Università degli Studi di Bologna Seconda Facoltà di Ingegneria - Sede di Cesena C.d.L. in Ingegneria Elettronica e delle Telecomunicazioni Misura dei parametri statici di un amplificatore operazionale Misure elettroniche L-A (prof. P. A. Traverso) Anno Accademico 2008/09 Data esecuzione: 14 novembre 2008 Gruppo IX Marco Alessandrini Alessandro Callozzo Lorenzo Minghini 0000281742 [email protected] 0000286147 [email protected] 0000279040 [email protected] Sommario Nella presente relazione sono riportati i risultati ottenuti misurando i parametri statici (tensione di offset, correnti di polarizzazione, corrente di offset) di un comune amplificatore operazionale. Dopo una parte introduttiva che illustra le caratteristiche del dispositivo, le metodologie adottate per il test e i motivi che portano a seguire alcune scelte misuristiche, nella seconda parte sono analizzati i riscontri numerici rilevati, cercando di valutare l’efficacia dei processi di misurazione rispetto al tipo di grandezza fisica corrispondente. Indice 2 Indice Simbologia 2 1 Finalità e obiettivi 1.1 Dettagli sull’oggetto in analisi . . . . . . . . . . . . . . . . . . . . . . 3 3 2 Metodo operativo 2.1 Materiale utilizzato . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Schemi di collegamento e dettagli operativi . . . . . . . . . . . . . . 2.3 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 9 3 Risultanze 9 4 Considerazioni finali 10 Elenco delle figure 13 Elenco delle tabelle 13 Riferimenti bibliografici 13 Simbologia Vp Vsat Significato Guadagno di modo comune dell’op-amp Guadagno differenziale dell’op-amp Parametro di correzione di VL , fornito dal costruttore Rapporto di reiezione di modo comune Correnti di polarizzazione d’ingresso dell’op-amp Corrente di offset dell’op-amp Misurando generico Stima del misurando M attraverso processi di misurazione Incertezza associata alla stima del misurando M Incertezza di tipo A (letture ripetute) del misurando M Incertezza combinata del misurando M Valore del misurando M letto dallo strumento Valore vero del misurando M Rapporto di reiezione della tensione di alimentazione Resistenza nominale del resistore Tolleranza nominale del resistore Tensione di alimentazione dell’op-amp Tensione di modo comune in ingresso all’op-amp Tensione differenziale in ingresso all’op-amp Tensione errore di modo comune dell’op-amp Tensioni d’ingresso dell’op-amp Tensione di offset dell’op-amp Tensione d’uscita dell’op-amp VF S Portata scelta sullo strumento (anche ) 2 Tensione di saturazione in uscita dell’op-amp Tabella 1: Riepilogo della simbologia utilizzata = $ CC BY: \ Simbolo Acm Ad c CM RR I +, I − IOS M M̂ u(M̂ ) uA (M̂ ) uc (M̂ ) ML Mx P SRR R ∆R (±) VCC Vcm Vd Vecm Vin+ , Vin− VOS Vout 1 Finalità e obiettivi 1 3 Finalità e obiettivi Chi non si misura viene misurato. - Proverbio veneziano - L’amplificatore operazionale è uno degli elementi più utilizzati in elettronica grazie alla propria versatilità. Da leader indiscusso si pone al centro di circuiti semplici e complessi, realizzando amplificatori, filtri, comparatori e contribuendo a dar vita a sistemi più complessi come generatori e analizzatori di grandezze e segnali. Questa grande propensione per l’operazionale è giustificata con le ottime proprietà elettriche, le quali sono ben dimostrabili dalla comune espressione “anche il più scarso degli operazionali lavora con una precisione incredibile”. Tale è la diffusione negli schemi che, grazie ai suoi pregi, si usa praticamente