo esigiamo quando utilizziamo la descrizione indefinita “una tigre di Mario”). Ricordiamolo, la traduzione logica di “una tigre di Mario è feroce” è la seguente: ∃x (M(x) ∧ F(x)) 18 Per Russell, “la tigre di Mario è feroce” è la congiunzione delle tre clausole seguenti: 1*) esiste almeno una cosa che è tigre di Mario 2*) al massimo una cosa è tigre di Mario 3*) qualunque cosa sia tigre di Mario è feroce Ciascuna di esse può essere tradotta nel modo seguente: 1*) ∃x M(x) 2*) ∃x ∀y (M(y) → x=y) 3*) ∀x (M(x) → F(x)) La forma logica di (o la proposizione espressa da) “La tigre di Mario è feroce” è quindi la seguente (che corrisponde alla congiunzione delle tre clausole precedenti): ∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ F(x)) La descrizione definita richiede una clausola di unicità (che non è invece richiesta dalla descrizione indefinita); la clausola di unicità è la seguente: ∃x ∀y (M(y) → x=y) che si legge “esiste un x tale che per ogni y, se y è tigre di Mario, allora y è uguale a x” e che traduce proprio 2*). E qual è la forma logica della descrizione definita “la tigre di Mario”? La traduzione è la seguente: ∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ …(x)) Per utilizzare la terminologia di Frege, se questa è la forma logica della descrizione definita, il suo significato è un concetto, cioè una funzione di secondo livello. Ricapitoliamo in modo schematico: Per Russell sono corrette le seguenti traduzioni in forma logica [dove R è una costante predicativa che traduce “essere P” e S è una costante predicativa che traduce “essere Q”] Un P è Q = ∃x (R(x) ∧ S(x)) Il P è Q = ∃x (R(x) ∧ ∀y (R(y) → x=y) ∧ S(x)) 19 Per Frege sono corrette le seguenti traduzioni in forma logica Un P è Q = ∃x (R(x) ∧ S(x)) Il P è Q = S(a) La differenza non riguarda la traduzione degli enunciati che contengono una descrizione indefinita, ma la traduzione degli enunciati che contengono una descrizione definita. 6. Perché Frege non adotta la traduzione di Russell e come Russell difende la sua traduzione delle descrizioni definite Sebbene Russell elabori le sue idee dopo Frege, è chiaro che Frege aveva preso in considerazione la traduzione che Russell propone per le “descrizioni definite”, ma la rifiuta. Perché la rifiuta? Se la strategia argomentativa di Russell a sostegno della traduzione logica che propone è quella di stabilire un parallelo fra descrizioni indefinite e descrizioni definite, la strategia argomentativa di Frege è quella di stabilire un parallelo fra nomi propri e quelle che Russell chiamerà descrizioni definite (e che Frege invece chiama “enunciati subordinati nominali”). In effetti c’è una differenza fra descrizioni definite e enunciati subordinati nominali. Le descrizioni definite, come si è visto, sono introdotte da un articolo determinativo singolare. Gli enunciati subordinati nominali sono introdotti da espressioni come “colui che”, “ciò che”, ecc. C’è quindi una differenza grammaticale fra descrizioni definite e enunciati subordinati nominali. Tuttavia la differenza grammaticale non sembra rilevante ai fini del contenuto espresso da descrizioni definite e enunciati subordinati nominali corrispondenti. Ad esempio nell’enunciato “lo scopritore dell’orbita ellittica dei pianeti morì in miseria” la descrizione definita (“lo scopritore dell’orbita ellittica dei pianeti”) esprime lo stesso contenuto dell’enunciato subordinato nominale (“colui che scoprì l’orbita ellittica dei pianeti”) in “colui che scoprì l’orbita ellittica dei pianeti morì in miseria”. 6.1 Traduzione logica di Russell Riconsideriamo per un attimo la traduzione logica che Russell fornisce dell’enunciato “La tigre di Mario è feroce”. La traduzione è la seguente: 20 (*) ∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ F(x)) Che cosa rende questo enunciato falso ? Ci sono almeno due diverse condizioni che possono rendere falso questo enunciato: 1] non esiste una e una sola tigre di Mario 2] Mario possiede una sola tigre ma non è feroce Se viene soddisfatta la prima delle due condizioni, allora sarà vero ciò che segue: [1] ∼∃x (M(x) ∧ ∀y (M(y) → x=y)) Tuttavia se viene soddisfatta la seconda delle due condizioni, allora sarà vero ciò che segue: [2] ∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ ∼F(x)) Russell menziona esplicitamente queste due possibilità nell’ultimo paragrafo del testo in esame. Egli ritiene quindi che la negazione dell’enunciato “la tigre di Mario è feroce” sia ambigua fra due diverse interpretazioni. Si può ritenere che la negazione di (*) sia la sua contraddittoria: α) ∼∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ F(x)) In tal caso, per Russell, la descrizione definita ha occorrenza secondaria. Oppure si può pensare che la negazione di (*) sia una contraria, cioè: β) ∃x (M(x) ∧ ∀y (M(y) → x=y) ∧ ∼F(x)) In tal caso la descrizione definita ha occorrenza primaria secondo Russell. E’ interessante notare che nel caso Mario non abbia alcuna tigre α) è vera e β) è falsa. Esercizio 2 - Russell utilizza l’enunciato “L’attuale re di Francia è calvo”. Lascio agli studenti il compito di ricostruire la traduzione logica dell’enunciato e l’argomentazione di Russell al riguardo. 6.2 Parallelo di Frege fra descrizioni definite e nomi propri Frege rifiuta l’analisi che verrà successivamente proposta da Russell perché ritiene che sia inaccettabile che un enunciato che contiene una descrizione definita 21 possa essere falsificato dalle due condizioni proposte da Russell (in particolare ritiene inaccettabile la prima condizione). Egli propone un parallelo fra un enunciato che contiene un nome proprio e un enunciato che contiene quello che egli chiama “enunciato subordinato nominale” e che noi chiameremo con Russell “descrizione definita”. Per Frege, quando noi usiamo un nome proprio, non è parte del senso dell’enunciato contenente il nome che il nome designi qualcosa. In effetti, se consideriamo che, per Frege, un enunciato può avere un senso (cioè esprimere un pensiero) anche se il nome in esso contenuto non designa alcunché, ci sarà chiaro perché, dal punto di vista di Frege, non può essere parte del senso di un enunciato contenente un nome che il nome in esso contenuto abbia significato. Consideriamo ad esempio l’enunciato (A)“Keplero morì in miseria”. Qual è la sua negazione? La risposta immediata è che la sua negazione è (B)“Keplero non morì in miseria” Se invece accettiamo che è parte del senso dell’enunciato (di cui il nome è un costituente) che il nome designi qualcosa, allora siamo costretti ad accettare che la negazione di (A) non sia (B), ma sia piuttosto: (C) “Keplero non morì in miseria o il nome “Keplero” è privo di significato” Frege afferma che (D) il nome “Keplero” ha significato è una presupposizione tanto di (A) quanto di (B). Occorre che (D) sia vero affinché sia vero o (A) o (B); se invece (D) è falso, allora né (A) né (B) avranno un valore di verità. Allo stesso modo, sostiene Frege, quando usiamo la descrizione definita “lo scopritore dell’orbita ellittica dei pianeti” in un enunciato come (E) Lo scopritore dell’orbita ellittica dei pianeti morì in miseria saremo disposti ad asserire che la sua negazione è (F) Lo scopritore dell’orbita ellittica dei pianeti non morì in miseria 22 e non saremmo invece disposti a sostenere che la negazione di (E) è (G) Lo scopritore dell’orbita ellittica dei pianeti non morì in miseria o non vi fu uno che scoprì l’orbita ellittica dei pianeti La ragione per cui Frege non adotta la traduzione che invece adotterà Russell dipende quindi da un parallelo fra nomi propri e descrizioni definite. Se siamo disposti a riconoscere che non fa parte del senso degli enunciati di cui i nomi propri sono costituenti che il nome designi qualcosa (che non fa parte, ad esempio, del senso dell’enunciato che contiene il nome proprio “Keplero” che esista qualcuno che si chiama Keplero), allo stesso modo, sostiene Frege, non è parte del senso dell’enunciato che contiene la descrizione definita “lo scopritore dell’orbita ellittica dei pianeti” che ci sia qualcuno che ha scoperto l’orbita ellittica dei pianeti. 6.3 Russell: nomi propri usati come abbreviazioni di descrizioni definite Russell prende molto seriamente l’osservazione di Frege che le descrizioni definite devono essere trattate come nomi propri. E tuttavia Russell ritiene che il significato di un nome proprio sia un oggetto, mentre una descrizione definita esprime una funzione proposizionale. Russell riconosce che in molte occasioni non sembra giustificata una tale distinzione. Perché? Russell scrive più volte in “Le descrizioni” che noi utilizziamo i nomi propri come abbreviazioni di descrizioni definite. Quindi l’apparente somiglianza fra nomi propri e descrizioni definite è proprio spiegata dal fatto che non usiamo i nomi propri come nomi ma usiamo i nomi propri come se fossero descrizioni definite. Se Russell ha ragione di sostenere che noi utilizziamo i nomi propri come abbreviazioni di descrizioni definite ed ha ragione di affermare che è parte della proposizione espressa dall’enunciato che contiene una descrizione definita che la descrizione definita designi qualcosa, allora ha ragione di concludere che è parte della proposizione espressa da un enunciato che contiene un nome proprio utilizzato come abbreviazione di una descrizione definita che il nome designi qualcosa. Russell direbbe che l’enunciato “Keplero morì in miseria” è utilizzata come se fosse 23 equivalente a “La persona chiamata “Keplero” morì in miseria” ed esprime la congiunzione delle tre proposizioni seguenti: 1*) esiste almeno una persona chiamata “Keplero” 2*) al massimo una persona è chiamata “Keplero” 3*) chiunque sia chiamato “Keplero” morì in miseria La prima delle tre, 1*), asserisce proprio l’esistenza di qualcosa che soddisfa la descrizione (la descrizione definita è “La persona chiamata “Keplero””), la clausola di esistenza è quindi parte della proposizione espressa dall’enunciato “La persona chiamata “Keplero” morì in miseria”. Si tratta a questo punto di chiedersi quali sono i vantaggi di una tale teoria delle descrizioni definite. 7. Quali sono i pregi della traduzione logica di Russell Perché dobbiamo accettare che una descrizione definita non designi direttamente un oggetto e vada tradotta come propone Russell? Per Russell, come abbiamo visto, un primo argomento è fornito dall’analogia fra descrizioni indefinite e descrizioni definite. Russell scrive (p. 54): “le proposizioni riguardanti “il così e così” implicano sempre le proposizioni corrispondenti riguardanti “un così e così” con l’aggiunta che non esiste più di un così e così”. Ma c’è un’altra ragione che, anche se non è mai esplicitamente dichiarata, è riconoscibile nel testo di Russell. La traduzione che propone Russell rende superfluo introdurre un “senso” per le descrizioni definite (mentre Frege aveva distinto fra senso e significato). Cerchiamo di scoprire perché. Frege aveva distinto fra senso e significato riguardo ai nomi propri per due ragioni: 1) la distinzione fra senso e significato serve per rendere conto dell’informatività di alcuni enunciati di identità 2) la distinzione fra senso e significato serve per rendere conto dei nomi propri senza significato Russell intende dimostrare che se accettiamo la traduzione logica che egli propone, allora la dimensione del “senso” freghiano diventa superflua. 24 Iniziamo dal punto 2). Consideriamo un enunciato come “Il re di Francia è calvo”. Come è noto, la Francia è una repubblica, pertanto la descrizione definita “il re di Francia” non ha denotazione. Frege direbbe che la descrizione definita non ha significato e che l’enunciato che la contiene non ha significato, non ha cioè un valore di verità. E tuttavia possiamo comprendere sia la descrizione definita sia l’enunciato che la contiene. E, per Frege, la ragione è che la descrizione definita ha un senso e l’enunciato che la contiene esprime un pensiero. Quindi noi possiamo afferrare il pensiero espresso dall’enunciato anche se l’enunciato non ha significato, anche se non ha un valore di verità. Russell sostiene invece che l’enunciato “il re di Francia è calvo” esprime una proposizione e ha un valore di verità (il falso) anche se non esiste un re di Francia. La proposizione rende conto del significato dell’enunciato e quindi diventa irrilevante la dimensione del “senso” freghiana. E lo stesso succede quando utilizziamo nomi propri privi di denotazione come se fossero descrizioni definite. Si consideri ad esempio il nome proprio “Omero” di cui è sensato domandarsi se sia mai esistito. Russell scrive che utilizziamo “Omero” come l’abbreviazione di una descrizione definita come “l’autore dell’Iliade e dell’Odissea”. E se non abbiamo bisogno di postulare un senso per