solo il modello ideale (che pur poco si discosta da quello ideale) per descriverne il comportamento. Il mondo della produzione e della misura, però, è reale e non ammette facili semplificazioni. L’amplificatore operazionale, come ogni oggetto fisico e in particolare come qualunque componente a semiconduttore, manifesta i suoi difetti in quantità non trascurabile se studiato in modo attento. Lo scopo del test effettuato consiste nel misurare i difetti elettrici di natura parassita dell’op-amp (tensione e corrente di offset, correnti di polarizzazione), contestualizzando anche i motivi che portano alla loro presenza e i metodi più efficaci per misurarli. Al termine delle misurazioni si confronteranno i rilievi con i dati suggeriti dal costruttore nel datasheet, ricordando che si tratta di misurandi del tutto aleatori perché dipendenti da una miriade di parametri (costruttivi, elettrici, fisici, temporali...) del tutto imprevedibili e non apprezzabili. 1.1 Dettagli sull’oggetto in analisi Un amplificatore operazione è un dispositivo attivo che presente due ingressi (invertente e non invertente, e raffigurati rispettivamente con il simbolo “–” e “+”) e un’uscita. Idealmente presenta: • resistenza di ingresso infinita (l’op-amp non assorbe corrente e gli ingressi sono allo stesso potenziale Vin+ = Vin− ); • resistenza di uscita nulla (l’uscita è rappresentabile da un generatore di tensione ideale); • guadagno differenziale infinito (figura 1(a)); • banda passante infinita (la funzione di trasferimento è costante per ogni frequenza). Nella realtà queste affermazioni non rispondono al vero e questo provoca sensibili differenze fra il funzionamento ideale e quello effettivo. Innanzitutto, nel funzionamento reale non si può avere una tensione di ingresso che viene amplificata all’infinito: il componente, ad certo livello di tensione di uscita, satura a qualche volt di differenza rispetto al modulo della tensione di alimentazione (figura 1(b)). Il limite è dunque fisicamente legato alla tensione di alimentazione, che è la massima fornibile su Vout . A causa di ciò, nella caratteristiche d’uscita dell’operazionale si hanno due regioni di funzionamento ben distinte: una regione lineare, nella quale si ha una retta passante per l’origine con pendenza molto elevata, ed una regione di saturazione, nella quale per qualunque valore di tensione in ingresso si ottiene una tensione di uscita costante (“di saturazione”). Per questo motivo non si può usare un operazionale in catena aperta come amplificatore, perché anche con tensione piccole1 in ingresso si saturerebbe l’uscita: si deve retroazionare l’uscita in modo da limitare il guadagno a valori finiti. di millivolt possono essere più che sufficienti. = $ CC BY: \ 1 Decine 1.1 Dettagli sull’oggetto in analisi 4 Vout Vout +VCC +Vsat Vd Vd −Vsat −VCC (a) Caratteristica ideale (b) Caratteristica reale Figura 1: Caratteristiche tensione-corrente − Ri− Vd Rid Rout + DC Ad Vd RL Ri+ (a) Resistenze d’ingresso (b) Resistenza d’uscita Figura 2: Resistenze reali di ingresso e uscita La resistenza visibile tra gli ingressi (figura 2(a)) è elevata, ma non infinita: si quantifica nell’ordine di centinaia di kΩ o alcuni MΩ. Ciò porta ad avere una quantità di corrente di ingresso assorbita dall’operazionale. Parimenti, l’uscita offrirà una certa resistenza (figura 2(b)), sı̀ bassa ma non nulla (qualche ohm). Per queste ragioni non si può considerare l’operazionale indipendente dal circuito posto a monte, né esso risulta comportarsi come un generatore ideale di tensione al nodo di uscita: in altre parole, la tensione di uscita dipenderà dal carico applicatovi (come mostrato dall’equazione (1.1), è sufficiente ripartire la tensione tra le due resistenze di figura 2(b)). RL Vout = · Ad · Vd (1.1) Rout + RL Oltre a ciò, la tensione di uscita dell’operazionale sarà data dalla somma di un contributo differenziale e di un contributo in modo comune. La parte differenziale Ad · Vd è l’uscita desiderata, l’unica che si vorrebbe presente in un funzionamento ideale con guadagno differenziale Ad infinito. La parte di modo comune, al contrario, è il contributo perturbativo dovuto al fatto che i singoli ingressi non sono a differenza di potenziale nulla: infatti, idealmente, Acm dovrebbe essere nullo. Vout = Ad Vd + Acm Vcm Vin+ + Vin− 2 Si definisce il CMRR (Common Mode Rejection Ratio) come il rapporto fra il guadagno differenziale e il guadagno in modo comune: def. Vcm = def. CM RR = Ad |Acm | \ = $ CC BY: 1.1 Dettagli sull’oggetto in analisi 5 Idealmente CM RR → ∞, in realtà un buon operazionale presenta valori quantificabili in circa CM RR = 80 dB. Con qualche semplice operazione matematica si può derivare, da quanto appena detto, un modello (figura 3) in cui si sovrappone al comportamento ideale dell’operazione una tensione perturbativa Vecm all’ingresso (“errore di modo comune”). Acm Vcm = Ad (Vd + Vecm ) Vout = Ad Vd + Ad def. Vecm = ± Vcm CM RR − Vd Vout DC + Vecm Figura 3: Tensione errore di modo comune La tensione di offset è la tensione presente in ingresso all’operazionale, alimentato, quando gli ingressi non hanno segnale ai loro capi e l’uscita è nulla. Idealmente si crederebbe che, in tale situazione, Vin = 0; nella realtà questo non si verifica a causa degli squilibri interni del dispositivo (che non può essere perfettamente simmetrico né schematicamente né per causa dei processi costruttivi) e delle cadute sulle resistenze interne, che a loro volta non sono simmetriche. Per considerare gli effetti della tensione di offset si può utilizzare un modello (figura 4) che prevede un op-amp ideale al cui ingresso è posta, oltre a Vd e Vecm , anche VOS . Vout = Ad (Vd + Vecm +VOS ) − Vd Vout DC + Vos Figura 4: Tensione di offset La tensione di offset dipende da fattori tecnologici di costruzione ed è funzione della temperatura (deriva termica), della tensione di alimentazione (PSRR) e del tempo (usura per invecchiamento): ∆VOS ∆T def. ∆VOS P RSS = ∆VCC VOS = f (T, VCC , t) µV (deriva termica) K mV V (Power Supply Rejection Ratio) Come detto, la resistenza di ingresso dell’op-amp non è infinita, quindi si hanno delle correnti entranti nel componente ed un certo errore dovuto al consumo; queste correnti entranti sono dette correnti di polarizzazione o di bias che non sono altro \ = $ CC BY: 2 Metodo operativo 6 che le correnti di base dei transistor BJT, polarizzati in regione normale, con cui sono realizzati gli ingressi. Ciò comporta l’indipendenza della corrente assorbita dalla tensione applicata agli ingressi. Si definisce, infine, la corrente di offset come differenza tra la corrente di bias dell’ingresso non invertente e quella dell’ingresso invertente: def. IOS = I + − I − 2 Metodo operativo 2.1 Materiale utilizzato Per ottenere le misure sono stati utilizzati i seguenti materiali, forniti dal laboratorio di Elettronica e Telecomunicazioni della Facoltà: • multimetro digitale (marca Agilent, mod. 34401A); • breadboard; • amplificatore operazionale (marca Philips, mod. µA741); • resistori da 22 kΩ (n. 2) e da 100 kΩ (n. 1); • PC con software LabVIEW e connessione al multimetro; • cavi di collegamento. 