gli enunciati che contengono descrizioni definite non ne abbiamo bisogno neanche per gli enunciati che contengono nomi propri usati come abbreviazioni di descrizioni definite. Consideriamo ora il punto 1). Frege, per rendere conto dell’informatività di alcuni enunciati di identità, introduce la distinzione fra senso e significato. Consideriamo i due enunciati di identità seguenti: 1. Scott = Scott 2. Scott = l’autore di Waverley Per Frege, “Scott” e “L’autore di Waverley” designano lo stesso individuo e hanno pertanto lo stesso significato. Per il principio di sostitutività, dato un qualsiasi enunciato, è possibile sostituire un’espressione con un’altra avente lo stesso 25 significato senza cambiare il significato dell’enunciato. Ad esempio abbiamo detto che, per Frege, “Scott” e “L’autore di Waverley” hanno lo stesso significato e quindi 2 può essere ottenuto da 1 per sostituzione di equivalenti. Quindi 1 e 2, per Frege, hanno lo stesso significato. Per Russell non è così. “L’autore di Waverley” è una descrizione definita e non designa direttamente un oggetto. Mentre il nome proprio “Scott” designa direttamente una persona. Quindi per Russell “Scott” e “l’autore di Waverley” non hanno lo stesso significato e 2 non è quindi ottenibile a partire da 1 per sostituzione di equivalenti. 1 e 2 non hanno pertanto lo stesso significato per Russell. Egli dirà che 1 è un banale truismo, mentre 2 è un fatto della storia della letteratura. Tuttavia, si potrebbe obiettare che “Sir Walter” è un nome proprio che ha lo stesso significato di “Scott”, sono infatti nomi che designano lo stesso individuo, lo scrittore Walter Scott. Allora che cosa dire dei due enunciati seguenti? 1. Scott = Scott 3. Scott = Sir Walter Russell sostiene che i due enunciati esprimono la stessa proposizione se “Scott” e “Sir Walter” sono usati come nomi propri. Ma come rendere conto dell’apparente informatività del secondo enunciato? Russell scrive che noi utilizziamo spesso i nomi propri come abbreviazioni di descrizioni definite; utilizziamo cioè il nome proprio “Scott” come abbreviazione della descrizione definita “La persona chiamata ‘Scott’” e “Sir Walter” come abbreviazione della descrizione “La persona chiamata ‘Sir Walter’”. Se facciamo così, allora utilizziamo 1 e 3 come se fossero: 1. La persona chiamata ‘Scott’ = La persona chiamata ‘Scott’ 3. La persona chiamata ‘Scott’= La persona chiamata ‘Sir Walter’ In questo caso, poiché la descrizione definita “La persona chiamata ‘Scott’” è diversa dalla descrizione definita “La persona chiamata ‘Sir Walter’”, 1 e 3 non esprimono la stessa proposizione e non hanno neanche la stessa forma logica. Non si pone quindi il problema posto da Frege: non si pone quindi il problema di rendere conto dell’informatività di 3. 26 Russell afferma inoltre che quando introduciamo una descrizione definita in un enunciato di identità non abbiamo mai un banale truismo, al contrario di quello che succede con i nomi propri. Sono banali truismi i seguenti enunciati di identità, ottenuti a partire dalla legge di identità “x = x”: Scott = Scott Socrate = Socrate Giorgio Napolitano = Giorgio Napolitano Ma tutto cambia quando utilizziamo descrizioni definite per gli enunciati di identità. Consideriamo ad esempio: L’autore di Waverley = L’autore di Waverley Il re di Francia = Il re di Francia Il quadrato rotondo = Il quadrato rotondo Qual è la forma logica di (o la proposizione espressa da) “Il quadrato rotondo = Il quadrato rotondo”? Introduciamo la costante predicativa Q che esprime “essere quadrato rotondo”, allora la traduzione logica sarà la seguente: ∃x (Q(x) ∧ ∀y (Q(y)→x=y) ∧ x=x) E’ evidente quindi che, poiché non esiste un quadrato rotondo, l’enunciato di identità è falso e non è pertanto un banale truismo. E per lo stesso motivo ogni enunciato di identità che contiene una descrizione definita non è mai, per Russell, un banale truismo. Riassumiamo. Per Russell le descrizioni definite devono assumere un trattamento diverso dai nomi propri; in questo modo si può rendere conto della somiglianza fra descrizioni definite e descrizioni indefinite, inoltre il trattamento russelliano delle descrizioni definite rende superfluo distinguere fra “senso” e “significato” per tali espressioni.