2.2 Schemi di collegamento e dettagli operativi Ogni parametro perturbativo ha bisogno di un proprio circuito specifico, tale per cui le proprie caratteristiche elettriche non siano mortificate e quindi nascoste ai morsetti dello strumento di misura. Per ogni caso è stato utilizzato un procedimento legato alla sola misura delle resistenze dei resistori e della tensione di uscita dell’amplificatore operazionale. Questo ha dato luogo a misure dirette (per la tensione di offset) e indirette (per le correnti di polarizzazione e offset), con conseguente diversa propagazione degli errori. La scelta di effettuare solo due tipi di misure e la coerenza dei misurandi, sempre circoscritti in intervalli sufficientemente definiti (decine di mV per le tensioni, decine di kΩ per le resistenze), ha permesso di utilizzare per tutte le misure gli stessi parametri ([2, p. 216]): misure di tensione: portata 100, 00 mV (d1 = 0, 0050; d2 = 0, 0035); misure di resistenza: portata 100, 00 kΩ (d1 = 0, 01; d2 = 0, 001). Per ogni parametro sono state effettuate due misurazioni distanti temporalmente circa due minuti e consistenti di dieci letture, con cadenza 500 ms. R2 R1 I− Vout DC DC Vos Vos (a) Misura di VOS Vout (b) Misura di precisione di VOS Figura 5: Circuiti di misura della tensione di offset \ = $ CC BY: 2.2 Schemi di collegamento e dettagli operativi 7 Tensione di offset. Per misurare la tensione di offset2 VOS si utilizza il circuito in figura 5(a). Trattandosi di un inseguitore di tensione, l’uscita coincide con l’ingresso non invertente: Vout = VOS La figura 5(b) riporta uno schema di precisione per la misura di VOS . In realtà non abbiamo avuto bisogno di utilizzarlo a causa delle ottime caratteristiche del multimetro scelto: col primo schema si sono ottenuti risultati compatibili coi range di VOS suggeriti dal costruttore [3, p. 2]. R I+ Vout DC I− Vos Vout DC R Vos (a) Corrente di polarizzazione I − (b) Corrente di polarizzazione I + Figura 6: Circuiti di misura delle correnti di polarizzazione Correnti di polarizzazione. I circuiti per rilevare le correnti di polarizzazione I + e I − sono in figura 6. Per la corrente di polarizzazione all’ingresso invertente vale, con la sovrapposizione degli effetti: Vout = VOS + RI − (2.1) − (2.2) ' RI avendo considerato il caso peggiore3 : |VOS | ≤ 1 R̂ · I − 10 (2.3) − In [3, p. 2], scegliendo |VOSM AX | = 5 mV e Imin = 80 nA, si verifica la (2.3) quando R ≥ 625 kΩ e quindi si può usare la (2.2). Con le stime rilevate: V̂out Iˆ− = R̂ u2c (Iˆ− ) u2 (V̂out ) u2c (R̂) = c 2 + (Iˆ− )2 V̂out R̂2 , (2.4) Per la corrente di polarizzazione all’ingresso non invertente, in maniera del tutto analoga, si scrive: Vout = VOS − RI + ' −RI + (2.5) (2.6) avendo considerato il caso peggiore: |VOS | ≤ 1 R̂ · I + 10 (2.7) 2 In tutti gli schemi elettrici presentati è stata riportata la tensione di offset come generatore, all’interno dei due morsetti che identificato i terminali invertente e non invertente dell’op-amp (si distinguono dai nodi per lo spessore). Tale generatore è chiaramente fittizio e serve solo per considerare VOS nei calcoli, cosicché diventi trascurabile o meno. 3 Trattandosi di fenomeni perturbativi non ha senso definire valori precisi dei componenti da utilizzare. È più assennato considerare un termine come trascurabile quando incide per meno del 10% su un altro cui va sommato, utilizzando il criterio del caso peggiore: valori massimi nel membro minorante della disequazione, valori minimi nel membro maggiorante. \ = $ CC BY: 2.2 Schemi di collegamento e dettagli operativi 8 + In [3, p. 2], scegliendo |VOSM AX | = 5 mV e Imin = 80 nA, si verifica la (2.7) quando R ≥ 625 kΩ e quindi si può usare la (2.6). Con le stime rilevate: V̂out Iˆ+ = − R̂ u2 (V̂out ) u2c (R̂) u2c (Iˆ+ ) = c 2 + (Iˆ+ )2 V̂out R̂2 , (2.8) R2 I− I+ Vout DC Vos R1 Figura 7: Circuito di misura della corrente di offset Corrente di offset Il circuito utilizzato per misurare la corrente di offset IOS = I + − I − è in figura 7. Con la sovrapposizione degli effetti: Vout = VOS +R2 I − − R1 I + |{z} compensato = (R̂ + ∆R)I − − (R̂ − ∆R)I + = −R̂ · IOS + ∆R · I − + ∆R · I + = −R̂ · IOS + ∆R(I + + I − ) ' −R̂ · IOS (2.9) (2.10) avendo considerato il caso peggiore: ∆R(I + + I − ) ≤ ∆R R̂ ≤ 1 R̂ · |IOS | 10 1 |IOS | · 10 I + + I − | {z } 1 10 (2.11) La (2.11), per essere soddisfatta, richiede un resistore con tolleranza inferiore all’1%. Tale condizione è improponibile nella realtà commerciale, poiché i resistori più precisi a disposizione hanno tolleranza proprio dell’1% con prezzi di vendita elevati, proporzionati alla qualità costruttiva (comunque inadeguata per verificare questo caso peggiore). Per risolvere questo inconveniente, scelta approssimativamente la taglia dei resistori (22 kΩ nominali, non molto importante come valore poiché si desidera R1 = R2 ed è sufficiente che la corrente assorbita non sia rilevante, cioè superiore a qualche milliampère), sono stati presi da un cassetto dieci resistori nominalmente identici e, a freddo, sono stati misurati resistenza e incertezze di ciascuno. Alla fine della misura, i due candidati più vicini come stima di resistenza sono stati scelti: le loro caratteristiche sono in tabella 2. Si nota che lo scostamento tra i due valori è inferiore allo 0,2%, mentre le incertezze relative sono di circa 85 parti per milione su entrambi i resistori, quindi oltre due ordini di grandezza inferiori rispetto all’1% richiesto. \ = $ CC BY: 2.3 Driver 9 Verificandosi la (2.11), allora si può usare la (2.10). Con le stime rilevate: IˆOS = − = − u2c (IˆOS ) (IˆOS )2 = = 2.3 u2c (V̂out ) 2 V̂out u2c (IˆOS ) (IˆOS )2 + = V̂out R̂ V̂out (2.12) R̂1 + R̂2 2 u2c (R̂) R̂2 u2c (V̂out ) 2 V̂out u2 (R̂1 ) + u2 (R̂2 ) 2 + (R̂1 + R̂2 )2 4 (2.13) Driver Per ottenere le stime dei misurandi e poterne calcolare le incertezze si è utilizzato il multimetro pilotato da un driver realizzato e compilato con il codice LabVIEW4 . 3 Risultanze La tabella 2 riporta le misure effettuate sui resistori utilizzati nei vari circuiti di test. In particolare si può notare, rapportando le incertezze di R1 e R2 alle rispettive stime, che l’incertezza relativa del resistore vale circa 85 parti per milione, e cioè svariati ordini di grandezza inferiore rispetto alla tolleranza nominale del 10%. Questo rende possibile approssimazioni come la (2.10) e la conseguente stima della perturbazione. M R R R1 R2 M̂x [Ω] 1.012.818 100.690, 3 21.629, 0 21.668, 9 u2A (M̂L ) [Ω] 155, 04 0, 16759 0, 01239 0, 03866 u2A (ĉ) [Ω] 4.127, 9 40, 8411 3, 3346 3, 3431 u2c (M̂x ) [Ω] 4.282, 9 41, 0087 3, 3470 3, 3817 uc (M̂x ) [Ω] 65 6,4 1,8 1,8 Tabella 2: Misure dei resistori utilizzati Tensione di offset. Le misurazioni di Vout , che in questo caso coincidono perfettamente col parametro in analisi VOS , sono in tabella 3. M Vout(1) Vout(2) M̂x [mV] 3,172 2,855 u2A (M̂L ) [nV] 7, 9387 7, 4673 u2A (ĉ) [nV] 4, 4618 · 10−3 4, 4232 · 10−3 u2c (M̂x ) [nV] 7, 9432 7, 4718 Tabella 3: Misure di Vout relative a VOS Correnti di polarizzazione. Le misurazioni di Vout effettuate con R = 100 kΩ (misure 3 e 4 relativamente a I − , misure 5 e 6 per I + ) sono in tabella 4. Le nuove misurazioni di Vout con il nuovo R = 1 MΩ (misure 3.1 e 4.1 relativamente a I − , misure 5.1 e 6.1 per I + ) sono in tabella 5. 4 Ulteriori dettagli nella nostra relazione “Misura del parametro di attenuazione di una rete resistiva partitrice di tensione” (31 ottobre 2008). \ = $ CC BY: 4 Considerazioni finali M Vout(3) Vout(4) Vout(5) Vout(6) 10 M̂x [mV] 5,924 5,992 −10, 505 −10, 017 u2A (M̂L ) [pV] 21, 297 45, 999 227, 45 597, 92 u2A (ĉ) [pV] 4, 8038 4, 8124 2, 9497 2, 9983 u2c (M̂x ) [pV] 26, 101 50, 811 230, 40 600, 92 Tabella 4: Misure di Vout relative a I − e I + , con R = 100 kΩ M Vout(3.1) Vout(4.1) Vout(5.1) Vout(6.1) u2A (M̂L ) [nV] 48, 835 0, 1169 0, 007954 0, 010827 M̂x [V] 2,037779 2,034917 −1, 962590 −1, 962827 u2A (ĉ) [nV] 4, 9064 4, 8983 4, 6958 4, 6965 u2c (M̂x ) [nV] 53, 741 5, 0152 4, 7038 4, 7073 Tabella 5: Misure di Vout relative a I − e I + , con R = 1 MΩ Corrente di offset. tabella 6. M Vout(7) Vout(8) Le misurazioni di Vout relative a IOS sono riportate in M̂x [mV] −1, 678 −1, 695 u2A (M̂L ) [pV] 1, 3768 13, 812 u2A (ĉ) [pV] 3, 8899 3, 8880 u2c (M̂x ) [pV] 5, 2667 17, 700 Tabella 6: Misure di Vout relative a IOS 4 Considerazioni finali Per verificare se i risultati ottenuti hanno un riscontro nelle indicazioni fornite dal costruttore, sono stati riportati in tabella 7 i valori tipici e massimi assunti dai parametri oggetto di analisi (fonte: [3, p. 2]). Tensione di offset. La misura della tensione di offset è stata la meno onerosa, perché il risultato è stato immediato con la misura di Vout . In tabella 8 sono riportati i valori assunti da VOS , la sua incertezza e l’incertezza relativa. Si sono ottenuti due risultati: V̂OS(1) = 3, 172(89) mV , V̂OS(2) = 2, 855(86) mV Le due stime rientrano perfettamente tra il valore tipico e il massimo dei fogli tecnici, nonostante lo schema utilizzato non sia di precisione; questo riprova le ottime caratteristiche del multimetro. Analizzando più a fondo i dati elaborati, notiamo che le incertezze relative di queste due misurazioni sono più elevate rispetto a quelle delle altre effettuate (uno o due ordini di grandezza). Questo fatto è anomalo considerando che, non essendo stata fatta alcuna misura indiretta di VOS (ma anzi si tratta dell’unica misura diretta effettuata), non c’è propagazione e conseguente aumento dell’incertezza; inoltre, proprio perché la misura è diretta non sono previste le approssimazioni al caso peggiore delle altre misurazioni, che sono una fonte inesauribile di incertezze. Una giustificazione di massima è rintracciabile, a nostro parere, nello schema utilizzato, banale e ovvio nel proprio funzionamento ma non tale da rendere al meglio dell’efficienza. Le circostanze hanno impedito di verificare questa affermazione, testando il circuito di schema 5(b); non formuleremo, quindi, altre ipotesi fino a prova contraria. \ = $ CC BY: 4 Considerazioni finali 11 Valore tipico 1,0 80 80 20 VOS I− I+ IOS Valore massimo 5,0 500 500 200 Unità di misura mV nA nA nA Tabella 7: DC electrical characteristics (TA = 25 ◦ C, VCC = ±15 V) M VOS(1) VOS(2) − I(3) − I(4) + I(5) + I(6) − I(3.1) − I(4.1) + I(5.1) + I(6.1) IOS(7) IOS(8) M̂ uc (M̂ ) 3,172 2,855 58,834 59,509 104,33 99,48 2,01199 2,00916 1,93775 1,93799 77,51 78,29 0,089 0,086 0,051 0,071 0,15 0,24 0,00026 0,00015 0,00014 0,00014 0,11 0,19 uc (M̂ ) M̂ [mV] [mV] [nA] [nA] [nA] [nA] [µA] [µA] [µA] [µA] [nA] [nA] 2,81 3,03 0,087 0,119 0,145 0,245 0,0131 0,0073 0,0074 0,0074 0,137 0,248 % % % % % % % % % % % % Tabella 8: Riepilogo delle stime dei parametri perturbativi Correnti di polarizzazione. Le disequazioni 2.3 e 2.7 (che sono sostanzialmente + − identiche) si risolvono considerando VOSM AX = 5 mV e Imin = Imin = 80 nA: in tali condizioni bisogna scegliere R ≥ 625 kΩ. Le misure sono state effettuate una prima volta con un resistore da 100 kΩ, quindi una seconda volta con uno da 1 MΩ. Il calcolatore, utilizzando le relazioni (2.4) e (2.8), ha fornito i riepiloghi con valori assunti dalle correnti, incertezze ed incertezze relative che sono riportati nella tabella 8. I risultati delle misurazioni con R = 100 kΩ sono: − Iˆ(3) = 58, 834(51) nA + Iˆ(5) = 104, 33(15) nA , , − Iˆ(4) = 59, 509(71) nA + Iˆ(6) = 99, 48(24) nA I risultati delle misurazioni con R = 1 MΩ sono: − Iˆ(3.1) = 2, 01199(26) µA , − Iˆ(4.1) = 2, 00916(15) µA + Iˆ(5.1) = 1, 93775(14) µA , + Iˆ(6.1) = 1, 93799(14) µA La scelta del resistore si è notevolmente ripercossa sulle misurazioni. In maniera paradossale, il valore sottostimato di R non influenza negativamente la stima, che rimane abbondantemente all’interno dell’intervallo di valori dei fogli tecnici. Al contrario, le correnti superano di un ordine di grandezza il massimo previsto (500 nA) quando R soddisfa i criteri di caso peggiore, superando la soglia del microampère che è indicativa nella distinzione tra correnti significative e parassite. Ad oggi non abbiamo trovato una giustificazione logica a questo comportamento dell’op-amp, se non interpretando con giudizio positivo i risultati con R = 100 kΩ che dimostrano come l’approssimazione del caso peggiore sia sufficientemente elastica da funzionare anche quando non è pienamente soddisfatta. \ = $ CC BY: 4 Considerazioni finali 12 Corrente di offset. Come detto, la scelta dei resistori R1 e R2 è stata effettuata in modo che fossero il più simili possibile e che la propria incertezza fosse inferiore a 0, 01. Con tali condizioni soddisfatte si può considerare valida l’approssimazione indicata nella disequazione 2.11. Nella tabella 8 sono raccolti i valori assunti da IOS (calcolati utilizzando la relazione (2.12)) completi di incertezza estesa (ottenuti dalla (2.13)) ed incertezza relativa. I risultati delle misurazioni sono: IˆOS(7) = 77, 51(11) nA , IˆOS(8) = 78, 29(19) nA Appare opportuno sottolineare che, nonostante una non riuscitissima compensazione dell’offset (tentata per via hardware con un trimmer posto tra i due ingressi dedicati allo scopo, secondo lo schema proposto dal costruttore), i valori sono risultati solo leggermente più elevati rispetto alla tipicità prevista, benché sempre lontani dal valore massimo prospettato dai fogli tecnici e quindi in linea con l’intervallo in essi indicato. Con ogni probabilità, una più accurata compensazione degli effetti della tensione di offset avrebbe potuto dare un valore di stima ancora più vicino a quello tipico. Inoltre, la proporzione di IOS rispetto alle correnti di polarizzazione (nel caso R = 100 kΩ) è coerente, cioè è un ordine di grandezza più piccolo come preventivato. Conclusioni. Considerando che tutti i test sono stati svolti sulla base di indicazioni generiche e senza approfondimenti tecnico-operativi (che si sarebbero rivelati preziosi, visti i problemi riscontrati); tenendo conto che la malizia derivata da anni di uso degli strumenti ha consentito di correggere alcuni errori presentatisi e di capirne altri, ma non di procurare miracoli; vista, in ultimo, la natura perturbativa dei fenomeni e, nonostante questo, la generale coerenza dei risultati ottenuti, la valutazione generale del test è molto positiva. Il giudizio si appoggia sul fatto che esso abbia consentito l’autonoma investigazione di una serie di dettagli parassiti, dunque non provocati e quindi in qualche modo noti, raggiungendo una vicinanza coi dati di targa rilevati dal produttore in decenni di esperienza, con il supporto di tecniche senza dubbio estremamente più efficaci. L’aver potuto sfruttare al meglio pochi semplici schemi di analisi, assieme ad alcune sottili tecniche matematiche, ha contribuito ad un’analisi genuina dell’operazionale in esame, resa attualissima dall’uso di un multimetro preciso governato in automatico da un calcolatore programmato. Possiamo, allora, concludere anche pensando di essere riusciti nell’obiettivo intrinseco di fondere con successo, in un unico test, la astuta ed incerta arte dell’approssimazione algebrica con l’implacabile precisione dei più moderni calcolatori elettronici. \ = $ CC BY: Elenco delle figure 13 Elenco delle figure 1 2 3 4 5 6 7 Caratteristiche tensione-corrente . . . . . . . . . Resistenze reali di ingresso e uscita . . . . . . . . Tensione errore di modo comune . . . . . . . . . Tensione di offset . . . . . . . . . . . . . . . . . . Circuiti di misura della tensione di offset . . . . . Circuiti di misura delle correnti di polarizzazione Circuito di misura della corrente di offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 5 5 6 7 8 Riepilogo della simbologia utilizzata . . . . . . . . . . . Misure dei resistori utilizzati . . . . . . . . . . . . . . . Misure di Vout relative a VOS . . . . . . . . . . . . . . . Misure di Vout relative a I − e I + , con R = 100 kΩ . . . Misure di Vout relative a I − e I + , con R = 1 MΩ . . . . Misure di Vout relative a IOS . . . . . . . . . . . . . . . DC electrical characteristics (TA = 25 ◦ C, VCC = ±15 V) Riepilogo delle stime dei parametri perturbativi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 9 10 10 10 11 11 Elenco delle tabelle 1 2 3 4 5 6 7 8 Riferimenti bibliografici [1] Agilent. Agilent 34401A - Guida d’uso, 3rd edition, March 2003. [2] Agilent. Agilent 34401A - User’s guide, 7th edition, August 2007. [3] Philips Semiconductors. µA741/µA741C/SA741C General purpose operational amplifier, 31 August 1994. [4] Texas Instruments. September 2000. µA741, µA741Y General-purpose operational amplifier, \ = $ CC BY: Quest’opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-Non opere derivate 2.5 Italia. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-nc-nd/2.5/it/ o spedisci una lettera a Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. È consentito riprodurre e distribuire liberamente il presente testo, senza apporvi modifiche e mantenendo sempre riconoscibile il nome degli autori, purché non a scopo di lucro, senza scopi commerciali (direttamente o indirettamente) e per esclusivo uso personale. È possibile pubblicare il file o sue parti su siti internet, purché siano citati in maniera evidente gli autori (Marco Alessandrini, Alessandro Callozzo e Lorenzo Minghini). Per qualunque informazione, problematica, suggerimento o reclamo utilizzare l’indirizzo [email protected]. \ = $ CC BY: