30 Seconda lezione 1. Esercizi 1.1. Si indichi quale delle seguenti definizioni è corretta: La microeconomia a) è lo studio del funzionamento del sistema economico a partire dalle scelte dei singoli individui in condizioni di scarsità b) è lo studio dei metodi attraverso i quali i singoli agenti (consumatori, produttori) possono ottenere i migliori risultati c) è lo studio del funzionamento del sistema economico a livello aggregato 1.2. Si indichi quale delle seguenti definizioni è corretta: Il risultato del funzionamento del sistema economico sarà detto efficiente (ottimale nel senso di Pareto) a) se si sono ottenuti i migliori risultati possibili con il mimino impiego di risorse b) se, con le risorse date, non è possibile ottenere risultati migliori per tutti c) se tutti i consumatori sono pienamente soddisfatti dei risultati ottenuti 2. Esercizi 2.1. Si indichi quale delle seguenti definizioni è corretta: Price taker è un soggetto a) che non cerca di ottenere sconti sui prezzi b) che non ha potere di prezzo ma, al prezzo dato, può acquistare o vendere una qualunque quantità c) che è vincolato nel prezzo e nella quantità d) che può vendere una quantità maggiore solo riducendo il prezzo 2.2. Si indichi quale delle seguenti proposizioni è corretta: In un mercato perfettamente concorrenziale, il prezzo di equilibrio a) è quello al quale gli scambi sono uguali alla minima quantità tra quella offerta e quella domandata b) è quello al quale tutta la domanda e tutta l'offerta possono essere soddisfatte c) è quello al quale la domanda non supera l'offerta d) è quello al quale gli acquisti sono uguali alle vendite 2.3. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: D = 100 - 20 p S = -10 + 5 p Si indichi quale delle seguenti risposte è corretta: Il prezzo di equilibrio è a) -5 b) 3,2 c) 6 d) 4,4 2.4. Nella figura sono rappresentate la curva di domanda e la curva di offerta di un determinato bene, scambiato in condizioni di concorrenza. Con riferimento a tale figura, si risponda alle seguenti domande: - quale è il prezzo di equilibrio in tale mercato? - se il prezzo fosse fissato per legge al livello di L. 500, quale sarebbe la quantità scambiata? - quale prezzo dovrebbe essere fissato affinché la quantità scambiata fosse la più grande possibile? 32 Seconda lezione prezzo 600 500 400 300 200 100 10 20 30 40 50 60 quantità 2.5. Nella figura sono rappresentate la curva di domanda e la curva di offerta di un determinato bene, scambiato in condizioni di concorrenza. Con riferimento a tale figura, si risponda alle seguenti domande: - quale è il prezzo di equilibrio in tale mercato? - se il prezzo fosse fissato per legge al livello di L. 2500, quale sarebbe la quantità scambiata? - quale prezzo dovrebbe essere fissato affinché la quantità scambiata fosse la più grande possibile? prezzo 6000 5000 4000 3000 2000 1000 25 50 75 100125150 quantità 2.6. La funzione di domanda in un ipotetico mercato di concorrenza può essere rappresentata con la seguente espressione algebrica: D = 100 - 20 p. Si indichi quale delle seguenti risposte è corretta: nel suddetto mercato, la funzione di domanda indiretta è la seguente a) b) c) p= 5 - 0,05 q p = 5 - 0,02 q p = 4 - 0,05 q 2.7. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: D = 100 - 20 p S = -10 + 5 p Si indichi quale delle seguenti risposte è corretta: la quantità scambiata in equilibrio è a) 10 b) 11 c) 12 d) 15 2.8. Si dica quale delle seguenti proposizioni è corretta: La "legge della domanda" afferma che a) un aumento della domanda fa aumentare i prezzo b) la domanda è tanto più piccola quanto più alto è il prezzo c) un aumento della domanda fa diminuire il prezzo d) la domanda è tanto più grande quanto più alto è il prezzo 2.9. Si chiarisca perché, se definiamo prezzo di equilibrio in un mercato il prezzo che uguaglia domanda e offerta, ciò presuppone che su quel mercato tutti gli agenti siano price taker. 2.10. Sul mercato di concorrenza perfetta di un certo bene, la domanda e l'offerta sono rappresentabili con le seguenti funzioni: D = 100 + 2 ps - 3 p S = -20 + p, dove ps è il prezzo di un bene sostituto di quello considerato. Si determinino prezzo e quantità di equilibrio nell'ipotesi che sia ps = 50 e nell'ipotesi che sia ps = 60. 2.11. Sul mercato di concorrenza perfetta di un certo bene, la domanda e l'offerta sono rappresentabili con le seguenti funzioni: D = 300 + 3 ps - 10 p S = -120 + 5 p, dove ps è il prezzo di un bene sostituto di quello considerato. Si determinino prezzo e quantità di equilibrio nell'ipotesi che sia ps = 35 e nell'ipotesi che sia ps = 40. 3. Esercizi 3.1. Si chiarisca il diverso significato di "aumento della domanda", quando lo si intenda come "spostamento lungo la curva di domanda" e quando lo si intenda come "spostamento della curva di domanda". 3.2. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: D = 100 - 20 p S = -10 + 5 p Si indichi quale delle seguenti risposte è corretta: nel suddetto mercato, la funzione di eccesso di domanda ha la seguente espressione: a) z = 90 - 15 p b) z = 110 - 25 p c) z = 90 - 25 p d) z = 110 - 15 p 3.3. Si dica quale delle seguenti risposte è corretta: in un mercato concorrenziale, solo in equilibrio l'eccesso di domanda è a) positivo b) nullo c) negativo d) uguale alla differenza fra domanda e offerta 3.4. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: D = 100 - 20 p S = -10 + 5 p. Si indichi quale delle seguenti risposte è corretta: se si hanno scambi fuori dall'equilibrio, al prezzo 3 la quantità scambiata sarà a) non più di 5 b) un qualunque valore compreso tra 5 e 40 c) il più piccolo valore tra 10 e 15 3.5. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: D = 100 - 20 p S = -10 + 5 p Si indichi quale delle seguenti risposte è corretta: se si hanno scambi fuori dall'equilibrio, al prezzo 5 la quantità scambiata sarà a) non più di 5 b) 0 c) il più piccolo valore tra 10 e 15 3.6. La funzione di domanda e la funzione di offerta in un ipotetico mercato di concorrenza possono essere rappresentate con le seguenti espressioni algebriche: 44 Terza lezione D = 100 - 20 p S = -10 + 5 p Si indichi quale delle seguenti risposte è corretta: l'introduzione di una imposta di fabbricazione pari a 1 per unità venduta fa variare il prezzo di equilibrio nel modo seguente: a) un aumento di 1 b) un aumento di 0,2 c) un aumento di 0,6 d) una diminuzione di 1 QpQpDS=−=+100240 e 3.7. Siano rispettivamente le funzioni di domanda e di offerta sul mercato di un bene. Si determini: a) prezzo e quantità di equilibrio sul mercato; b) l'effetto di una imposta pari a 3 per ogni unità scambiata, pagata dai produttori (offerenti). 3.8. Il prezzo di un dato prodotto è 100; la quantità attualmente scambiata è 1000 pezzi alla settimana, con una situazione di equilibrio di lungo periodo del mercato. L'elasticità della domanda è stimata in -1,6. Supponendo che il mercato abbia caratteristiche concorrenziali, da queste informazioni che cosa si può ricavare circa il gettito fiscale che ci si può aspettare (nel lungo periodo) dall'imposizione di un'imposta di fabbricazione di 3 lire a pezzo? 3.9. Sul mercato di concorrenza perfetta di un certo bene, la domanda e l'offerta sono rappresentabili con le seguenti funzioni: D = 5000 - 30 p S = -1000 + 10 p, Si determinino prezzo e quantità di equilibrio. Si supponga quindi che venga introdotta una imposta, pagata dai venditori in ragione di 40 per ogni unità venduta, e se ne determini l'effetto di breve periodo su prezzo e quantità di equilibrio. 3.10. Sul mercato di concorrenza perfetta di un certo bene, la domanda e l'offerta sono rappresentabili con le seguenti funzioni: D = 400 - 3 p S = -100 + 7 p, Si determinino prezzo e quantità di equilibrio. Si supponga quindi che venga introdotta una imposta, pagata dai venditori in ragione di 40 per ogni unità venduta, e se ne determini l'effetto di breve periodo su prezzo e quantità di equilibrio. 54 Quarta lezione 4. Esercizi 4.1. Si definisca il concetto di "costo opportunità", illustrandolo con esempi. 4.2. Si spieghi in che modo e sotto quali ipotesi le curve di indifferenza costituiscono una possibile rappresentazione delle preferenze di un consumatore (nel caso di panieri costituiti da due soli beni). Si fornisca anche una giustificazione della convessità di dette curve. 4.3. Si definisca il saggio marginale di sostituzione fra due beni di consumo e si dimostri che esso è misurato dalla pendenza della curva di indifferenza. 4.4. Nella figura sono rappresentate alcune curve di indifferenza coerenti con le preferenze del signor Anselmo B A D E F C Si dica quali delle seguenti proposizioni sono vere: a) il signor Anselmo preferisce il paniere A al paniere D b) il signor Anselmo preferisce il paniere D al paniere C c) il signor Anselmo preferisce il paniere E al paniere C d) il signor Anselmo preferisce il paniere C al paniere E e) il signor Anselmo preferisce il paniere F al paniere C f) il signor Anselmo preferisce il paniere B al paniere D 4.5. Il signor Anselmo può comprare, durante questa settimana, pane (p) e biglietti del cinema (c), spendendo 100.000 lire. Il prezzo del pane è 2500 e il prezzo di un biglietto del cinema è 10000. Si dica quali delle seguenti espressioni costituisce una corretta rappresentazione del vincolo di bilancio del signor Anselmo: a) p = 100000/2500 e c = 100000/10000 b) 2500 p + 10000 c = 100000 c) p = 100000 - 10000 c d) 10000 p + 2500 c = 100000 4.6. Il signor Anselmo può comprare, durante questa settimana, pane (p) e biglietti del cinema (c), spendendo 100000 lire. Il prezzo del pane è 2500 e il prezzo di un biglietto del cinema è 10000. Si dica quali dei seguenti panieri sono accessibili per il signor Anselmo (il primo numero esprime quantità di pane, il secondo biglietti del cinema) a) b) c) d) e) (4; 9) (8; 8) (20; 5) (0; 10) (40; 0) 4.7. Si dica quale delle seguenti definizioni è corretta: il saggio marginale di sostituzione tra due beni di consumo indica a) il rapporto tra i prezzi dei due beni b) la pendenza del vincolo di bilancio c) il minimo incremento di consumo di un bene necessario a compensare la diminuzione di una unità dell'altro d) il minimo incremento di consumo di un bene necessario a compensare la diminuzione di una data quantità dell'altro d) la diminuzione di consumo di un bene necessaria a compensare la maggiore spesa nell'altro 56 Quarta lezione 5. Esercizi 5.1. Nella figura sono rappresentate alcune delle curve di indifferenza che rappresentano le preferenze del signor Bernardo, nonché il suo vincolo di bilancio. C D A B Si dica quale delle seguenti risposte è corretta: per il signor Bernardo la scelta ottima è costituita a) dal paniere A b) dal paniere B c) dal paniere C d) dal paniere D e) da nessuno dei panieri indicati 5.2. La funzione di utilità che rappresenta le preferenze del signor Cesare è la seguente: U ( x1 , x2 ) = x1 x2 Se il prezzo del bene 1 è 100, il prezzo del bene 2 è 5 e se il signor Cesare può spendere complessivamente 800, si dica quale dei seguenti panieri costituisce la scelta ottima per il signor Cesare: a) (4; 80) b) (5; 100) c) (6; 40) d) (2; 120) 5.3. Si definisca il "saggio marginale di sostituzione" tra due beni di consumo per un dato consumatore, e si spieghi perché, se il consumatore fa una scelta ottimale e acquista entrambi i beni, il saggio marginale di sostituzione risulterà uguale al rapporto tra i prezzi dei due beni. 5.4. Utilizzando il diagramma della scatola di Edgeworth si mostri: - che si raggiunge una distribuzione efficiente delle quantità disponibili di due beni di consumo se il saggio marginale tra i due beni è uguale per tutti i consumatori; - che questa condizione è automaticamente raggiunta se tutti i consumatori si comportano razionalmente e acquistano i beni a prezzi dati (questi prezzi essendo prezzi di equilibrio nei rispettivi mercati) in modo da massimizzare la propria utilità. 66 Quinta lezione 5.5. Si costruisca la "curva dei contratti" in un diagramma della scatola di Edgeworth e se ne spieghi il significato. 5.6. Nella figura sono rappresentate alcune curve di indifferenza relative alle preferenze del signor Verdi rispetto al consumo di due beni (birra e aranciata). Nella stessa figura sono anche tracciate due rette di bilancio. Si risponda alle seguenti domande, argomentando brevemente: a. Il prezzo relativo dei due beni è uguale o diverso nelle due rette di bilancio tracciate nella figura? b. Quale paniere verrebbe scelto dal signor Verdi se egli fosse vincolato dalla retta r? E quale se fosse vincolato dalla retta s? c. Se potesse scegliere, il signor Verdi preferirebbe essere vincolato dalla retta r o dalla retta s? birra r B A H F C E D G s aranciata 5.7. Nella figura sono rappresentate alcune delle curve di indifferenza che rappresentano le preferenze del signor Antonio nonché il suo vincolo di bilancio. Si determini il paniere ottimo, eventualmente tracciando altre curve di indifferenza (coerenti con quelle già disegnate). vestiario cibo 6. Esercizi 6.1. Si dica quale delle seguenti definizioni è corretta: si dicono beni inferiori quei beni a) il cui consumo aumenta all'aumentare del reddito b) il cui consumo diminuisce all'aumentare del reddito c) il cui consumo aumenta all'aumentare del prezzo d) il cui consumo diminuisce all'aumentare del prezzo 6.2. Si dica quali delle seguenti proposizioni sono vere: la legge della domanda a) è sempre rispettata per i beni inferiori (VERO o FALSO?) b) è sempre rispettata per i beni normali (VERO o FALSO?) c) non è mai rispettata per i beni inferiori (VERO o FALSO?) d) non è sempre rispettata per i beni normali (VERO o FALSO?) e) non è sempre rispettata per i beni inferiori (VERO o FALSO?) 6.3. Nella figura è rappresentata la scomposizione dell'effetto prezzo (totale) (dovuto all'aumento del prezzo del cibo) in effetto reddito ed effetto sostituzione. vestiario A C B cibo Si dica quali delle seguenti proposizioni sono corrette: I. l'effetto reddito è rappresentato dallo spostamento a) dal paniere A al paniere C b) dal paniere A al paniere B c) dal paniere C al paniere B II. l'effetto sostituzione è rappresentato dallo spostamento a) dal paniere B al paniere C b) dal paniere A al paniere C c) dal paniere B al paniere A III. l'effetto prezzo (effetto totale) è rappresentato dallo spostamento a) dal paniere B al paniere C b) dal paniere A al paniere B c) dal paniere C al paniere A. 6.4. Considerando la rappresentazione grafica delle scelte di un consumatore (tra panieri di due soli beni), si costruisca la curva prezzo-consumo e se ne illustri il significato. 74 Settima lezione 6.5. Considerando la rappresentazione grafica delle scelte di un consumatore (tra panieri di due soli beni), si costruisca la curva reddito-consumo e se ne illustri il significato. 6.6. Nella figura è rappresentato il vincolo di bilancio di un consumatore e alcune delle curve di indifferenza che rappresentano le sue preferenze. Tracciando, se occorre, altre ipotetiche curve di indifferenza, si individui la scelta ottimale del consumatore. Supponendo quindi che il prezzo del cibo raddoppi, si tracci la nuova retta di bilancio, si individui il nuovo paniere ottimale e si misurino graficamente l'effetto prezzo, l'effetto reddito e l'effetto sostituzione relativi al suddetto aumento del prezzo del cibo. quantità di vestiario quantità di cibo 6.7. Si definiscano i "beni normali", i "beni inferiori" e i "beni di Giffen" nell'analisi del comportamento del consumatore. 6.8. Sapendo che l'effetto sostituzione è negativo per tutti i beni, si mostri che l'effetto prezzo è sempre positivo per i beni normali. 6.9. Si forniscano le definizioni di curva reddito-consumo e di curva di Engel. Si rappresenti graficamente la curva reddito-consumo nel caso in cui uno dei due beni sia per il soggetto un bene inferiore. 6.10. Nella figura sono rappresentati il vincolo di bilancio di un consumatore e alcune curve di indifferenza. Si supponga che la scelta ottimale per il consumatore corrisponda al punto P. Sulla base delle informazioni fornite dalla figura, si dica se, in conseguenza di un raddoppio del prezzo del vestiario (fermi restando la spesa complessiva e il prezzo del cibo), la quantità di cibo acquistata aumenterà o diminuirà. Si indichi anche il segno dell'effetto sostituzione e dell'effetto reddito nella variazione ipotizzata. cibo P vestiario 6.11. indichi quali delle seguenti proposizioni sono vere e quali false: a) - Per i beni di Giffen, la domanda è sempre decrescente rispetto al prezzo b) - Per i beni inferiori la domanda è sempre crescente rispetto al prezzo c) - Per i beni normali la domanda è sempre decrescente rispetto al prezzo e) - Per i beni inferiori la domanda è sempre crescente rispetto al reddito 76 Settima lezione 86 Settima lezione 7. Esercizi 7.1. Il signor Demetrio spende il suo reddito settimanale di L. 1.000.000 per l'acquisto di diversi beni. Uno di questi, per il quale il signor Demetrio spende L. 200.000 a settimana, subisce un aumento di prezzo del 10%. Nello stesso tempo, però, il reddito del signor Demetrio aumenta di 20.000 lire. Si dica, argomentando brevemente, se il benessere del signor Demetrio rimarrà invariato, aumenterà o diminuirà. 7.2. Il signor Demetrio spende il suo reddito settimanale di L. 800.000 per l'acquisto di diversi beni. Uno di questi, per il quale il signor Demetrio spende L. 150.000 a settimana, subisce un aumento di prezzo del 12%. Nello stesso tempo, però, il reddito del signor Demetrio aumenta di 18.000 lire. Si dica, argomentando brevemente, se il benessere del signor Demetrio rimarrà invariato, aumenterà o diminuirà. 7.3. Si indichi quali delle seguenti proposizioni sono vere e quali false: a) Nella misurazione delle variazioni del costo della vita, gli indici di Laspeyres e di Paasche non coincidono mai b) Nella misurazione delle variazioni del costo della vita, gli indici di Laspeyres e di Paasche forniscono una misurazione corretta delle variazioni del costo della vita se tutti i prezzi variano nella stessa proporzione c) Nella misurazione delle variazioni del costo della vita, l'indice di Laspeyres sovrastima quasi sempre gli aumenti del costo della vita d) Nella misurazione delle variazioni del costo della vita, l'indice di Paasche sovrastima quasi sempre gli aumenti del costo della vita e) Nella misurazione delle variazioni del costo della vita, l'indice di Divisia sovrastima quasi sempre gli aumenti del costo della vita 7.4. Supponendo che, con riferimento ad un certo intervallo di tempo, l'indice di Laspeyres sia passato da 100 a 125 e il reddito del signor Bianchi sia passato da 400.000 a 500.000, si dica, argomentando brevemente, se il benessere del signor Bianchi (le cui preferenze sono rimaste immutate) è aumentato, è diminuito o è rimasto invariato. 7.5. Supponendo che, con riferimento ad un certo intervallo di tempo, l'indice di Laspeyres sia passato da 100 a 125 e il reddito del signor Bianchi sia passato da 400.000 a 510.000, si dica, argomentando brevemente, se il benessere del signor Bianchi (le cui preferenze sono rimaste immutate) è aumentato, è diminuito o è rimasto invariato. 7.6. Dopo aver presentato il concetto di "indice del costo della vita", si dica in quale caso gli indici di Laspeyres e di Paasche coincidono e forniscono pertanto una misurazione corretta delle variazioni del costo della vita. 7.7. Dopo aver presentato il concetto di "indice del costo della vita", si spieghi perché l'indice di Laspeyres tende a sovrastimare le variazioni in aumento del costo della vita. 7.8. Dopo aver presentato il concetto di "indice del costo della vita", si spieghi perché l'indice di Paasche tende a sottostimare le variazioni in aumento del costo della vita. 96 Ottava lezione 8. Esercizi 8.1. Un certo bene è venduto in un mercato di concorrenza perfetta. Il prezzo di equilibrio è L. 8000 a pezzo; la quantità scambiata è di 50000 pezzi a settimana. L'elasticità della domanda è stimata in -1,2; l'elasticità dell'offerta in 0,8. Si calcolino i prevedibili effetti di breve periodo, su prezzo, quantità scambiata e gettito fiscale, dell'introduzione di una imposta sulle vendite di L. 2000 a pezzo. 8.2. Sul mercato di un certo bene, al prezzo attuale di 1200, l'elasticità della domanda è pari a - 1,5. Sapendo che la quantità attualmente domandata è 20000 per settimana, si calcoli a quanto ammonterà, approssimativamente, la domanda se il prezzo scende a 1150. 8.3. Sul mercato di un certo bene, al prezzo attuale di 2000, l'elasticità della domanda è pari a - 0,8. Sapendo che la quantità attualmente domandata è 20000 per settimana, si calcoli a quanto ammonterà, approssimativamente, la domanda se il prezzo sale a 2050. 8.4. Nella tabella sono indicate le elasticità della domanda di vari beni rispetto al reddito. Supponendo che la spesa attuale per l'acquisto dei beni suddetti sia quella indicata nella terza colonna della tabella, si indichi, motivando sinteticamente, quale sarebbe tale spesa in una situazione in cui il reddito fosse raddoppiato e i prezzi fossero rimasti invariati. Beni di consumo Elasticità d e l l a Spesa attuale domanda rispetto al reddito vitto 0,5 30 trasporto con mezzi privati trasporto con mezzi pubblici abitazione vestiario divertimento vitto 1,5 10 -0,2 10 1,2 1,4 3 0,7 30 15 5 40 Spesa a reddito raddoppiato 8.5. Nella tabella sono indicate le elasticità della domanda di vari beni rispetto al reddito. Supponendo che la spesa attuale per l'acquisto dei beni suddetti sia quella indicata nella terza colonna della tabella, si indichi, motivando sinteticamente, quale sarebbe tale spesa in una situazione in cui il reddito fosse raddoppiato e i prezzi fossero rimasti invariati. Beni di consumo vitto trasporto con mezzi privati trasporto con mezzi pubblici abitazione vestiario divertimento Elasticità d e l l a Spesa attuale domanda rispetto al reddito 0,7 1,4 40 10 -0,3 10 1,4 1,2 3 20 15 5 Spesa a reddito raddoppiato 8.6. Un certo bene è venduto in un mercato di concorrenza perfetta. Il prezzo di equilibrio è L. 10000 a pezzo; la quantità scambiata è di 80000 pezzi a settimana. L'elasticità della domanda è stimata in -1,5; l'elasticità dell'offerta in 0,5. Si calcolino i prevedibili effetti (di breve periodo, su prezzo, quantità scambiata e gettito fiscale) dell'introduzione di una imposta sulle vendite di L. 2000 a pezzo. 8.7. L'elasticità della domanda di mercato di un dato prodotto rispetto al suo prezzo è stimata in -1,2. Al prezzo attuale di L. 30, la quantità scambiata è 250000 a settimana. Come varia la spesa per tale prodotto se il prezzo scende a L. 27? 8.8. Si dimostri che se due beni normali sono complementi netti, essi saranno anche complementi lordi, mentre se due beni normali sono sostituti netti, essi potrebbero risultare sia sostituti lordi che complementi lordi. 98 Ottava lezione 9. Esercizi 9.1. Il signor Agrosti deve decidere quanto spendere in consumi nel corrente anno e nel prossimo, sapendo che il suo reddito quest'anno è di 30.000 euri e nel prossimo sarà di 15.000 euri. Supponendo che il tasso di interesse sia del 4%, si indichi quale delle seguenti risposte fornisce una individuazione corretta del vincolo di bilancio intertemporale del signor Agrosti: a) Il vincolo di bilancio è rappresentato da una retta che passa per i seguenti punti: (0; 46.200) (30.000; 15.000) b) Il vincolo di bilancio è rappresentato da una retta che passa per i seguenti punti: (0; 44.423) (30.000; 15.000) c) Il vincolo di bilancio è rappresentato da una retta che passa per i seguenti punti: (44.423; 46.200) (30.000; 15.000) d) Il vincolo di bilancio è rappresentato da una retta che passa per i seguenti punti: (46.200; 44.423) (30.000; 15.000). 9.2. Il signor Agrosti deve decidere quanto spendere in consumi nel corrente anno e nel prossimo, sapendo che il suo reddito quest'anno è di 15000 euri e nel prossimo sarà di 30000 euri (per il consumo del prossimo anno Agrosti utilizzerà tutto il reddito residuo). Supponendo che il tasso di interesse sia del 4%, si rappresenti il vincolo di bilancio intertemporale del signor Agrosti. Se il signor Agrosti intende spendere in consumi la stessa somma in entrambi gli anni, quale sarà questa somma? 9.3. Si consideri un consumatore che dispone di un reddito pari a 100 milioni di lire nel periodo corrente e di 80 milioni di lire nel periodo successivo. Si rappresenti graficamente il vincolo di bilancio intertemporale, supponendo che questo soggetto possa prendere a prestito denaro al tasso di interesse r =0,1 e investire il risparmio ad un tasso di interesse r =0,05. Se il consumatore sceglie un consumo presente pari a 75 milioni, si dica quale sarà il suo consumo futuro. In corrispondenza di questa scelta, ritenuta ottima, si dica quale sarà il valore del Saggio Marginale di Preferenza Intertemporale, MRTP. 9.4. Si consideri un consumatore che dispone di un reddito pari a 120 milioni di lire nel periodo corrente e di 80 milioni di lire nel periodo successivo. Si rappresenti graficamente il vincolo di bilancio intertemporale, supponendo che questo soggetto possa prendere a prestito denaro al tasso di interesse r =0,1 e investire il risparmio ad un tasso di interesse r =0,05. Se il consumatore sceglie un consumo presente pari a 100 milioni di lire, si dica quale sarà il suo consumo futuro. In corrispondenza di questa scelta, ritenuta ottima, si dica quale sarà il valore del Saggio Marginale di Preferenza Intertemporale, MRTP. 9.5. Il signor Agrosti deve decidere quanto spendere in consumi nel corrente anno e nel prossimo, sapendo che il suo reddito quest'anno è di 30000 euri e nel prossimo sarà di 15000 euri (per il consumo del prossimo anno Agrosti utilizzerà tutto il reddito residuo). Supponendo che il tasso di interesse sia del 4%, si rappresenti il vincolo di bilancio intertemporale del signor Agrosti. Si disegnino quindi delle curve di indifferenza che rappresentano le preferenze del signor Agrosti e si individui la scelta ottima. 106 Decima lezione 9.6. Il signor Agulfi ha quest'anno un reddito di 50.000 euri e prevede per il prossimo anno un reddito di 20.000 euri. Il tasso di interesse al quale è possibile investire il suo risparmio è il 3% mentre potrà chiedere prestiti solo al tasso del 6%. Si disegni il vincolo di bilancio intertemporale (su un orizzonte temporale limitato ai due anni) del signor Agulfi e si calcoli quale sarà il suo consumo nel prossimo anno se deciderà di spendere 40.000 euri quest'anno. 9.7. Il signor Agulfi ha quest'anno un reddito di 60.000 euri e prevede per il prossimo anno un reddito di 30.000 euri. Il tasso di interesse al quale è possibile investire il suo risparmio è il 4% mentre potrà chiedere prestiti solo al tasso del 7%. Si disegni il vincolo di bilancio intertemporale (su un orizzonte temporale limitato ai due anni) del signor Agulfi e si calcoli quale sarà il suo consumo nel prossimo anno se deciderà di spendere 40.000 euri quest'anno. 10. Esercizi 10.1. Si esponga, con brevi commenti, il principio di "non convenienza a simulare" nella economia dell'informazione. 10.2. Si esponga, con brevi commenti, il principio di "completa comunicazione" nella economia dell'informazione. 10.3. Si esponga, con brevi commenti, il problema della "selezione avversa" nella economia dell'informazione. 114 Undicesima lezione 124 Undicesima lezione 11. Esercizi 11.1. La funzione di utilità del signor Biagetti UM= (rispetto alla ricchezza) è la seguente: . Il signor Biagetti, la cui ricchezza è attualmente di 100.000 euri, deve decidere se acquistare dei titoli. Egli attribuisce probabilità del 40% ad un aumento del prezzo, che consentirebbe un aumento del 20% della sua ricchezza; una probabilità del 10% al fatto che il prezzo dei titoli rimanga invariato (e invariata anche la sua ricchezza); una probabilità del 50% ad una diminuzione delle quotazioni dei titoli, che farebbe diminuire la sua ricchezza del 10%. Si determini il valore atteso e l'utilità attesa dell'operazione "acquisto titoli" e si dica se ci si deve aspettare che il signor Biagetti decida di realizzare o meno tale operazione. 11.2. La funzione di utilità del signor Biagetti UM= (rispetto alla ricchezza) è la seguente: . Il signor Biagetti, la cui ricchezza è attualmente di 50.000 euri, deve decidere se acquistare dei titoli. Egli attribuisce probabilità del 20% ad un aumento del prezzo, che consentirebbe un aumento del 40% della sua ricchezza; una probabilità del 30% al fatto che il prezzo dei titoli rimanga invariato (e invariata anche la sua ricchezza); una probabilità del 50% ad una diminuzione delle quotazioni dei titoli, che farebbe diminuire la sua ricchezza del 10%. Si determini il valore atteso e l'utilità attesa dell'operazione "acquisto titoli" e si dica se ci si deve aspettare che il signor Biagetti decida di realizzare o meno tale operazione. 11.3. Si definisca e commenti brevemente il concetto di "avversione al rischio". 11.4. Si definisca e commenti brevemente il concetto di "propensione al rischio". 11.5. Si definisca e commenti brevemente il concetto di "neutralità rispetto al rischio". 11.6. Si determini, motivando brevemente, quale è il massimo premio (premio di riserva) che un soggetto, neutrale rispetto al rischio, è disposto a pagare per assicurarsi contro un danno di 100.000 euri cui egli attribuisce una probabilità del 3% di verificarsi. 132 Dodicesima lezione 12. Esercizi 12.1. Si definiscano i beni primari, i beni finali e i beni intermedi nella produzione di un certo sistema economico. 12.2. Si definiscano gli elementi flusso, gli elementi fondo e gli elementi stock nell'attività produttiva. 12.3. In un processo elementare è prevista la presenza di un solo elemento fondo, i cui tempi di impiego sono rappresentati nel seguente profilo temporale: 0 1 ora 2 ore 3 ore Si individui la minima quantità prodotta per unità di tempo che consente una utilizzazione continua dell'elemento fondo suddetto attraverso l'attivazione in linea del processo elementare. 12.4. Si definisca il concetto di efficienza nella produzione. 140 Dodicesima lezione 13. Esercizi 13.1. Si definisca il saggio marginale di sostituzione tecnica fra due input e si dimostri che esso è misurato dalla pendenza dell'isoquanto. 13.2. Si enunci la legge dei rendimenti marginali decrescenti e si spieghi in che senso a questa legge è riconducibile l'andamento dei costi medi variabili di breve periodo. 13.3. Data la funzione di produzione seguente: QKL =500702,, si verifichi se essa rispetti la legge dei rendimenti marginali decrescenti e si dica se si tratta di una funzione a rendimenti di scala crescenti, costanti o decrescenti. 13.4. Data la funzione di produzione seguente: QKL =1000605,, si verifichi se essa rispetti la legge dei rendimenti marginali decrescenti e si dica se si tratta di una funzione a rendimenti di scala crescenti, costanti o decrescenti. 13.5. Data la funzione di produzione seguente: QKL =1000604,, si verifichi se essa rispetti la legge dei rendimenti marginali decrescenti e si dica se si tratta di una funzione a rendimenti di scala crescenti, costanti o decrescenti. 13.6. Si definisca il concetto di "isoquanto" nella teoria della produzione e si disegni un ipotetico isoquanto per il caso in cui i due input siano complementari. 13.7. Si definisca il concetto di "isoquanto" nella teoria della produzione e si disegni un ipotetico isoquanto per il caso in cui i due input siano perfetti sostituti. 13.8. Dopo aver definito la produttività (prodotto) marginale di un input, si rappresentino graficamente la curva della produttività marginale e la curva della produttività media, giustificandone sinteticamente l'andamento. 13.9. Dopo aver definito il saggio marginale di sostituzione tecnica tra due input, si dimostri che esso risulta uguale al rapporto tra i prodotti (produttività) marginali dei due input. 13.10. Nella tabella sono indicate le quantità prodotte da un'impresa a diversi livelli di impiego di lavoro e capitale. Per quello che appare dalla tabella, la produzione è caratterizzata da rendimenti di scala costanti, crescenti o decrescenti? capitale 1000 1200 capitale 1400 1400 2000 2800 lavoro 500 600 600 1000 1000 1200 prodotto 800 960 1066 1256 1600 2132 2800 3000 2000 1500 2512 2400 13.11. Si indichi quali delle seguenti proposizioni sono vere e quali false: a) Se il prodotto (produttività) marginale di un input è maggiore di quello medio, il prodotto marginale è crescente b) Se il prodotto (produttività) medio di un input è maggiore di quello marginale, il prodotto medio è crescente c) Se il prodotto (produttività) medio di un input è maggiore di quello marginale, il prodotto marginale è crescente d) Se il prodotto (produttività) marginale di un input è maggiore di quello medio, il prodotto medio è crescente. 142 Dodicesima lezione 150 Quattordicesima lezione 14. Esercizi 14.1. Si dica quale delle seguenti proposizioni è corretta: il saggio marginale di sostituzione tecnica tra due input è sempre uguale a) al rapporto tra i prodotti (produttività) medi dei due input b) al rapporto tra i prezzi dei due input c) al rapporto tra i prodotti (produttività) marginali dei due input d) al rapporto tra il prodotto (produttività) marginale e il prezzo di un input 14.2. Si mostri, facendo opportuno uso del diagramma della scatola di Edgeworth applicato alla produzione, come l'allocazione efficiente delle risorse disponibili richieda che in tutte le produzioni che impiegano due dati input il saggio marginale tra i due input assuma lo stesso valore. Si spieghi anche in che modo questo si può realizzare attraverso il mercato. 14.3. Nella figura è rappresentato l'isoquanto relativo alla produzione di 18.000 unità a settimana di un certo prodotto secondo la tecnologia disponibile presso una data impresa. Si supponga quindi che il prezzo dell'input "lavoro" sia 1000 e il prezzo dell'input "capitale" sia 0,4 e si individui graficamente la combinazione dei due input che minimizza il costo di produzione di quella quantità di prodotto. K 50000 10000 10 50 L 14.4. Nella figura è rappresentato l'isoquanto relativo alla produzione di 30.000 unità a settimana di un certo prodotto secondo la tecnologia disponibile presso una data impresa. Si supponga quindi che il prezzo dell'input "lavoro" sia 500 e il prezzo dell'input "capitale" sia 0,2 e si individui graficamente la combinazione dei due input che minimizza il costo di produzione di quella quantità di prodotto. K 50000 10000 10 50 L 14.5 Nella figura è rappresentato l'isoquanto relativo alla produzione di un certo bene nella quantità 1000 (a settimana) con la utilizzazione di due input, v1 e v2. Sapendo che il prezzo di una unità dell'input v1 è 750 mentre il prezzo di una unità dell'input v2 è 600, si determini quali quantità dei due input converrà impiegare in modo da produrre 1000 unità di prodotto (a settimana) con il minimo costo. v 2 50 20 10 10 20 50 v1 14.6. In una certa situazione produttiva, il saggio marginale di sostituzione tecnica tra capitale e lavoro risulta uguale a 5 (si può sostituire una unità di capitale con 5 unità aggiuntive di lavoro). D'altra parte, aumentando di 20 unità la quantità di lavoro impiegato - ferma restando la quantità di capitale - la produzione aumenterebbe di 80000. Si calcoli il prodotto (produttività) marginale del capitale. 14.7. Il prodotto (produttività) marginale di un input misura: 152 Quattordicesima lezione a. il rapporto tra la variazione relativa della quantità prodotta e la variazione relativa della quantità impiegata dell'input; b. l'incremento di prodotto che si ottiene aumentando di una unità l'impiego dell'input, ferma restando la quantità degli altri; c. l'incremento percentuale del prodotto che si ottiene aumentando dell'1% l'impiego dell'input, ferma restando la quantità impiegata degli altri input; d. il rapporto tra la quantità prodotta e la quantità impiegata dell'input, ferma restando la quantità impiegata di tutti gli altri input. 15. Esercizi 15.1. Si costruisca la curva (o sentiero) di espansione dell'impresa, spiegandone brevemente il significato. Si spieghi quindi come si passa da tale curva alla curva di costo totale variabile. 15.2. Nella figura sono rappresentate le curve di costo marginale, di costo medio variabile e di costo medio complessivo relative ad una ipotetica produzione. La figura contiene però almeno un errore: si dica quale (o quali), argomentando brevemente. costi unitari MC AC AVC quantità 15.3. Si rappresentino in un diagramma una curva di costo marginale, una curva di costo medio variabile e una curva di costo medio complessivo (di breve periodo) tra loro coerenti. 15.4. Si ricolleghi l'andamento della curva del costo medio di breve periodo alla legge dei rendimenti marginali decrescenti. 15.5. Si dimostri che nel punto di minimo della curva di costo medio, il costo marginale è uguale al costo medio. 15.6. In una impresa, si stanno producendo 15000 pezzi alla settimana di un certo prodotto, con un costo medio di 1200 a pezzo. Con lo stesso impianto, producendo 14000 pezzi si avrebbe un costo medio di 1100 a pezzo. Nella situazione attuale, il costo marginale è maggiore, minore o uguale a 1200? 160 Quindicesima lezione 15.7. Si dica, argomentando brevemente, se la differenza tra costo medio variabile e costo medio complessivo tende a crescere o a diminuire o rimane costante al crescere della quantità prodotta. 16. Esercizi 16.1. Si definisca e si illustri brevemente il concetto di “lungo periodo” nella teoria del costo di produzione. 16.2. Si definisca il costo medio di lungo periodo e si discuta dei possibili andamenti della corrispondente curva. 16.3. Si definisca il concetto di "costo marginale" di un prodotto e si dica, argomentando brevemente, quali sono le relazioni tra l'andamento della curva del costo marginale, di quella del costo medio variabile e di quella del costo medio complessivo. Si dica se queste relazioni valgono solo per il breve periodo, solo per il lungo periodo o per entrambi. 16.4. Si spieghi, anche con l'aiuto di un diagramma, perché la curva di costo medio di lungo periodo possa essere definita come inviluppo delle curve di costo medio di breve periodo. 16.5. In un'impresa, il costo medio attualmente sostenuto per produrre 500 pezzi alla settimana è di 30.000 euri a pezzo. Cambiando opportunamente l'impianto, sarebbe possibile produrre i 500 pezzi con un costo medio di 25.000 euri al pezzo; con nessun impianto il costo per produrre 500 pezzi potrebbe scendere al di sotto di tale livello; tuttavia, con il nuovo impianto, portando la produzione a 550 pezzi alla settimana sarebbe possibile ottenere un costo medio di 24.000 euri. Si disegnino la curva di costo medio di lungo periodo e le curve di costo medio di breve periodo relative ai due impianti in modo che risultino coerenti con i suddetti dati. 16.6. In un'impresa, il costo medio attualmente sostenuto per produrre 800 pezzi alla settimana è di 20.000 euri a pezzo. Cambiando opportunamente l'impianto, sarebbe possibile produrre gli 800 pezzi con un costo medio di 18.000 euri al pezzo; con nessun impianto il costo per produrre 800 pezzi potrebbe scendere al di sotto di tale livello; tuttavia, con il nuovo impianto, portando la produzione a 850 pezzi alla settimana sarebbe possibile ottenere un costo medio di 17.000 euri. Si disegnino la curva di costo medio di lungo periodo e le curve di costo medio di breve periodo relative ai due impianti in modo che risultino coerenti con i suddetti dati. 16.7. Si rappresentino la curva di costo medio di lungo periodo e alcune curve di costo medio di breve periodo per una produzione caratterizzata da rendimenti costanti di scala. 16.8. Si spieghi perché l'andamento della curva del costo medio di lungo periodo di un dato prodotto influenza la struttura (numero e dimensione delle imprese) del mercato del prodotto stesso. 16.9. Il costo medio di lungo periodo dell'impresa ABC, in corrispondenza di una quantità prodotta di 10 quintali a settimana, è 12. In corrispondenza di una tale 166 Sedicesima lezione produzione, l'impianto risulta sovrautilizzato. Il costo marginale di lungo periodo sarà maggiore, minore o uguale a 12? Si motivi brevemente la risposta. 16.10. Il costo medio di lungo periodo dell'impresa ABC, in corrispondenza di una quantità prodotta di 100 quintali a settimana, è 10. In corrispondenza di una tale produzione, l'impianto risulta sottoutilizzato. Il costo marginale di lungo periodo sarà maggiore, minore o uguale a 10? Si motivi brevemente la risposta. 16.11. Si dica quale delle seguenti proposizioni è corretta: il costo medio di lungo periodo a) è il costo medio che l'impresa deve sostenere per produrre una data quantità di prodotto senza modificare l'impianto b) è la media dei costi medi di breve periodo c) è il minimo costo medio a cui è possibile produrre una data quantità di prodotto modificando opportunamente l'impianto 172 Diciassettesima lezione 17. Esercizi 17.1. Si dica quale delle seguenti proposizioni è corretta: in un mercato perfettamente concorrenziale, nel lungo periodo a) ogni impresa ha convenienza a fissare il prezzo al livello del suo costo medio minimo b) l'ingresso di nuove imprese porta il prezzo a livello del costo medio minimo c) per utilizzare al meglio l'impianto, l'impresa sceglie quella quantità che minimizza il costo medio 17.2 Si dica quale delle seguenti risposte è corretta: la curva di offerta di breve periodo di un'impresa price taker a) coincide con la curva del costo marginale a partire dal suo punto di minimo b) coincide con la curva di costo marginale, per prezzi superiori al costo medio minimo, e coincide con l'asse delle ordinate per prezzi inferiori al costo medio minimo. c) coincide con la curva di costo medio variabile, per prezzi superiori al costo marginale minimo, e coincide con l'asse delle ordinate per prezzi inferiori al costo marginale minimo. d) coincide con la curva di costo marginale, per prezzi superiori al costo medio variabile minimo, e coincide con l'asse delle ordinate per prezzi inferiori al costo medio variabile minimo. 17.3. Nel grafico seguente sono rappresentate le curve di costo marginale (MC), di costo medio variabile (AVC) e costo medio complessivo (AC) di breve periodo di una impresa che vende il suo (unico) prodotto su un mercato perfettamente concorrenziale. Sullo stesso grafico, si evidenzi la curva di offerta (di breve periodo) dell'impresa, argomentando brevemente. costi unitari AC MC AVC quantità 17.4. Nel mercato, perfettamente concorrenziale, di un certo prodotto, la domanda è rappresentabile con la seguente espressione: p = 100 - 30 Q. In una situazione di equilibrio di lungo periodo del mercato, il prezzo è 10 e la quantità venduta è 3. Si supponga che, in conseguenza di cambiamenti intervenuti su altri mercati, la domanda si modifichi come segue: p = 110 - 30 Q. Nell'ipotesi che l'industria considerata sia caratterizzata da costi costanti, si determinino il nuovo prezzo e la nuova quantità di equilibrio di lungo periodo, descrivendo brevemente i successivi cambiamenti che portano dalla vecchia alla nuova situazione di equilibrio a seguito del cambiamento della domanda. 17.5. Nel mercato, perfettamente concorrenziale, di un certo prodotto, la domanda è rappresentabile con la seguente espressione: p = 1000 - 20 Q. In una situazione di equilibrio di lungo periodo del mercato, il prezzo è 200 e la quantità venduta è 40. Si supponga che, in conseguenza di modifiche intervenute su altri mercati, la domanda si modifichi come segue: p = 1100 - 20 Q. Nell'ipotesi che l'industria considerata sia caratterizzata da costi costanti, si determinino il nuovo prezzo e la nuova quantità di equilibrio di lungo periodo, descrivendo brevemente i successivi cambiamenti che portano dalla vecchia alla nuova situazione di equilibrio a seguito del cambiamento della domanda. 17.6. Un bene è venduto in un mercato di concorrenza perfetta al prezzo di 100, in condizioni di equilibrio di lungo periodo del mercato. La quantità venduta è di 10000 pezzi alla settimana. L'elasticità della domanda è stimata in -2,5. Quali effetti avrà su prezzo e quantità venduta, nel lungo periodo, un aumento del 2% nel costo di produzione? 17.7. Un bene è venduto in un mercato di concorrenza perfetta al prezzo di 80, in condizioni di equilibrio di lungo periodo del mercato. La quantità venduta è di 25000 pezzi alla settimana. L'elasticità della domanda è stimata in -2. Quali effetti avrà su prezzo e quantità venduta, nel lungo periodo, un aumento del 3% nel costo di produzione? 174 Diciassettesima lezione 18. Esercizi 18.1. Un'impresa che opera in condizioni di monopolio vende una quantità di 1200 quintali di prodotto a settimana al prezzo di 600 euri al quintale. Poiché il costo marginale del prodotto è 210 e l'elasticità della domanda è -1,5, si dica se l'impresa ha convenienza a modificare il prezzo e, in caso affermativo, in quale direzione. 18.2. Un'impresa che opera in condizioni di monopolio vende una quantità di 1000 quintali di prodotto a settimana al prezzo di 450 euri al quintale. Poiché il costo marginale del prodotto è 140 e l'elasticità della domanda è -1,5, si dica se l'impresa ha convenienza a modificare il prezzo e, in caso affermativo, in quale direzione. 18.3. Si consideri un monopolista il cui prodotto può essere venduto secondo la funzione di domanda Q = 10 − 2 p . Si supponga che il monopolista produca con costi marginali di lungo periodo costanti e pari a 3. Si calcolino quantità e prezzo che massimizzano il profitto del monopolista 18.4. Si consideri un Qpmonopolista =−12005, il cui prodotto può essere venduto secondo la funzione di domanda . Si supponga che il monopolista produca con costi marginali di lungo periodo costanti e pari a 40. Si calcolino quantità e prezzo che massimizzano il profitto del monopolista 18.5. Si indichi quali delle seguenti proposizioni sono vere e quali false: a) un'impresa che opera in condizioni di monopolio tende a fissare un prezzo superiore al costo marginale del prodotto b) un'impresa che opera in condizioni di monopolio tende a fissare un prezzo uguale al costo marginale del prodotto c) un'impresa che opera in condizioni di monopolio non fisserà un prezzo in corrispondenza del quale l'elasticità della domanda sia in valore assoluto minore di 1; d) un'impresa che opera in condizioni di monopolio non fisserà un prezzo in corrispondenza del quale l'elasticità della domanda sia in valore assoluto maggiore di 1. 18.6. Si dica quale delle seguenti risposte è corretta: la condizione di massimizzazione del profitto per un'impresa è data a) dal fatto che il prezzo sia uguale al ricavo marginale e superiore al costo medio variabile b) dal fatto che il ricavo marginale sia maggiore del costo marginale c) dal fatto che il prezzo sia maggiore del costo marginale e del costo medio variabile d) dal fatto che il costo medio variabile sia uguale al ricavo marginale e) nessuna delle risposte precedenti è giusta 18.7. Si chiarisca perché non si può parlare di "curva di offerta" con riferimento a un monopolio. 18.8. La curva di domanda di un prodotto di cui l'impresa Abbaco è l'unico produttore è rappresentabile, in via di stima, con la seguente funzione: 184 Diciottesima lezione p = 80 - 5 Q dove p è il prezzo e Q la quantità complessivamente acquistata in un anno. Attraverso una opportuna campagna pubblicitaria, il cui costo è stimato in 100, la domanda potrebbe cambiare e assumere (per un anno) l'espressione seguente: p = 90 - 4 Q. Dato che il costo medio di produzione del prodotto in questione è costante e uguale a 30, si calcoli se la Abbaco ha convenienza a praticare la campagna pubblicitaria. 18.9. La curva di domanda di un prodotto di cui l'impresa Abbaco è l'unico produttore è rappresentabile, in via di stima, con la seguente funzione: p = 100 - 5 Q dove p è il prezzo e Q la quantità complessivamente acquistata in un anno. Attraverso una opportuna campagna pubblicitaria, il cui costo è stimato in 200, la domanda potrebbe cambiare e assumere (per un anno) l'espressione seguente: p = 110 - 4 Q. Dato che il costo medio di produzione del prodotto in questione è costante e uguale a 30, si calcoli se la Abbaco ha convenienza a praticare la campagna pubblicitaria. 18.10. Un'impresa che opera in condizioni di monopolio vende una quantità di 1200 quintali di prodotto a settimana al prezzo di 600 euri al quintale. Poiché il costo marginale del prodotto è 210 e l'elasticità della domanda è -1,5, si dica se l'impresa ha convenienza a modificare il prezzo e, in caso affermativo, in quale direzione. 18.11. Un'impresa che opera in condizioni di monopolio vende una quantità di 1000 quintali di prodotto a settimana al prezzo di 450 euri al quintale. Poiché il costo marginale del prodotto è 140 e l'elasticità della domanda è -1,5, si dica se l'impresa ha convenienza a modificare il prezzo e, in caso affermativo, in quale direzione. 18.12. Si spieghi perché un'impresa che opera in condizioni di monopolio tende a fissare un prezzo superiore al costo marginale del prodotto. 18.13. Si dimostri la relazione esistente tra ricavo marginale, prezzo ed elasticità della domanda rivolta all'impresa. 18.14. Si spieghi perché, per un'impresa monopolista, il ricavo marginale è inferiore al prezzo. 18.15. Un'impresa monopolista sta vendendo al prezzo p = 120 una quantità di 12000 pezzi alla settimana, che corrisponde alla quantità che il mercato è disposto ad assorbire a quel prezzo. Se l'impresa stima che l'elasticità della domanda sia -1,5, e se, sotto tale ipotesi, il profitto risulta massimizzato, si dica, argomentando brevemente, qual è il costo marginale nella situazione data. 18.16. Un'impresa monopolista sta vendendo al prezzo p = 240 una quantità di 12000 pezzi alla settimana, che corrisponde alla quantità che il mercato è disposto ad assorbire a quel prezzo. Se l'impresa stima che l'elasticità della domanda sia -1,2, e se, sotto tale ipotesi, il profitto risulta massimizzato, si dica, argomentando brevemente, quale è il costo marginale nella situazione data. 19. Esercizi 19.1. La domanda rivolta ad un'impresa monopolista sia rappresentabile con la seguente espressione: p = 120 - 3 Q. Il costo medio dell'impresa è costante e pari a 45. Supponendo che l'impresa riesca a praticare una discriminazione di prezzo perfetta (del primo tipo), si determini la quantità venduta e il profitto del monopolista. 19.2. La domanda rivolta ad un'impresa monopolista sia rappresentabile con la seguente espressione: p = 1200 - 4 Q. Il costo medio dell'impresa è costante e pari a 400. Supponendo che l'impresa riesca a praticare una discriminazione di prezzo perfetta (del primo tipo), si determini la quantità venduta e il profitto del monopolista. 19.3. Un'impresa monopolista vende il proprio prodotto su due mercati separabili, nel primo dei quali la domanda è rappresentabile con la seguente espressione. p = 200 - 3 Q, mentre nel secondo la domanda è rappresentabile con la seguente espressione. p = 220 - 2 Q. L'impresa pratica una discriminazione del prezzo (del terzo tipo) che massimizza il suo profitto e vende il prodotto al prezzo di 110 sul primo mercato. A quale prezzo venderà il prodotto sul secondo mercato? 19.4. Un'impresa monopolista vende il proprio prodotto sui due mercati separabili, nel primo dei quali la domanda è rappresentabile con la seguente espressione. p = 1500 - 30 Q, mentre nel secondo la domanda è rappresentabile con la seguente espressione. p = 1200 - 20 Q. L'impresa pratica una discriminazione del prezzo (del terzo tipo) che massimizza il suo profitto e vende il prodotto al prezzo di 900 sul primo mercato. A quale prezzo venderà il prodotto sul secondo mercato? 19.5. Si consideri unQp=−10 monopolista il cui prodotto può essere venduto secondo la funzione di domanda . Si supponga che il monopolista produca con costi marginali di lungo periodo costanti e pari a 3. Si calcolino quantità e prezzo che massimizzano il profitto del monopolista e la corrispondente perdita netta di monopolio (deadweight loss, ossia la perdita di efficienza dovuta all'esistenza di un monopolio). 19.6. Un monopolista vende il suo prodotto su tre diversi e separati mercati. Le funzioni di domanda stimate per i tre mercati sono le seguenti: p = 100 - 2 q p = 120 - 2,5 q p = 150 - 2 q. 192 Diciannovesima lezione Sapendo che il costo marginale (costante) del prodotto è di 50, si determinino i prezzi ai quali l'impresa ha convenienza a vendere il prodotto sui tre mercati e quale è la quantità complessivamente venduta. 19.7. Si consideri unQp=−12005, monopolista il cui prodotto può essere venduto secondo la funzione di domanda . Si supponga che il monopolista produca con costi marginali di lungo periodo costanti e pari a 40. Si calcolino quantità e prezzo che massimizzano il profitto del monopolista e la corrispondente perdita netta di monopolio (deadweight loss, ossia la perdita di efficienza dovuta all'esistenza di un monopolio). 20. Esercizi 20.1. Si illustri il modello di concorrenza monopolistica di Chamberlin. 20.2. Si consideri un mercato in cui vi è possibilità di entrata senza costo. Quali sono le conseguenze di tale possibilità sul prezzo del bene scambiato su quel mercato? In che senso tali conseguenze possono essere diverse a seconda che il prodotto sia omogeneo oppure differenziato? 20.3. Nella figura sono rappresentate: - la curva di domanda effettiva DD di una impresa che opera in un mercato di concorrenza monopolistica (modello di Chamberlin) - la curva delle vendite programmate dd, corrispondente al livello 30 di prezzo praticato dalle altre imprese - la curva di costo marginale MC e la curva di costo medio AC. Si dica, argomentando brevemente, se la produzione della quantità 100 e la vendita al prezzo 30 corrispondano ad una situazione di equilibrio dell'impresa e del mercato, nel breve e nel lungo periodo. prezzo DD MC AC 30 dd 100 quantità 20.4. Si presentino gli aspetti principali del modello di concorrenza monopolistica di Chamberlin. 20.5. Si illustri con un diagramma e con alcuni opportuni commenti la situazione di equilibrio di lungo periodo nel modello di concorrenza monopolistica di Chamberlin. 20.6. Un'impresa opera in condizioni di concorrenza monopolistica. La sua funzione di domanda è rappresentabile con la seguente espressione: q = 1000 - 120 p + 30 P, dove q è la domanda rivolta all'impresa, p è il prezzo praticato dall'impresa e P è il prezzo praticato da tutte le altre imprese. Si determini l'espressione della domanda effettiva. 200 Ventesima lezione 21. Esercizi 21.1. Il signor Lucci ed il signor Storioni partecipano al gioco seguente. Inizialmente sul tavolo c'è 1 euro (offerto da un benefattore): la prima mossa spetta al signor Lucci, il quale può prendere l'euro (in questo caso il gioco ha termine) oppure può passare la mano al signor Storioni. Il benefattore raddoppia la somma sul tavolo e il signor Storioni, a sua volta, può prendere o passare la mano al signor Lucci. Così per dieci volte (ogni volta con raddoppio della somma). Se anche all'ultima mossa, il giocatore cui tocca scegliere, passa, la somma al momento disponibile (ossia senza ulteriori raddoppi) viene divisa in parti uguali tra i due giocatori. Si individui e si commenti brevemente una soluzione del gioco. 21.2. In una contrattazione sindacale, il rappresentante dell'impresa formula una prima proposta (salario pari a 100 oppure a 110), dopo di che il rappresentante dei lavoratori potrà accettarla o formulare una controproposta (10% più della proposta). Se questa sarà accolta, la contrattazione è conclusa; in caso contrario, si avrà rottura della trattativa. Il valore del risultato in ciascun possibile esito è così valutato (le valutazioni sono conoscenza comune): a) in caso di conclusione della trattativa, il risultato per i lavoratori è misurato dal saggio di salario; il risultato per l'impresa è pari a 200 meno il saggio di salario; b) in caso di rottura, entrambe le parti stimano nell'80% la probabilità che la trattativa, al nuovo round, si concluda con l'accettazione dell'offerta formulata nel corso del primo round e nel 20% che si concluda con l'accettazione della contro-offerta. Entrambe le parti hanno però una perdita pari a 8,5, dovuta allo stato di conflitto. Supponendo che entrambe le parti siano neutrali rispetto al rischio, si rappresenti il problema in forma di gioco e se ne determini una soluzione. 21.3. Si consideri la seguente situazione di competizione tra due imprese in un mercato: a. inizialmente, l'impresa A è l'unica ad operare su quel mercato. Essa può decidere di praticare un prezzo alto oppure un prezzo basso; b. l'impresa B può decidere di entrare o non entrare nel mercato; se entra, sosterrà un costo di entrata di 250 e praticherà il prezzo già deciso dall'impresa A; c. a seguito dell'eventuale ingresso dell'impresa B, l'impresa A può decidere di modificare il prezzo, ma tale modifica (che sarebbe seguita dall'impresa B) comporterebbe per lei un costo aggiuntivo di 150. Quanto sopra è conoscenza comune alle due imprese. Nelle diverse situazioni possibili, i guadagni delle due imprese sono quelli indicati nella tabella seguente, escluso l'eventuale costo per la modifica del listino (per l'impresa A) e il costo di entrata (per l'impresa B). Impresa A sola, con prezzo alto Impresa A sola con prezzo basso Due imprese, prezzo alto Due imprese, prezzo basso Guadagno Impresa A 700 500 300 200 Guadagno Impresa B 0 0 300 200 Si rappresenti il problema in termini di gioco in forma estensiva e se ne indichi 208 Ventunesima lezione una possibile soluzione. 21.4. In un mercato è attiva una sola impresa, che consegue profitti il cui valore attuale è di 100. Una potenziale rivale può entrare nel mercato, sostenendo un costo (irrecuperabile) di entrata pari a 30. In tal caso, se l'impresa già attiva non reagisce, le due imprese si spartiscono il mercato e i profitti, fermo restando che i profitti dell'entrante sono ridotti dalle spese di entrata. Se invece l'impresa attiva reagisce - con un costo di 80, che riduce corrispondentemente i suoi profitti - essa riesce a scacciare la rivale dal mercato. Si rappresenti il problema in forma di gioco a due giocatori, nella forma estensiva, e se ne studi una soluzione. 21.5. Si consideri il seguente gioco a informazione imperfetta in forma estensiva e se ne individui una possibile soluzione. La soluzione muterebbe se il gioco fosse a informazione perfetta (ogni nodo è un insieme di informazione)? PRIMO a c b SECONDO 10 0 A B C 30 -20 -30 SECONDO S 10 50 10 D 0 S -10 20 0 D 30 -30 220 Ventiduesima lezione 22. Esercizi 22.1. Si costruisca la matrice dei pagamenti di un gioco a somma nulla in forma normale che abbia un'unica soluzione di equilibrio di Nash in strategie pure. 22.2. Si consideri il seguente gioco in forma estensiva a informazione imperfetta e se ne determini la corrispondente forma normale. Si individui quindi una soluzione di equilibrio di Nash in strategie pure (se esiste). PRIMO S SECONDO a 10 SECONDO b -5 5 D C A 6 7 -2 B -9 A 3 4 B -7 8 -5 22.3. Si consideri il seguente gioco in forma estensiva. PRIMO S C SECONDO a 30 -30 10 b 0 D SECONDO -10 c 50 0 -50 d -10 10 Si determini la soluzione mediante "induzione all'indietro". Si costruisca quindi la matrice dei pagamenti (forma normale del gioco) e si determini la soluzione mediante successiva eliminazione di strategie dominate. 22.4. Si consideri il seguente gioco a informazione imperfetta, in forma estensiva. Dopo aver indicato le strategie dei due giocatori, si costruisca la matrice dei pagamenti e si ricerchino le soluzioni di equilibrio di Nash in strategie pure. PRIMO S D C SECONDO SECONDO A B a b a b PRIMO 10 -5 s d 20 0 30 10 -20 10 25 20 30 30 35 -10 22.5. Si consideri il seguente gioco a informazione imperfetta, in forma estensiva. Dopo aver indicato le strategie dei due giocatori, si costruisca la matrice dei pagamenti e si ricerchino le soluzioni di equilibrio di Nash in strategie pure. PRIMO S SECONDO b a b PRIMO s d 2 1 4 a 1 0 3 3 D C SECONDO A B 0 2 1 2 2 4 0 22.6. Si consideri la seguente matrice dei pagamenti di un gioco in forma normale e si individui, se esiste, una soluzione di equilibrio di Nash in strategie pure. Si accerti quindi se si tratta di una soluzione efficiente (ottimo paretiano). A 10 30 B 60 C c b a 0 20 30 30 -10 40 20 0 -10 -30 40 -30 40 -80 50 222 Ventiduesima lezione 22.7. Nella figura è rappresentato un gioco a informazione perfetta in forma estensiva. Si indichino le strategie dei due giocatori, si costruisca la forma normale del gioco e si individuino le soluzioni di equilibrio di Nash. PRIMO A B SECONDO 20 -20 S PRIMO a -40 D 30 -30 b 50 40 -50 22.8. Un gioco a due persone in forma normale ha la seguente matrice dei pagamenti: a A B C b 50 c 40 -30 60 40 -30 -30 90 -50 30 140 30 100 80 60 -20 -20 0 Si risponda alle seguenti domande, motivando brevemente: a. esistono strategie dominate? b. è possibile pervenire a una soluzione attraverso la successiva eliminazione di strategie dominate? c. esiste una soluzione di equilibrio di Nash in strategie pure? 23. Esercizi 23.1. Si consideri il seguente gioco in forma normale e si individuino le soluzioni di equilibrio di Nash. Si dica quindi quali di queste soluzioni sono ottimi paretiani. α β 100 χ 50 -300 A 120 200 B -400 -50 30 C 0 -200 -30 -20 70 D 0 -10 20 -80 150 -40 40 50 -30 100 0 23.2. Si consideri il seguente gioco in forma normale. α A β 2 3 1 0 2 4 B 3 2 Si verifichi che il gioco non ammette soluzioni di equilibrio di Nash in strategie pure e si determini una soluzione in strategie miste. 23.3. Si consideri il seguente gioco in forma normale. α A β 2 4 3 3 B 2 0 1 3 236 Ventitreesima lezione Si verifichi che il gioco non ammette soluzioni di equilibrio di Nash in strategie pure e si determini una soluzione in strategie miste. 23.4. Si consideri un mercato nel quale operano due imprese, ottenendo entrambe un profitto pari a 50, in assenza di campagne pubblicitarie. A ciascuna impresa si profila la possibilità di intraprendere una campagna pubblicitaria dai costi elevati, che consente di raggiungere un profitto netto pari a 80, a patto che l'altra impresa non faccia pubblicità: questa ultima rimarrebbe con un profitto di 20. Se entrambe scegliessero la via della pubblicità, i profitti di ciascuna cadrebbero a 30. Si analizzi il problema in termini di gioco a informazione imperfetta. 23.5. Si consideri il seguente gioco in forma estensiva. Individuate le strategie dei due giocatori, si determini la forma normale del gioco e quindi si trovino le soluzioni di equilibrio di Nash (in strategie pure). Si proceda quindi a una ragionevole selezione degli equilibri. PRIMO S SECONDO a 20 10 SECONDO C b 20 D 10 c 10 -20 0 d PRIMO 80 L 50 100 M 40 0 244 Ventiquattresima lezione 24. Esercizi 24.1. L'impresa BETA opera come monopolista sul mercato del suo prodotto. L'impresa ALFA progetta di entrare sullo stesso mercato, con due possibili modalità: - entrare con una politica aggressiva che costringa l'impresa BETA ad uscire dal mercato; - entrare con una politica conciliante. Nel primo caso, l'impresa BETA non ha possibilità di difesa; nel secondo caso, essa può accettare l'impresa ALFA nel mercato, o reagire in modo da costringerla ad uscire. I risultati delle varie possibilità sono i seguenti (e sono conoscenza comune): - qualunque impresa che sia monopolista sul mercato ha profitti il cui valore attuale è 1200; - in caso di duopolio, ciascuna impresa ha profitti il cui valore attuale è 550; - il costo della politica aggressiva di ALFA è 900; la politica conciliante ha costo 150 (non recuperabile se l'impresa sarà costretta ad uscire); - il costo della reazione di BETA per costringere ALFA ad uscire è 500. Si rappresenti il problema in forma di gioco, si determini e si commenti brevemente una possibile soluzione. 24.2. Due imprese producono ciascuna un solo bene. I due beni, A e B, hanno un forte legame di sostituibilità nel consumo; non vi sono altri produttori di quei beni o di altri sostituti. La domanda del bene A può essere rappresentata con la seguente espressione: QA = 1000 - 30 pA + 10pB; analogamente, la domanda del bene B può essere rappresentata con la seguente espressione: QB = 1000 - 30 pB +10pA. Sapendo che il costo medio di produzione, sia per il bene A sia per il bene B, è 20 (indipendentemente dalla quantità prodotta), quale prezzo avranno convenienza a fissare le due imprese, in assenza di accordi? 24.3. Due imprese producono ciascuna un solo bene. I due beni, A e B, hanno un forte legame di sostituibilità nel consumo; non vi sono altri produttori di quei beni o di altri sostituti. La domanda del bene A può essere rappresentata con la seguente espressione: QA = 100000 - 300 pA + 100pB; analogamente, la domanda del bene B può essere rappresentata con la seguente espressione: QB = 100000 - 300 pB +100pA. Sapendo che il costo medio di produzione, sia per il bene A sia per il bene B, è 200 (indipendentemente dalla quantità prodotta), quale prezzo avranno convenienza a fissare le due imprese, in assenza di accordi? 24.4. Due imprese operano su uno stesso mercato in situazione di duopolio. E' conoscenza comune che la domanda sia rappresentabile con la seguente espressione: p = 250 - 3 Q. La prima impresa ha un costo medio di produzione costante e uguale a 100, mentre la seconda impresa ha un costo medio di produzione costante e uguale a 130. Si determinino le quantità e il prezzo di equilibrio secondo il modello di Cournot. 24.5. Due imprese operano su uno stesso mercato in situazione di duopolio. E' conoscenza comune che la domanda sia rappresentabile con la seguente espressione: p = 260 - 2 Q. La prima impresa ha un costo medio di produzione costante e uguale a 100, mentre la seconda impresa ha un costo medio di produzione costante e uguale a 120. Si determinino le quantità e il prezzo di equilibrio secondo il modello di Cournot 24.6. Si espongano brevemente le caratteristiche del modello di duopolio di Cournot. 24.7. Due imprese operano su uno stesso mercato in situazione di duopolio. E' conoscenza comune che la domanda sia rappresentabile con la seguente espressione: p = 100 - 2 Q . La prima impresa ha un costo medio di produzione costante e uguale a 10, mentre la seconda impresa ha un costo medio di produzione costante e uguale a 16. Si determinino le quantità e il prezzo di equilibrio secondo il modello di Cournot. 246 Ventiquattresima lezione 25. Esercizi 25.1. Si definisca il concetto di mercato contendibile e si spieghi brevemente perché in un mercato contendibile il prezzo dovrebbe tendere a collocarsi al livello del costo medio. 25.2. La domanda di mercato di un certo prodotto è rappresentabile con l'espressione seguente: p = 200 - 2 Q. Nel mercato operano due sole imprese, una delle quali si comporta come leader e l'altra come follower (satellite) nel senso del modello di Stackelberg. Sapendo che la prima ha un costo medio (costante) di 100 e la seconda ha un costo medio (costante) di 120, si individui, motivando brevemente, la situazione di equilibrio di questo mercato. 25.3. La domanda di mercato di un certo prodotto è rappresentabile con l'espressione seguente: p = 900 - 6 Q. Nel mercato operano due sole imprese, una delle quali si comporta come leader e l'altra come follower (satellite) nel senso del modello di Stackelberg. Sapendo che la prima ha un costo medio (costante) di 210 e la seconda ha un costo medio (costante) di 240, si individui, motivando brevemente, la situazione di equilibrio di questo mercato. 254 Venticinquesima lezione 26. Esercizi 26.1. Si spieghi in che senso l'attività produttiva condotta attraverso l'organizzazione dell'impresa possa intendersi come una "alternativa" rispetto al mercato. 26.2. Si indichino le differenze più rilevanti tra la forma di impresa di tipo capitalistico e la cooperativa di lavoro. 26.3. Si indichino e discutano brevemente alcune obiezioni all'ipotesi di massimizzazione del profitto come criterio delle scelte dell'impresa di tipo capitalistico. 26.4. Si indichino le ipotesi alla base del modello della curva di domanda "a gomito". 262 Ventiseiesima lezione 27. Esercizi 27.1. Si definisca il Prodotto interno lordo e si spieghi perché il suo valore coincide con la somma dei valori aggiunti realizzati in tutte le attività produttive. 27.2. Si considerino le seguenti funzioni e si dica quali siano funzioni omogenee di primo grado: QKL=0406,, a) QKL=0407,, b) QKL=0405,, QKL=0307,, d) QKL=+0606,, c) f) e) QKL=+1015 27.3. Si consideri la seguente funzione di produzione QKL =0406,, omogenea di primo grado: . Supponendo che il saggio di salario sia w=12000, che il rendimento del capitale sia 0,5 per unità di capitale, si determinino le quantità dei due input che minimizzano il costo per una quantità prodotta di 2000 pezzi. Supposto quindi che il prezzo del prodotto sia uguale al costo medio, si verifichi che - il saggio di salario risulta uguale al prodotto (produttività) marginale del lavoro in valore; - il rendimento del capitale risulta uguale al prodotto (produttività) marginale del capitale in valore; - il reddito distribuito al lavoro più il reddito distribuito al capitale esaurisce il valore del prodotto. 27.4. Si consideri la seguente funzione di produzione QKL =0208,, omogenea di primo grado: . Supponendo che il saggio di salario sia w=15000, che il rendimento del capitale sia 0,5 per unità di capitale, si determinino le quantità dei due input che minimizzano il costo per una quantità prodotta di 2000 pezzi. Si verifichi che il costo medio è costante. Supposto quindi che il prezzo del prodotto sia uguale al costo medio, si verifichi che - il saggio di salario risulta uguale al prodotto (produttività) marginale del lavoro in valore; - il rendimento del capitale risulta uguale al prodotto (produttività) marginale del capitale in valore; - il reddito distribuito al lavoro più il reddito distribuito al capitale esaurisce il valore del prodotto. 272 Ventisettesima lezione 280 Ventottesima lezione 28. Esercizi 28.1. Si spieghi in che modo si determina la domanda di lavoro di una impresa (che sia price taker su tutti i mercati), nel breve e nel lungo periodo. 28.2. Un'impresa ha una funzione diQKL produzione del tipo seguente: =100408,, Supponendo che l'impresa utilizzi capitale nella misura K = 10000 e che il prezzo del prodotto sia p = 120, si determini la funzione di domanda di lavoro. 28.3. Si definisca il concetto di prodotto (produttività) marginale di un input. Si supponga quindi che, in una certa situazione, il prodotto marginale del lavoro in una data produzione sia 1,5 kg di prodotto per ora di lavoro e che il prodotto medio sia 1,6. Aumentando l'impiego di lavoro, il prodotto medio aumenterà o diminuirà? Se la retribuzione oraria del lavoro è 15000 lire e il prezzo del prodotto è 12000 lire al kg, la situazione data è da ritenersi ottimale per l'impresa? In caso negativo, si precisi se converrebbe aumentare o diminuire la quantità di lavoro impiegata. 28.4. Dopo aver definito la domanda di lavoro da parte di un'impresa come funzione del costo del lavoro per unità di lavoro, si chiariscano le differenze tra domanda di breve periodo e domanda di lungo periodo. 28.5. Si spieghi perché normalmente la domanda di lavoro di lungo periodo è più elastica della domanda di breve periodo. 288 Ventinovesima lezione 29. Esercizi 29.1. Si spieghi in che modo è possibile determinare l'offerta individuale di lavoro in termini di allocazione ottimale del tempo da parte del consumatore-lavoratore. 29.2. Si presenti sinteticamente un modello per la costruzione della curva di offerta individuale di lavoro. 29.3. Si scriva e si commenti brevemente il vincolo di bilancio nelle scelte del consumatore-lavoratore circa il tempo da destinare a lavoro. 29.4. Nella figura sono rappresentate alcune delle curve di indifferenza che rappresentano le preferenze di un consumatore-lavoratore relativamente a tempo libero e consumi. Supponendo che il saggio di salario sia di 25000, si individui (tracciando, se necessario, altre curve di indifferenza) la scelta ottimale del consumatore, commentando brevemente. reddito 100000 24 Ore di tempo libero 29.5. Dopo aver chiarito in che senso il saggio di salario può essere inteso come prezzo del tempo libero, si spieghi se dal fatto che la domanda di tempo libero possa crescere al crescere del saggio di salario si possa dedurre che il tempo libero è un bene inferiore. 298 Trentesima lezione 30. Esercizi 30.1. Si discuta il concetto di "prezzo del servizio di un bene capitale" e se ne individuino le componenti. 30.2. Si definiscano il tasso di interesse nominale e il tasso di interesse reale e si indichi la relazione che li lega. 30.3. Una impresa deve decidere l'acquisto di un macchinario, il cui prezzo è 2 miliardi di lire. Dall'aggiunta di tale input (la cui durata è prevista in tre anni e che richiederà ogni anno costi di manutenzione per 200 milioni) l'impresa si aspetta un incremento netto di guadagno di 900 milioni l'anno. Tenuto conto di un tasso di interesse del 5%, si valuti se l'impresa ha convenienza ad effettuare l'acquisto. 31. Esercizi 31.1. Si spieghi il ruolo del "banditore" nel modello di equilibrio economico generale competitivo. 31.2. Si spieghi la differenza tra bene economico (scarso) e bene libero all'interno della teoria dell'equilibrio economico generale. 31.3. Si indichino e commentino brevemente le principali caratteristiche dei modelli di equilibrio economico generale competitivo. 306 Trentunesima lezione 32. Esercizi 32.1. Nella figura è rappresentata la frontiera delle possibilità produttive in un sistema economico con due soli beni finali (vestiario e cibo). In situazione di efficienza produttiva, con la quantità di cibo prodotta uguale a 50, quale è la quantità di vestiario prodotta? E quanto misura in tale situazione il saggio marginale di trasformazione? (si motivino brevemente le risposte). cibo 50 10 100 500 vestiario 32.2. Nella figura è rappresentata una scatola di Edgeworth relativa alla produzione di due beni, cibo e vestiario, che utilizzano quantità complessivamente date di due fattori produttivi. Si rappresenti, con l'approssimazione consentita dai dati disponibili, la corrispondente frontiera delle possibilità produttive (curva di trasformazione). 110 90 100 60 40 70 80 O VESTIARIO 50 30 30 95 O CIBO 145 135 125 75 55 110 150 32.3. Nella figura è rappresentata una scatola di Edgeworth relativa alla produzione di due beni, cibo e vestiario, che utilizzano quantità complessivamente date di due fattori produttivi. Si rappresenti, con l'approssimazione consentita dai dati disponibili, la corrispondente frontiera delle possibilità produttive (curva di trasformazione). 320 Trentaduesima lezione 110 90 100 60 40 70 80 O VESTIARIO 50 300 30 975 O CIBO 775 550 1475 1400 1300 1150 1525 32.4. Si enunci e si commenti brevemente il primo teorema fondamentale dell'economia del benessere. 32.5. Si enunci e si commenti brevemente il secondo teorema fondamentale dell'economia del benessere. 32.6. Si definisca il saggio marginale di trasformazione tra due prodotti e si chiarisca come sia determinabile graficamente il suo valore a partire dalla curva delle possibilità di produzione (curva di trasformazione). 33. Esercizi 33.1. Si indichino possibili cause di "fallimento" (ovvero di soluzioni inefficienti) del mercato e se ne discuta una a scelta. 33.2. Si definisca il concetto di esternalità e si spieghi in che senso la presenza di esternalità può essere causa di fallimento (ovvero di soluzioni inefficienti) del mercato. 33.3. Dopo aver definito il concetto di "esternalità", si enunci il teorema di Coase e lo si commenti brevemente. 33.4. Dopo aver definito il concetto di "bene pubblico", si discutano brevemente i problemi connessi con la produzione efficiente di beni pubblici. 330 Trentatreesima lezione Soluzioni degli esercizi 1.1. Vedi Frank, p.3 (la risposta corretta è la a) 1.2. Vedi Frank, p.599-600 (la risposta corretta è la b) 2.1. Vedi Frank, p.366 (la risposta corretta è la b) 2.2. Vedi Frank, p.36 (la risposta corretta è la b) 2.3 La risposta corretta è la d): il prezzo di equilibrio deve uguagliare domanda e offerta. Perciò dovrà essere: 100 - 20 p = - 10 + 5 p, da cui: 110 = 25 p e quindi: p = 4,4. 2.4. L'equazione della curva di domanda risulta la seguente: p=600-10q L'equazione della curva di offerta risulta la seguente: p=200+4q. Pertanto il prezzo di equilibrio è ricavato dal sistema: p=600-10q p=200+4q. che ha per soluzione p*= 314,29 e q*=28,57. Al prezzo di 500, la quantità domandata è 10, inferiore a quella offerta; perciò la quantità scambiata non può essere superiore a 10. La quantità scambiata è massima quando il prezzo è 314,29, prezzo di equilibrio. 2.5. L'equazione della curva di domanda risulta la seguente: p=6000-40q L'equazione della curva di offerta risulta la seguente: p=2000+16q. Pertanto il prezzo di equilibrio è ricavato dal sistema: p=6000-40q p=2000+16q. che ha per soluzione p*= 3142,9 e q*=500/7. Al prezzo di 2500, la quantità offerta è 71,43, inferiore a quella domandata; perciò la quantità scambiata non può essere superiore a 31,25. La quantità scambiata è massima quando il prezzo è 3142,9, prezzo di equilibrio. 2.6. La risposta corretta è la a): la funzione di domanda indiretta è esplicitata rispetto al prezzo (indica cioè a quale prezzo il mercato assorbe una data quantità di prodotto). Pertanto, partendo dalla funzione di domanda diretta: D = 100 - 20 p, si dovrà renderla esplicita rispetto a p: 20 p = 100 - q p = 5 - 0,05 q. 2.7. La risposta corretta è la c): in equilibrio, il prezzo dovrà uguagliare la domanda e l'offerta. Perciò dovrà essere: 100 - 20 p = -10 + 5 p da cui: p* = 4,4. In corrispondenza di tale prezzo, la domanda e l'offerta sono: D(4,4) = 100 - 88 = 12 S(4,4) = - 10 + 22 = 12 e quindi la quantità scambiata in equilibrio sarà q* = 12. 2.8. Vedi Frank, p.33-34 (la risposta corretta è la b) 2.9. Vedi Frank, p.366. 2.10. Il prezzo p* di equilibrio è quello che uguaglia la domanda e l'offerta; perciò p* deve soddisfare la seguente equazione: 100 + 2 ps - 3 p* = -20 + p*, da cui: p* = (120+2 ps)/4. La quantità q* scambiata in equilibrio sarà q* = -20+p* = (40+2 ps)/4. Perciò, per ps = 50, si avrà p* = 55 e q* = 35; per p s = 60, si avrà p* = 60 e q* = 40. 2.11. Il prezzo p* di equilibrio è quello che uguaglia la domanda e l'offerta; perciò p* deve soddisfare la seguente equazione: 300 + 3 ps - 10 p* = -120 +5 p*, da cui: p* = (420+3 ps)/15. La quantità q* scambiata in equilibrio sarà q* = -120+5p* = 20 + ps. Perciò, per ps = 35, si avrà p* = 35 e q* = 55; per p s = 40, si avrà p* = 36 e q* = 60. 3.1. Vedi Frank, p. 47, § 2.7.3. 3.2. La risposta corretta è la b): si chiama eccesso di domanda la differenza, ad un dato livello di prezzo, tra domanda e offerta. La funzione di eccesso di domanda è la relazione tra prezzo ed eccesso di domanda, e può quindi essere determinata facendo la differenza tra la funzione (diretta) di domanda e la funzione (diretta) di offerta. Nel nostro caso: D = 100 - 20 p S = -10 + 5 p z(p) = D - S = 100 - 20 p - ( -10 + 5 p) = 100 - 20 p + 10 - 5 p = 110 - 25 p 3.3. Vedi Frank, p.36-37 (la risposta corretta è la b) 3.4. La risposta corretta è la a): poiché lo scambio è volontario, nessuno acquisterà più di quanto ritiene opportuno al prezzo dato (e quindi gli acquisti non possono superare la domanda) e nessuno venderà più di quanto ritiene opportuno al prezzo dato. Nel nostro caso, al prezzo 3 la domanda (ossia la quantità che si ritiene opportuno acquistare) è: D(3) = 100 - 60 = 40 e l'offerta (ossia la quantità che si ritiene opportuno vendere) è 332 Trentatreesima lezione S(3) = - 10 + 15 = 5 La quantità scambiata non può eccedere né la quantità domandata né la quantità offerta, e pertanto sarà inferiore o uguale a 5 (se l'informazione è perfetta, sarà uguale a 5, perché non vi è ragione che si perdano opportunità vantaggiose di scambio). 3.5. La risposta corretta è la b): poiché lo scambio è volontario, nessuno acquisterà più di quanto ritiene opportuno al prezzo dato (e quindi gli acquisti non possono superare la domanda) e nessuno venderà più di quanto ritiene opportuno al prezzo dato. Nel nostro caso, al prezzo 5 la domanda (ossia la quantità che si ritiene opportuno acquistare) è: D(5) = 100 - 100 = 0 e l'offerta (ossia la quantità che si ritiene opportuno vendere) è S(5) = - 10 + 25 = 15 La quantità scambiata non può eccedere né la quantità domandata né la quantità offerta, e pertanto sarà 0, ossia non vi saranno scambi a quel prezzo. 3.6. La risposta giusta è la b). Prima dell'introduzione dell'imposta, prezzo p* e quantità q* di equilibrio si possono determinare come soluzione del sistema seguente (D=S=q* in equilibrio): q* = 100 - 20 p* q* = -10 + 5 p* da cui: p*=4,4 q*=12. Con l'introduzione dell'imposta di fabbricazione pari a 1, la quantità offerta al prezzo p sarà uguale a quella che prima si aveva al prezzo p-1, ossia: D = 100 - 20 p S = -10 + 5 (p - 1) Il nuovo prezzo p** e la nuova quantità q** di equilibrio saranno allora soluzione del sistema: q**=100 - 20 p** q** = -15 + 5p**, da cui: p** = 4,6 q**=8. Rispetto alla situazione precedente, il prezzo aumenta di 0,2; pertanto l'imposta grava sui consumatori nella misura del 20% (0,2 su 1) e sui produttori nella misura dell'80%. 3.7. Prima dell'introduzione dell'imposta, prezzo p* e quantità q* di equilibrio si possono determinare come soluzione del sistema seguente (D=S=q* in equilibrio): q* = 100 - 2 p* q* = 40 + p* da cui: p*=20 q*=60. Con l'introduzione dell'imposta di fabbricazione pari a 3, la quantità offerta al prezzo p sarà uguale a quella che prima si aveva al prezzo p-3, ossia: D = 100 - 2 p S = 40 + (p - 3) Il nuovo prezzo p** e la nuova quantità q** di equilibrio saranno allora soluzione del sistema: q**=100 - 2 p** q** = 40 + p**-3, da cui: p** = 21 q**=58. Rispetto alla situazione precedente, il prezzo aumenta di 1; pertanto l'imposta grava sui consumatori nella misura di 1/3 (1 su 3) e sui produttori nella misura di 2/3. 3.8. Nel lungo periodo, a meno di effetti esterni, il prezzo deve aumentare nella misura dell'imposta. Perciò salirà a 103, e pertanto aumenterà del 3%. Data l'elasticità della domanda, essa diminuirà del 4,8%, e quindi scenderà al livello di 952. Il gettito fiscale sarà pertanto 3*952=2856. 3.9. Uguagliando D e S, si ottiene: 5000 - 30 p* = -1000 + 10 p*, da cui p*=150 e q*=500. Se viene introdotta una imposta di 40 per unità venduta, la funzione di offerta diventa: S'= -1000+ 10 (p-40) = -1400 + 10 p. Uguagliando D e S', si ottiene: 5000 - 30 p* = -1400 + 10 p*, da cui p*=160 e q*=200. L'imposta grava pertanto solo per il 25% sui consumatori e per il 75% sui produttori. (Nel lungo periodo il prezzo aumenterà dell'intero importo dell'imposta, a meno di effetti esterni). 3.10. Uguagliando D e S, si ottiene: 400 - 3 p* = -100 + 7 p*, da cui p*= 50 e q*=250. Se viene introdotta una imposta di 40 per unità venduta, la funzione di offerta diventa: S'= -100+ 7 (p-40) = -380 + 7 p. Uguagliando D e S', si ottiene: 400 - 3 p* = -380 + 7 p*, da cui p*= 78 e q*=166. L'imposta grava pertanto solo per il 70% sui consumatori e per il 30% sui produttori. (Nel lungo periodo il prezzo aumenterà dell'intero importo dell'imposta, a meno di effetti esterni). 4.1. Vedi Frank, p. 7, § 1.4.1. 4.2. Vedi Frank, p. 75 e seguenti. 334 Trentatreesima lezione 4.3. Vedi Frank, p. 79, § 3.3.2. 4.4. Vedi Frank, p.76, § 3.3.1 (le risposte sono: a) Vera; b) Falsa; c) Falsa; d) Vera; e) Falsa; f) Vera). 4.5. Se il signor Anselmo acquista il paniere (p, c), egli spenderà 2500 p per il pane e 10000 c per il cinema. Poiché la sua spesa complessiva deve essere di 100000, il vincolo di bilancio sarà: 2500 p + 10.000 c = 100.000 (risposta b) 4.6. a) 4*2.500 + 9*10.000 = 10.000+90.000 = 100.000 paniere accessibile b) 8*2.500 + 8*10.000 = 20.000+80.000 = 100.000 paniere accessibile c) 20*2.500 + 5*10.000 = 50.000+50.000 = 100.000 paniere accessibile d) 0*2.500 + 10*10.000 = 0+100.000 = 100.000 paniere accessibile e) 40*2.500 + 0*10.000 = 100.000+ 0 = 100.000 paniere accessibile 4.7.La risposta corretta è la c. L'uguaglianza tra MRS e rapporto tra i prezzi (risposta a) non è verificata sempre, ma solo per il paniere ottimale; Il MRS è uguale alla pendenza della curva di indifferenza e solo in corrispondenza del paniere ottimale essa coincide con la pendenza del vincolo di bilancio (risposta b); se si lascia imprecisata la diminuzione nella disponibilità dell'altro bene ("una data quantità"; risposta d) non si definisce nessuna misura precisa; la risposta e corrisponde al rapporto tra i prezzi e non al MRS. 5.1. La risposta corretta è la e). Il paniere ottimale deve corrispondere ad un punto del vincolo di bilancio tangente ad una curva di indifferenza (v. figura). Pertanto, nessuno dei punti A-D costituisce la scelta ottima. Nella figura, ilpunto ottimo è H. C D A H B 5.2. Data la funzione di utilità, si possono calcolare le utilità marginali dei due beni in una situazione generica: Uxx112 12= Uxx21212= . Dal rapporto tra le due utilità marginali, si può calcolare il saggio marginale di sostituzione (MRS): MRSUUxxxxxxxxxx====121212212121121222 . Per il paniere ottimale, MRSxxpp ===2112 1005 il MRS deve essere uguale al rapporto tra i prezzi: ; Inoltre deve essere rispettato il vincolo di bilancio: pxpxxx1122121005800+=+= . Risolvendo xx12480**==il sistema, si ottiene: NOTA BENE: ogni funzione di utilità che sia una trasformazione monotona crescente di quella data porta agli stessi risultati. In questo caso, conviene considerare una trasformata logaritmica: Uxx°=+loglog 12 Si ottiene subito: MRSUUxxxx =°°==12122111 5.3. Vedi Frank, p. 79 e p. 83. 5.4. Vedi Frank, p. 596 e seguenti. 5.5. Vedi Frank, p. 600 e seguenti. 5.6. a) I prezzi relativi sono diversi, come testimoniato dalla diversa pendenza delle due rette. b) Se il signor Verdi fosse vincolato dalla retta r, sceglierebbe il paniere H; se fosse vincolato dalla retta s, sceglierebbe il paniere F. c) Il signor Verdi sceglierebbe la retta s, che gli consente di raggiungere un più alto livello di utilità (il punto F si trova su una curva di indifferenza più alta rispetto al punto H). 5.7. In questo caso, il paniere ottimo corrisponde ad un punto di "frontiera" (il punto A): il consumatore ha convenienza ad acquistare solo cibo. 336 Trentatreesima lezione vestiario A cibo 6.1. Vedi Frank, p. 110, § 4.3.3 (la risposta corretta è la b) 6.2. Vedi Frank, p. 33 (le risposte sono: a) FALSO; b) VERO; c) FALSO; d) FALSO; e) VERO. 6.3. Vedi Frank, p. 111, § 4.3.4. (le risposte corrette sono Ia, IIc, IIIa). 6.4. Vedi Frank, p. 106, § 4.2.1. 6.5. Vedi Frank, p. 108, § 4.3.1. 6.6. Con riferimento alla figura seguente, il paniere ottimale con il vincolo di bilancio iniziale corrisponde al punto P. Il raddoppio del prezzo del cibo sposta il vincolo di bilancio dalla posizione r alla posizione s; il nuovo paniere ottimale corrisponde al punto Q. Tracciando un vincolo di bilancio virtuale t, parallelo ad s e tangente alla curva di indifferenza cui appartiene il paniere P, si individua il paniere R. Il passaggio da P ad R corrisponde all'effetto sostituzione; il passaggio da R a Q corrisponde all'effetto reddito; il passaggio da P a Q corrisponde all'effetto prezzo. quantità di vestiario t R Q s P r quantità di cibo 6.7. Vedi Frank, pp. 10, § 4.3.3 e p.118, § 4.4.1. 6.8. Vedi Frank, p. 111, § 4.3.4. 6.9. Vedi Frank, p. 108 e seguenti. 6.10.Nella figura seguente è rappresentato anche il vincolo di bilancio nel caso in cui, fermi restando il prezzo del cibo e il reddito monetario, il prezzo del vestiario raddoppi. Il nuovo paniere ottimale è rappresentato dal punto Q. La quantità di cibo risulta inferiore a quella acquistata in precedenza. Tracciando una retta parallela al nuovo vincolo di bilancio e tangente alla curva di indifferenza che passa per P, è possibile individuare l'effetto sostituzione (passaggio da P a R) e l'effetto reddito (passaggio da R a Q). Per il cibo, l'effetto sostituzione dovuto al raddoppio del prezzo del vestiario è positivo, mentre l'effetto reddito è negativo. cibo R P Q vestiario 6.11. Frank, p. 110 e seguenti (le risposte sono: a) FALSO; b) FALSO; c) VERO; d) FALSO) 7.1. Poiché il prezzo è aumentato del 10%, il consumatore potrà acquistare la stessa quantità di quel bene spendendo 20000 lire in più. L'aumento del reddito gli consente perciò di acquistare lo stesso paniere di prima. Ma, salvo casi particolari, questo comporta una sovracompensazione, e perciò il benessere del signor Demetrio aumenterà. 7.2. Poiché il prezzo è aumentato del 12%, il consumatore potrà acquistare la stessa quantità di quel bene spendendo 18000 lire in più. L'aumento del reddito gli consente perciò di acquistare lo stesso paniere di prima. Ma, salvo casi particolari, questo comporta una sovracompensazione, e perciò il benessere del signor Demetrio aumenterà. 7.3. Vedi Frank, p. 717 e seguenti (le risposte sono: a) FALSO; b) VERO; c) VERO; d) FALSO); e) FALSO) 7.4. L'indice di Laspeyres segnala un aumento del costo della vita del 25%. Anche l'aumento del reddito del signor Bianchi è stato del 25%. Perciò, poiché l'indice di Laspeyres sovrastima la variazione del costo della vita, il benessere del signor Bianchi è aumentato. 7.5. L'indice di Laspeyres segnala un aumento del costo della vita del 25%. L'aumento del reddito del signor Bianchi è stato superiore al 25%. Perciò, poiché l'indice di 338 Trentatreesima lezione Laspeyres sovrastima la variazione del costo della vita, il benessere del signor Bianchi è aumentato. 7.6. Vedi Frank, p. 717 e seguenti 7.7. Vedi Frank, p. 717 e seguenti 7.8. Vedi Frank, p. 717 e seguenti 8.1. Indichiamo con p' e q' il prezzo e la quantità di equilibrio dopo l'introduzione dell'imposta. Tenuto conto dell'elasticità della domanda, dovrà essere: (q'-50000)/50000 = -1,2 (p'-8000)/8000. Tenuto conto dell'elasticità dell'offerta e del fatto che i venditori dovranno versare L. 2000 di imposta allo stato, dovrà essere: (q'-50000)/50000 = 0,8 (p'-8000-2000)/8000. Pertanto dovrà essere: -1,2 (p'-8000)/8000 = 0,8 (p'-8000-2000)/8000, da cui: 2 p' = 9600 + 8000 p' = 8800 q' = 44000 gettito fiscale = 44000*2000 = 88000000. Allo stesso risultato si poteva pervenire per altra via, considerando funzioni di domanda e di offerta lineari. Conoscendo l'elasticità della domanda, si può stimare l'inverso della pendenza della curva di domanda: ΔΔQpQp =−=−=−121250000800075,,, . Pertanto, l'equazione della funzione (lineare) di domanda è la seguente: Q=-7,5p+B dove B è una costante tale che, per p=8000, sia Q=50000: 50000 = -7,5 * 8000 + B; da cui: B = 50000+7,5*8000 = 110000. Pertanto, l'equazione della funzione (lineare) di domanda è la seguente: Q = -7,5 p + 110000. Si analogamente per calcolare l'equazione della funzione (lineare) di offerta: ΔΔprocede QpQp===08085000080005,, . Q=5p+D dove D è una costante tale che, per p=8000, sia Q=50000: 50000 = 5 * 8000 + D; D = 50000-5*8000 = 10000. Pertanto, l'equazione della funzione (lineare) di offerta è la seguente: Q = 5 p + 10000. Con l'introduzione di una imposta di L. 2000 a pezzo, la curva di offerta diventa: Q = 5 (p-2000) + 10000. Ponendo questa equazione a sistema con l'equazione della domanda si ha: Q = -7,5 p + 110000. Q = 5 (p-2000) + 10000. (7,5+5) p = 110000+5*2000-10000 12,5 p = 110000; da cui si ottiene: p = 8800 Q = 44000. 8.2. La variazione percentuale della domanda è pari alla variazione percentuale del prezzo (che in questo caso è -4,17%) moltiplicata per l'elasticità. Perciò la domanda varierà percentualmente di 1,5*4,17 = 6,26%, e quindi ammonterà, approssimativamente, a 20000 (1+0,0626) = 21252. 8.3. La variazione percentuale della domanda è pari alla variazione percentuale del prezzo (che in questo caso è +2,5%) moltiplicata per l'elasticità. Perciò la domanda varierà percentualmente di -0,8*2,5 = -2%, e quindi ammonterà, approssimativamente, a 20000 (1-0,02) = 19600 8.4. Un raddoppio del reddito equivale ad un aumento del 100%. Per ottenere l'aumento percentuale delle singole spese, bisognerà quindi moltiplicare 100 per l'elasticità della domanda rispetto al reddito. I sei beni di consumo varieranno quindi, rispettivamente, del 50%, del 150%, del 20% (in diminuzione), del 120%, del 140%, del 300%. I risultati sono pertanto quelli indicati nella tabella seguente. Beni di consumo vitto trasporto con mezzi privati trasporto con mezzi pubblici abitazione vestiario divertimento Elasticità della do mandamanda rispetto al reddito Spesa attuale Spesa a reddito raddoppiato 0,5 1,5 30 10 45 25 -0,2 10 8 1,2 1,4 3 30 15 5 66 36 20 8.5. Un raddoppio del reddito equivale ad un aumento del 100%. Per ottenere l'aumento percentuale delle singole spese, bisognerà quindi moltiplicare 100 per l'elasticità della domanda rispetto al reddito. I sei beni di consumo varieranno quindi, rispettivamente, del 70%, del 140%, del 30% (in diminuzione), del 140%, del 120%, del 300%. I risultati sono pertanto quelli indicati nella tabella seguente. 340 Beni di consumo vitto trasporto con mezzi privati trasporto con mezzi pubblici abitazione vestiario divertimento Trentatreesima lezione Elasticità della do mandamanda rispetto al reddito Spesa attuale Spesa a reddito raddoppiato 0,7 1,4 40 10 68 24 -0,3 10 7 1,4 1,2 3 20 15 5 48 33 20 8.6. Indichiamo con p' e q' il prezzo e la quantità di equilibrio dopo l'introduzione dell'imposta. Tenuto conto dell'elasticità della domanda, dovrà essere: (q'-80000)/80000 = -1,5 (p'-10000)/10000. Tenuto conto dell'elasticità dell'offerta e del fatto che i venditori dovranno versare L. 2000 di imposta allo stato, dovrà essere: (q'-80000)/80000 = 0,5 (p'-10000-2000)/10000. Pertanto dovrà essere: -1,5 (p'-10000)/10000 = 0,5 (p'-10000-2000)/10000, da cui: 2 p' = 15000 + 6000 p' = 10500 q' = 74000 gettito fiscale = 74000*2000 = 148000000. Allo stesso risultato si poteva pervenire per altra via, considerando funzioni di domanda e di offerta lineari. Conoscendo l'elasticità della domanda, si può stimare l'inverso della pendenza della curva di domanda: ΔΔQpQp =−=−=−1515800001000012,, . Pertanto, l'equazione della funzione (lineare) di domanda è la seguente: Q=-12p+B, dove B è una costante tale che, per p=10000, sia Q=80000: 80000 = -12 * 10000 + B; da cui: B = 80000+12*10000 = 200000. Pertanto, l'equazione della funzione (lineare) di domanda è la seguente: Q = -12 p + 200000. Si analogamente per calcolare l'equazione della funzione (lineare) di offerta: ΔΔprocede QpQp===050580000100004,, . Q=4p+D, dove D è una costante tale che, per p=10000, sia Q=80000: 80000 = 4 * 10000 + D; D = 80000-4*10000 = 40000. Pertanto, l'equazione della funzione (lineare) di offerta è la seguente: Q = 4 p + 40000. Con l'introduzione di una imposta di L. 2000 a pezzo, la curva di offerta diventa: Q = 4 (p-2000) + 40000. Ponendo questa equazione a sistema con l'equazione della domanda si ha: Q = -12 p + 200000. Q = 4 (p-2000) + 40000. (12+4) p = 200000+4*2000-40000 16 p = 168000; da cui si ottiene: p =10500 Q =74000 8.7. La variazione ipotizzata del prezzo corrisponde a una riduzione del 10%. Data la elasticità della domanda, questa aumenterà del 12%, e passerà quindi a 280000. Conseguentemente la spesa passa da 30*250000=7500000 a 27*280000=7560000. 8.8. Se i due beni sono normali, l’aumento del prezzo di uno di essi provoca un effetto reddito negativo anche sull’altro. Se i due beni sono complementi netti, l’effetto di sostituzione indiretto è negativo, e dunque anche l’effetto prezzo indiretto è negativo e i beni risultano complementi lordi. Se invece i due beni sono sostituti netti, l’effetto di sostituzione indiretto è positivo, e dunque l’effetto prezzo indiretto, in quanto somma di un effetto sostituzione positivo e di un effetto reddito negativo, può essere sia positivo (i beni risultano sostituti lordi) sia negativo (i beni risultano complementi lordi). 9.1. La risposta corretta è la a). Dal momento che il tasso di interesse attivo è uguale a quello passivo, il vincolo di bilancio intertemporale del signor Agrosti è un segmento di retta e passerà per i tre punti seguenti: - punto (30.000; 15.000) corrispondente alla scelta di spendere in consumi in ciascun anno una somma pari al reddito dell'anno; - punto (0; 46.200), dove 46.200 = 30.000 (1+0,04)+15.000, corrispondente alla situazione in cui il signor Agrosti risparmia tutto il reddito del primo anno e lo spende in consumi (aumentato degli interessi) nel secondo anno, aggiungendolo al reddito di quell'anno; - punto (44.423; 0), dove 44.423 = 30.000 + 15.000/(1+0,04), corrispondente alla situazione in cui il signor Agrosti prende a prestito, nel primo anno, una somma corrispondente al valore attuale di tutto il reddito del secondo anno (nel secondo anno la sua spesa in consumi sarà nulla). 9.2. Il vincolo di bilancio intertemporale del signor Agrosti è rappresentato nella figura, dove è individuata graficamente la situazione in cui la spesa in consumi è uguale nei due anni. Algebricamente, l'ammontare di questa spesa è determinabile con l'equazione seguente: C2 =(15.000-C1 )*1,04+30.000=C1 , da cui, posto C1 = C2 , si ha C1 = C2 = (15.000*1,04+30.000)/2,04 = 22.353. 342 Trentatreesima lezione C2 45.600 30.000 22.353 45° 15.00022.353 43.846 C 1 9.3. Il vincolo di bilancio intertemporale è rappresentato da una spezzata, con un punto d'angolo in corrispondenza del punto (100; 80), ossia del punto corrispondente alla situazione in cui il signor Agulfi spende ciascun anno in consumi esattamente il reddito dell'anno (in milioni di lire). La pendenza del tratto di sinistra della spezzata è pari a 1,05; la pendenza del tratto di destra è pari a -1,1. Se nel primo anno il signor Agulfi spenderà 75 milioni, risparmierà 25 milioni, il cui montante 25*1,05=26,25 si aggiungerà al reddito del secondo anno, 80 milioni, portando a 106,25 milioni la spesa in consumi del secondo anno. In corrispondenza di questa scelta, la pendenza del vincolo di bilancio è -1,05 e quindi, se si tratta della scelta ottima, questo sarà anche il valore del MRTP. C2 185 106,25 80 75 100 172,7 C1 9.4. Il vincolo di bilancio intertemporale è rappresentato da una spezzata, con un punto d'angolo in corrispondenza del punto (120; 80), ossia del punto corrispondente alla situazione in cui il signor Agulfi spende ciascun anno in consumi esattamente il reddito dell'anno (in milioni di lire). La pendenza del tratto di sinistra della spezzata è pari a 1,05; la pendenza del tratto di destra è pari a -1,1. Se nel primo anno il signor Agulfi spenderà 100 milioni, risparmierà 20 milioni, il cui montante 20*1,05=21 si aggiungerà al reddito del secondo anno, 80 milioni, portando a 101 milioni la spesa in consumi del secondo anno. In corrispondenza di questa scelta, la pendenza del vincolo di bilancio è -1,05 e quindi, se si tratta della scelta ottima, questo sarà anche il valore del MRTP. C2 206 101 80 100 120 192,7 C1 9.5. Il vincolo di bilancio del signor Agrosti è rappresentato nella figura seguente. Nella figura sono anche tracciate delle ipotetiche curve di indifferenza che rappresentano le preferenze intertemporali del signor Agrosti: la scelta ottimale risulta essere C1 *= 20.000 e C2 *= 25.400. 344 Trentatreesima lezione C2 46200 25.400 15.000 20.000 30.000 44.423 C1 9.6. Il vincolo di bilancio intertemporale è rappresentato da una spezzata, con un punto d'angolo in corrispondenza del punto (50000; 20000), ossia del punto corrispondente alla situazione in cui il signor Agulfi spende ciascun anno in consumi esattamente il reddito dell'anno. La pendenza del tratto di sinistra della spezzata è pari a -1,03; la pendenza del tratto di destra è pari a -1,06. Se nel primo anno il signor Agulfi spenderà 40000 euri, risparmierà 10000 euri, il cui montante 10000*1,03=10300 si aggiungerà al reddito del secondo anno, 20000, portando a 30300 la spesa in consumi del secondo anno. C2 70600 30300 20000 40000 50000 68868 C1 9.7. Il vincolo di bilancio intertemporale è rappresentato da una spezzata, con un punto d'angolo in corrispondenza del punto (60000; 30000), ossia del punto corrispondente alla situazione in cui il signor Agulfi spende ciascun anno in consumi esattamente il reddito dell'anno. La pendenza del tratto di sinistra della spezzata è pari a -1,04; la pendenza del tratto di destra è pari a -1,07. Se nel primo anno il signor Agulfi spenderà 40000 euri, risparmierà 20000 euri, il cui montante 20000*1,04=20800 si aggiungerà al reddito del secondo anno, 30000, portando a 50800 la spesa in consumi del secondo anno. C2 92400 50800 30000 40000 60000 88037 C1 10.1. Vedi Frank, p. 193, § 6.2.2. 10.2. Vedi Frank, p. 196, § 6.2.3. 10.3. Vedi Frank, p. 202, § 6.2. 11.1. L'operazione acquisto titoli potrà portare la ricchezza del signor Biagetti a 120000 (con probabilità del 40%); a 100000 (con probabilità del 10%); oppure a 90000 (con probabilità del 50%). Il valore atteso dell'operazione è pertanto: VA = 120000*0,40+100000*0,1+90000*0,5 = 103000. L'utilità attesa è: EU=++=041200000110000005900003203,*,*,*, Poiché non effettuando l'operazione manterrà una ricchezza certa di 100000 e quindi una utilità di 316,2, il signor Biagetti avrà convenienza ad effettuare l'operazione. 11.2. L'operazione acquisto titoli potrà portare la ricchezza del signor Biagetti a 70000 (con probabilità del 20%); a 50000 (con probabilità del 30%); oppure a 45000 (con probabilità del 50%). Il valore atteso dell'operazione è pertanto: VA = 70000*0,20+50000*0,3+45000*0,5 = 51500. L'utilità attesa è: EU =++=0270000035000005450002261,*,*,*, Poiché non effettuando l'operazione manterrà una ricchezza certa di 50000 e quindi una utilità di 223,6, il signor Biagetti avrà convenienza ad effettuare l'operazione. 11.3. Vedi Frank, p. 207. 11.4. Vedi Frank, p. 209. 346 Trentatreesima lezione 11.5. Vedi Frank, p.209. 11.6. Il 3% di 100000, ossia 3000. Se non si assicura, l'utilità attesa (che qui coincide con il valore atteso) sarà 0,97*M+0,3*(M-100000). Se si assicura pagando un premio P, avrà un valore certo (coincidente con l'utilità per l'ipotesi di neutralità) di M-P. Il premio di riserva è quel valore di P che uguaglia le due utilità (valori) attese, ossia quello che soddisfa l'equazione: 0,97*M+0,3*(M-100000)=M-P, equazione che, quale che sia il valore della ricchezza iniziale M, dà per soluzione P=3000. 12.1. Beni primari sono beni che costituiscono input di qualche processo produttivo del sistema considerato (nell'intervallo di tempo considerato) ma che non sono l'output di alcun processo produttivo del sistema considerato (nell'intervallo di tempo considerato). Beni finali sono beni che costituiscono l'output di qualche processo produttivo del sistema considerato (nell'intervallo di tempo considerato) ma che non sono l'input di alcun processo produttivo del sistema considerato (nell'intervallo di tempo considerato). Ben intermedi sono beni che costituiscono input di qualche processo produttivo del sistema considerato (nell'intervallo di tempo considerato) e che sono l'output di qualche processo produttivo del sistema considerato (nell'intervallo di tempo considerato). 12.2. Sono elementi flusso, misurati con riferimento ad un intervallo di tempo, sia gli input non durevoli di un processo di produzione (materie prime, energia, semilavorati) sia gli output del processo. Alla trasformazione degli input flusso in output presiedono gli elementi fondo (lavoratori, terra, macchinari, impianti), misurati con riferimento ad un istante di tempo, i quali provvedono un servizio che è misurato dal loro tempo di presenza all'interno del processo. Anche gli stock sono misurati con riferimento ad un istante di tempo e costituiscono accumuli di elementi flusso (scorte di materie prime, di semilavorati e di prodotti finiti). Gli stock sono decumulabili con una qualunque velocità, mentre i fondi possono cedere il loro servizio solo condizionatamente al passare del tempo (un lavoratore può fornire solo un'ora di lavoro all'ora). 12.3. Attivando processi elementari del tipo suddetto con una sfasatura temporale di mezz’ora, si otterrà un processo (in linea) che utilizza in ogni istante 5 unità dell'elemento fondo suddetto e produce 2 unità di output per unità di tempo. 12.4. Si ha efficienza nella produzione quando non è possibile aumentare la quantità prodotta di uno degli output senza contemporaneamente diminuire la quantità prodotta di qualche altro output o aumentare la quantità impiegata di qualche input, né è possibile diminuire la quantità impiegata di uno degli input senza contemporaneamente aumentare la quantità impiegata di qualche altro input o diminuire la quantità prodotta di qualche output. 13.1. Vedi Frank, p. 299, § 9.3. 13.2. Vedi Frank, p. 311, § 9.6.1. 13.3. Il prodotto (produttività) marginale del lavoro varia secondo l'espressione seguente: MPL = 50*0,2*K0,7L-0,8 Pertanto MPL è decrescente con L e dunque è rispettata la legge in questione. La somma degli esponenti di K e L nella funzione di produzione (di tipo Cobb-Douglas) è minore di 1, pertanto la funzione è caratterizzata da rendimenti decrescenti di scala. 13.4. Il prodotto (produttività) marginale del lavoro varia secondo l'espressione seguente: MPL = 100*0,5*K0,6L-0,5 Pertanto MPL è decrescente con L e dunque è rispettata la legge in questione. La somma degli esponenti di K e L nella funzione di produzione (di tipo Cobb-Douglas) è maggiore di 1, pertanto la funzione è caratterizzata da rendimenti crescenti di scala. 13.5. l prodotto (produttività) marginale del lavoro varia secondo l'espressione seguente: MPL = 100*0,4*K0,6L-0,6 Pertanto MPL è decrescente con L e dunque è rispettata la legge in questione. 348 Trentatreesima lezione La somma degli esponenti di K e L nella funzione di produzione (di tipo Cobb-Douglas) è uguale a 1, pertanto la funzione è caratterizzata da rendimenti costanti di scala. 13.6. Vedi Frank, pp. 310-11 e p. 313 (fig. 9.11.b). 13.7. Vedi Frank, pp. 310-11 e p. 313 (fig. 9.11.a). 13.8. Vedi Frank, p. 302, § 9.3.1 e p. 304, § 9.4. 13.9. Vedi Frank, p. 311, § 9.6.1. 13.10. Dalla tabella risulta che tutte le volte che entrambi gli input variano nella stessa proporzione, anche l'output varia nella stessa proporzione: 1000, 500 1200, 600 2000, 1000 3000, 1500 800 960 (tutto aumenta del 20%) 1600 (tutto aumenta del 100%) 2400 (tutto aumenta del 200%) 1400, 600 2800, 1200 1066 2132 (tutto aumenta del 100%) 1400, 1000 2800, 2000 1256 2512 (tutto aumenta del 100%) Pertanto la produzione appare caratterizzata da rendimenti costanti di scala. 13.11. Vedi Frank, p. 304, § 9.4 (le risposte sono le seguenti: a) FALSA; b) FALSA; c) FALSA; d) VERA) 14.1. Vedi Frank, p. 312 (la risposta corretta è la c) 14.2. Vedi Frank, p. 606 e seguenti. 14.3. Nella figura si traccia un qualunque isocosto, per esempio quello di livello 42000: 1000 L + 0,4 K = 42000. K 105000 P 50000 10000 10 50 L 42 Si traccia poi un isocosto parallelo al precedente e tangente all'isoquanto: il punto di tangenza P corrisponde alla combinazione dei due input che minimizza il costo di produzione di quella quantità di prodotto. 14.4. Nella figura si traccia un qualunque isocosto, per esempio quello di livello 21000: 500 L + 0,2 K = 21000. Si traccia poi un isocosto parallelo al precedente e tangente all'isoquanto: il punto di tangenza P corrisponde alla combinazione dei due input che minimizza il costo di produzione di quella quantità di prodotto. K 105000 P 50000 10000 10 42 50 L 14.5. Si può tracciare un qualunque isocosto; per esempio quello i cui punti corrispondono a combinazioni dei due input che, ai dati prezzi, hanno un costo totale di 30000. 350 Trentatreesima lezione v 2 50 P 20 10 10 20 50 v1 Tale isocosto incontrerà l'asse delle ascisse nel punto di ascissa 30000/750=40 e l'asse delle ordinate nel punto di ordinata 30000/600=50. Tutti gli isocosti relativi ai dati prezzi degli input sono paralleli a questo. Tra tutti quali che hanno punti comuni con l'isoquanto, si deve individuare quello di costo più basso (in questo caso non si può parlare in senso proprio di "tangenza" perché l'isoquanto non è liscio). Si può facilmente verificare sulla figura che tale isocosto passerà per il punto P, di coordinate (20, 50). Il costo minimizzato sarà pertanto 20*750+50*600 = 45000. 14.6. Aumentando di 20 unità la quantità di lavoro impiegato, la produzione aumenta di 80000. Perciò, aumentando di 5 unità la quantità di lavoro impiegato, la produzione aumenta (all'incirca) di 80000/4=20000. Ma 5 unità aggiuntive di lavoro equivalgono (al margine) a 1 unità di capitale. Dunque l'incremento di produzione che si può ottenere con una unità aggiuntiva di capitale (ossia il prodotto marginale del capitale) è 20000. Più sinteticamente, si può ricordare che il saggio marginale di sostituzione tecnica è uguale al rapporto tra i prodotti marginali. Perciò: MRTS = MPK/MPL e quindi MP K = MPL*MRTS. Ma il prodotto marginale del lavoro è 80000/20 = 4000 e MRTS = 5. Perciò MPK = 4000*5 = 20000. 14.7. Frank, pag. 302 e ss., § 9.3.1 (la risposta corretta è la b). 15.1. Vedi Frank, p. 345, § 10.5.4. 15.2. Nella figura vi sono due errori, fra loro collegati. Poiché la curva del costo medio è una retta, la curva del costo marginale deve essere una retta con la stessa ordinata all'origine e con pendenza doppia: nella figura, la prima condizione è rispettata, mentre la seconda non lo è. Questo porta al secondo errore: infatti la curva (retta) del costo marginale dovrebbe incontrare la curva del costo medio nel suo punto di minimo, mentre nella figura la incontra in un punto in cui il costo medio è già crescente. 15.3. Vedi Frank, p. 331, § 10.2.2. 15.4. Vedi Frank pag. 337 § 10.4. 15.5. Vedi Frank, pag. 331 e ss. § 10.2.2. 15.6. Passando da una produzione di 14000 pezzi a una di 15000 il costo medio di breve periodo aumenta. Questo fatto è compatibile con le seguenti situazioni: MC MC AC 12 10 AC 12 10 14 15 Fig. A 14 15 Fig. B a. il costo medio minimo si ottiene in corrispondenza di una produzione inferiore o uguale a 14000. b. il costo medio minimo si ottiene in corrispondenza di una produzione compresa tra 14000 e 15000 pezzi (fig. B). In entrambi i casi, in corrispondenza della produzione attuale di 15000, il costo marginale risulta superiore a 1200. 15.7. Vedi Frank pag. 331 §10.2.2. (la differenza è costituita dal costo medio fisso e quindi tende a diminuire, perché l'incidenza del costo fisso su ciascuna unità prodotta si riduce al crescere della produzione). 16.1. Vedi Frank, p. 338, § 10.5. 16.2. Vedi Frank, p.338, § 10.5 e p. 352, § 10.6. 16.3. Vedi Frank, p. 326 e p. 331, § 10.2.2. 16.4. Vedi Frank, p.353, § 10.7. 16.5. Dai dati forniti nel testo risulta: - che l'attuale impianto non è quello ottimale nel lungo periodo; - che l'impianto ottimale nel lungo periodo risulterebbe sottoutilizzato: il che vuol dire che il costo medio di breve (con questo impianto ottimale) - e quindi anche il costo medio di lungo periodo - sono in quel punto decrescenti. La seguente figura rispetta tutte queste condizioni. 352 Trentatreesima lezione costi unitari 30000 SAC relativa all'impianto che minimizza il costo per la quantità 500 27000 SAC relativa all'impianto attuale 24000 LAC 500 550 quantità 16.6. Dai dati forniti nel testo risulta: - che l'attuale impianto non è quello ottimale nel lungo periodo; - che l'impianto ottimale nel lungo periodo risulterebbe sottoutilizzato: il che vuol dire che il costo medio di breve (con questo impianto ottimale) - e quindi anche il costo medio di lungo periodo - sono in quel punto decrescenti. La seguente figura rispetta tutte queste condizioni. costi unitari SAC relativa all'impianto che minimizza il costo per la quantità 500 20000 SAC relativa all'impianto attuale 17000 LAC 800 850 quantità 16.7. In caso di rendimenti costanti di scala, il costo medio di lungo periodo è costante. costi unitari SAC LAC quantità 16.8. Vedi Frank, p.352, § 10.6. 16.9. Poiché l'impianto risulta sovrautilizzato, ciò significa che il costo medio (di breve periodo, ma di conseguenza anche di lungo periodo) risulta crescente. Pertanto il costo marginale è maggiore del costo medio e quindi maggiore di 12. 16.10. Poiché l'impianto risulta sottoutilizzato, ciò significa che il costo medio (di breve periodo, ma di conseguenza anche di lungo periodo) risulta decrescente. Pertanto il costo marginale è minore del costo medio e quindi minore di 10. 16.11. Vedi Frank, p. 338, § 10.5 (la risposta corretta è la c). 17.1. Vedi Frank, p. 381, § 11.9 (la risposta corretta è la b). 17.2. Vedi Frank, p. 371, § 11.4.1 (la risposta corretta è la d). 17.3. La condizione di massimizzazione del profitto è l'uguaglianza tra costo marginale e ricavo marginale, purché il prezzo sia non inferiore al costo medio variabile e purché il costo marginale sia superiore al ricavo marginale per quantità prodotte e vendute superiori a quella per la quale vale l'uguaglianza. Per un'impresa che opera come price taker sul mercato del prodotto, il ricavo marginale è uguale al prezzo; perciò, per una tale impresa la condizione di massimizzazione del profitto è l'uguaglianza tra costo marginale e prezzo, purché il prezzo sia non inferiore al costo medio variabile e purché il costo marginale sia crescente. Di conseguenza, per ciascun livello di prezzo superiore o uguale al costo medio variabile minimo, la quantità ottimale per l'impresa (e quindi la quantità offerta) è quella che uguaglia il costo marginale al prezzo. Per prezzi inferiori al costo medio variabile minimo, l'impresa non ha convenienza a produrre: pur dovendosi accollare (nel breve periodo) tutti i costi fissi, la perdita è sempre inferiore a quella che l'impresa avrebbe producendo (in tal caso, infatti, oltre a tutti i costi fissi, la perdita comprenderebbe anche la parte dei costi variabili non coperta dal prezzo). La curva di offerta dell'impresa, perciò, coincide con un tratto dell'asse delle ordinate per i prezzi inferiori al costo medio variabile minimo e coincide con la curva 354 Trentatreesima lezione di costo marginale a partire dal punto di minimo della curva di costo medio variabile, come appare nella figura (tratto marcato). costi unitari AC MC AVC quantità 17.4. Se la situazione iniziale è un equilibrio di lungo periodo del mercato, ciò significa che il prezzo corrisponde al costo medio minimo. Dunque il costo medio minimo di lungo periodo è pari a 10. Se la domanda aumenta, inizialmente il prezzo crescerà al di sopra del costo medio, creando extraprofitti che attireranno altre imprese nel mercato. La nuova offerta aggiuntiva farà scendere il prezzo fino a raggiungere di nuovo il livello minimo di 10 (l'industria è a costi costanti e dunque non ci sono effetti esterni che aumentino o riducano i costi delle imprese all'aumentare delle dimensioni dell'industria). Nella nuova situazione di equilibrio di lungo periodo il prezzo sarà di nuovo 10; la quantità scambiata, deducibile dalla nuova funzione di domanda, sarà Q = (110 - 10)/30 = 10/3. 17.5. Se la situazione iniziale è un equilibrio di lungo periodo del mercato, ciò significa che il prezzo corrisponde al costo medio minimo. Dunque il costo medio minimo di lungo periodo è pari a 200. Se la domanda aumenta, inizialmente il prezzo crescerà al di sopra del costo medio, creando extraprofitti che attireranno altre imprese nel mercato. La nuova offerta aggiuntiva farà scendere il prezzo fino a raggiungere di nuovo il livello minimo di 200 (l'industria è a costi costanti e dunque non ci sono effetti esterni che aumentino o riducano i costi delle imprese all'aumentare delle dimensioni dell'industria). Nella nuova situazione di equilibrio di lungo periodo il prezzo sarà di nuovo 200; la quantità scambiata, deducibile dalla nuova funzione di domanda, sarà Q = (1100 - 200)/20 = 45. 17.6. Poiché sia la situazione iniziale che quella finale sono di equilibrio di lungo periodo in un mercato di concorrenza perfetta, il prezzo in entrambi i casi sarà uguale al costo. Pertanto – in assenza dieffetti esterni - il prezzo aumenterà del 2% (passando da 100 a 102) e la quantità venduta diminuirà del 5% (ottenuto come prodotto dell'elasticità per la variazione percentuale del prezzo) e passerà quindi da 10000 a 9500. 17.7. Poiché sia la situazione iniziale che quella finale sono di equilibrio di lungo periodo in un mercato di concorrenza perfetta, il prezzo in entrambi i casi sarà uguale al costo. Pertanto – in assenza dieffetti esterni - il prezzo aumenterà del 3% (passando da 80 a 82,4) e la quantità venduta diminuirà del 6% (ottenuto come prodotto dell'elasticità per la variazione percentuale del prezzo) e passerà quindi da 25000 a 23500. 18.1. Conoscendo prezzo ed elasticità della domanda, siamo in grado di calcolare il ricavo marginale: 1 1 MR = p (1 − ) = 600(1 − ) = 200 η 1,5 Il ricavo marginale risulta pertanto inferiore al costo marginale: all'impresa conviene ridurre la quantità prodotta e venduta. 18.2. Conoscendo prezzo ed elasticità della domanda, siamo in grado di calcolare il ricavo marginale: MRp=−=−=()(,)114501115150η . Il ricavo marginale risulta pertanto superiore al costo marginale: all'impresa conviene aumentare la quantità prodotta e venduta. 18.3. Dalla funzione di domanda diretta, passando attraverso quella indiretta, si può ricavare la funzione di ricavo marginale: Q = 10 - 2 p, p = 5 - 0,5 Q MR = 5 - Q. Uguagliando ricavo marginale e costo marginale, si può determinare la quantità che massimizza il profitto: 5-Q=3 Q* = 2 p* = 5 - 0,5*2 = 4. 18.4. Dalla funzione di domanda diretta, passando attraverso quella indiretta, si può ricavare la funzione di ricavo marginale: Q = 120- 0,5 p p = 240 - 2 Q MR = 240 - 4 Q. Uguagliando ricavo marginale e costo marginale, si può determinare la quantità che massimizza il profitto: 240 - 4 Q = 40 Q* = 50 p* = 240 - 2 Q = 140. 18.5. Vedi Frank p. 414, § 12.4 (le risposte corrette sono le seguenti: a) VERO; b) FALSO; c) VERO; d) FALSO) 356 Trentatreesima lezione 18.6. Vedi Frank p. 368, § 11.4 e p. p. 414, § 12.4 (la risposta corretta è la e). 18.7. Vedi Frank p. 428, § 12.5. 18.8. Senza campagna pubblicitaria, l'impresa massimizza il profitto scegliendo la quantità che uguaglia ricavo marginale e costo marginale (uguale al costo medio, dato che questo è costate): MR = 80 - 10 Q = 30 Q* = 5, p* = 80 - 5*5 = 55 Il profitto massimizzato è: Π* = (55 - 30)* 5 = 125. Dopo la campagna pubblicitaria, si avrà: MR = 90 - 8 Q = 30 Q* = 7,5, p* = 90 - 4*7,5 = 60 Il profitto lordo massimizzato è: Π* = (60 - 30)* 7,5 = 225, da cui va tolto il costo per la pubblicità. Il profitto netto è pertanto di 125, e dunque la campagna pubblicitaria non modifica il risultato netto. 18.9. Senza campagna pubblicitaria, l'impresa massimizza il profitto scegliendo la quantità che uguaglia ricavo marginale e costo marginale (uguale al costo medio, dato che questo è costate): MR = 100 - 10 Q = 30 Q* = 7, p* = 100 - 5*7 = 65 Il profitto massimizzato è: Π* = (65 - 30)* 7 = 245. Dopo la campagna pubblicitaria, si avrà: MR = 110 - 8 Q = 30 Q* = 10, p* = 110 - 4*10 = 70. Il profitto lordo massimizzato è: Π* = (110 - 30)* 10 = 800, da cui va tolto il costo per la pubblicità. Il profitto netto è pertanto di 600, e dunque la campagna pubblicitaria risulta conveniente. 18.10. Nella situazione considerata il ricavo marginale risulta uguale a MR = p(1-1/|ε|)=600(1-1/1,5)=600(1-2/3)=600(1/3)=200 Perciò il ricavo marginale è minore del costo marginale: conviene ridurre la quantità prodotta. 18.11. Nella situazione considerata il ricavo marginale risulta uguale a MR = p(1-1/|ε|)=450(1-1/1,5)=450(1-2/3)=450(1/3)=150 Perciò il ricavo marginale è maggiore del costo marginale: conviene aumentare la quantità prodotta. 18.12. Vedi Frank, p. 414, § 12.4. 18.13. Vedi Frank, p.420, § 12.4.3. 18.14. Vedi Frank, p.417, § 12.4.2. 18.15. Nella data situazione, il ricavo marginale dell'impresa è calcolabile in base all'espressione che lega il ricavo marginale al prezzo e all'elasticità della domanda: MRp=−=−=()(,)11120111540η . Se il profitto risulta massimizzato, ciò significa che il ricavo marginale è uguale al costo marginale. Perciò il costo marginale deve essere 40. 18.16. Nella data situazione, il ricavo marginale dell'impresa è calcolabile in base all'espressione che lega il ricavo marginale al prezzo e all'elasticità della domanda: MRp =−=−=()(,)11240111240η . Se il profitto risulta massimizzato, ciò significa che il ricavo marginale è uguale al costo marginale. Perciò il costo marginale deve essere 40. 19.1. In caso di discriminazione perfetta, l'impresa ha convenienza a vendere fino al punto in cui l'ultima unità venduta ottiene un prezzo pari al costo marginale (che in questo caso coincide con il costo medio, visto che questo è supposto costante). In questo caso, dunque, la quantità ottimale è 25. Il profitto del monopolista perfettamente discriminante sarà dunque uguale all'area del triangolo in grigio, pari a 937,5. prezzo 100 45 D 10 10 25 40 quantità 19.2. In caso di discriminazione perfetta, l'impresa ha convenienza a vendere fino al punto in cui l'ultima unità venduta ottiene un prezzo pari al costo marginale (che in questo caso coincide con il costo medio, visto che questo è supposto costante). In questo 358 Trentatreesima lezione caso, dunque, la quantità ottimale è 250. Il profitto del monopolista perfettamente discriminante sarà dunque uguale all'area del triangolo in grigio, pari a 80000. prezzo 400 200 100 200 quantità 19.3. Se la discriminazione massimizza il profitto, ciò significa che il ricavo marginale è uguale in entrambi i mercati. Le espressioni che indicano tali ricavi marginali si possono ottenere a partire dalle funzioni di domanda: MR1 = 200 - 6 Q1 MR2 = 220 - 4 Q2 Sul primo mercato, essendo il prezzo 110, la quantità venduta sarà Q 1 = (200110)/3=30. Pertanto il ricavo marginale sarà MR1 = 200 - 6*30 = 20. prezzo 200 150 100 50 D1 50 D2 100 quantità Il ricavo marginale dovrà dunque essere uguale a 20 anche sul secondo mercato; il che significa che la quantità venduta su tale mercato dovrà essere: Q 2 = (220-20)/4=50. Il prezzo sul secondo mercato è ora deducibile dalla funzione di domanda: p 2 = 220-2*50 = 120. La determinazione di tale prezzo può anche essere fatta graficamente, come nella figura. Tracciate le curve di domanda, D1 e D2 , se ne ricavano le due corrispondenti curve del ricavo marginale. Al livello 110 di prezzo, si legge la quantità venduta sul primo mercato, 30; in corrispondenza di tale quantità, si legge il ricavo marginale sul primo mercato, 20. Lo stesso ricavo marginale, nel secondo mercato corrisponde alla quantità 50, dalla quale si risale al prezzo 120. 19.4. Se la discriminazione massimizza il profitto, ciò significa che il ricavo marginale è uguale in entrambi i mercati. Le espressioni che indicano tali ricavi marginali si possono ottenere a partire dalle funzioni di domanda: MR1 = 1500 - 60 Q1 MR2 = 1200 - 40 Q2 Sul primo mercato, essendo il prezzo 900, la quantità venduta sarà Q 1 = (1500900)/30=20. Pertanto il ricavo marginale sarà MR1 = 1500 - 60*20 = 300. Il ricavo marginale dovrà dunque essere uguale a 300 anche sul secondo mercato; il che significa che la quantità venduta su tale mercato dovrà essere: Q 2 = (1200-300)/40=22,5. Il prezzo sul secondo mercato è ora deducibile dalla funzione di domanda: p 2 = 1200-20*22,5 = 750. La determinazione di tale prezzo può anche essere fatta graficamente. Tracciate le curve di domanda, D 1 e D2 , se ne ricavano le due corrispondenti curve del ricavo marginale. Al livello 900 di prezzo, si legge la quantità venduta sul primo mercato, 20; in corrispondenza di tale quantità, si legge il ricavo marginale sul primo mercato, 300. Lo steso ricavo marginale, nel secondo mercato corrisponde alla quantità 22,5, dalla quale si risale al prezzo 750. 19.5. La figura presenta graficamente il problema. prezzo 10 surplus in caso di monopolio perdita di surplus nel monopolio pm=6,5 pc = 3 D MR Qm=3,5 5 Qc =7 10 quantità 360 Trentatreesima lezione In caso di concorrenza, il prezzo è 3 e la quantità venduta è 7. Il surplus (dei consumatori) ammonta a 24,5 (area del triangolo con colorazione mista). In caso di monopolio, il prezzo è 6,5 e la quantità venduta è 3,5. Il surplus dei consumatori corrisponde alla superficie del triangolo grigio chiaro (area pari a 6,125); il surplus del produttore corrisponde alla superficie del quadrato grigio chiaro (area pari a 12,25); pertanto il surplus complessivo ammonta a 18,375.La perdita che si manifesta passando dalla concorrenza al monopolio è quindi pari a 24,5-18,375 = 6,125, corrispondente all'area del triangolo grigio scuro. 19.6. Determinate le funzioni di ricavo marginale sui tre mercati, si uguaglia ciascun ricavo marginale al costo marginale: MR1 =100 - 4 q1 = 50 MR2 =120 - 5 q2 = 50 MR3 =150 - 4q3 = 50 da cui: q1 = 50/4 p1 = 75 q2 = 70/5 p2 = 65 q3 = 100/4 p3 = 100. Q = q1 + q2 + q3 = (250+280+500)/20=51,5. 19.7. La figura presenta graficamente il problema. prezzo 240 surplus in caso di monopolio perdita di surplus nel monopolio pm=140 p = 40 c MR Q =50 60 m D Qc = 100 120 quantità In caso di concorrenza, il prezzo è 40 e la quantità venduta è 100. Il surplus (dei consumatori) ammonta a 10000 (area del triangolo con colorazione mista). In caso di monopolio, il prezzo è 140 e la quantità venduta è 50. Il surplus dei consumatori corrisponde alla superficie del triangolo grigio chiaro (area pari a 2500); il surplus del produttore corrisponde alla superficie del quadrato grigio chiaro (area pari a 5000); pertanto il surplus complessivo ammonta a 7500. La perdita che si manifesta passando dalla concorrenza al monopolio è quindi pari a 10000 - 7500 =2500, corrispondente all'area del triangolo grigio scuro. 20.1. Vedi Frank, p. 759, § A.13.1. 20.2. Vedi Frank, p. 381, § 11.9 e p. 759, § A.13.1. 20.3. In corrispondenza della quantità 100, il costo marginale risulta uguale al ricavo marginale e, al prezzo 30, le vendite programmate coincidono con le vendite effettive e sono pari a 100. Vi è quindi equilibrio di breve periodo. Inoltre, il prezzo è anche uguale al costo medio (la curva del costo medio è tangente alla curva delle vendite programmate in corrispondenza della quantità 100) e pertanto vi è anche equilibrio di lungo periodo del mercato. 20.4. Vedi Frank, p. 759, Appendice al Capitolo 13.. 20.5. Vedi Frank, p. 762, § A.13.1.2. 20.6. La domanda effettiva misura la domanda rivolta all'impresa in funzione del prezzo, supposto comune a tutte le imprese. Perciò può essere ottenuta a partire dall'espressione data ponendo p = P: q = 1000 - 90 P. 21.1. L'unica soluzione del gioco tra giocatori razionali è quella per cui Lucci prende l'euro alla prima mossa e il gioco termina.. 362 Trentatreesima lezione L 1 S 0 0 L 2 4 S 0 0 L 8 16 S 0 L 0 32 64 S 0 L 0 128 256 S 0 0 L 512 1024 0 512 512 Infatti, il giocatore cui tocca l'ultima mossa avrebbe la scelta tra prendere l'intera somma a quel momento disponibile o passare e prenderne solo la metà; pertanto egli prenderà l'intera somma e l'altro giocatore resterà a bocca asciutta. Prevedendo ciò, al giocatore cui tocca la penultima mossa avrebbe convenienza a prendere; ma allora al giocatore cui tocca la terzultima mossa converrà prendere; e così via. Poiché la soluzione è palesemente inefficiente, si può ipotizzare ogni sorta di accordi a spese del "benefattore"; ma i dati non offrono nessun appiglio per supporre che si arriverà ad un tale accordo né per supporre che, se l'accordo ci sarà, esso verrà rispettato 21.2. I risultati sono così valutati dai due giocatori: Caso A: l'impresa propone w=100 e i lavoratori accettano: il risultato per l'impresa è 100 e altrettanto è quello dei lavoratori. Caso B: l'impresa propone w=110 e i lavoratori accettano: il risultato per l'impresa è 90 e quello dei lavoratori è 110. impresa propone 100 propone 110 lavoratori accettano lavoratori contropropongono accettano 120 contropropongono 110 impresa 100 impresa 100 accetta rompe 89,5 90 110 93,5 rompe 79,3 103,7 90 accetta 110 79 121 Caso C: l'impresa propone 100, i lavoratori contropropongono 110 e l'impresa accetta: il risultato per l'impresa è 90 e quello dei lavoratori è 110. Caso D: l'impresa propone 110, i lavoratori contropropongono 121 e l'impresa accetta: il risultato per l'impresa è 79 e quello dei lavoratori è 121. Caso E: l'impresa propone 100, i lavoratori contropropongono 110 e l'impresa non accetta. In questo caso, entrambi si aspettano che dalle nuove trattative uscirà con l'80% di probabilità un salario di 100 e con il 20% un salario di 110: il salario atteso è quindi 80+22=102; il risultato atteso per l'impresa è quindi 200-102=98, da cui va tolto 8,5 (risultato netto per l'impresa 89,5). Il risultato atteso per i lavoratori è 102, da cui va tolto 8,5 (risultato netto per i lavoratori 93,5). Caso F: l'impresa propone 110, i lavoratori contropropongono 121 e l'impresa non accetta. In questo caso, entrambi si aspettano che, dalle nuove trattative uscirà con l'80% di probabilità un salario di 110 e con il 20% un salario di 121: il salario atteso è quindi 88+24,2=112,2; il risultato atteso per l'impresa è quindi 200-112,2=87,8, da cui va tolto 8,5 (risultato netto per l'impresa 79,3). Il risultato atteso per i lavoratori è 112,2 da cui va tolto 8,5 (risultato netto per i lavoratori 103,7). La contrattazione può assumere la rappresentazione come gioco in forma estensiva, come nella figura sopra. Per induzione all'indietro, si individuano due soluzioni equivalenti: o l'impresa propone 100, i lavoratori contropropongono 110 e l'impresa accetta; oppure l'impresa propone 110 e i lavoratori accettano. 21.3. Il gioco può essere rappresentato con l'albero seguente. 364 Trentatreesima lezione Impresa A prezzo basso prezzo alto Impresa B non entra 700 Impresa B entra entra Impresa A Impresa A 0 non cambia prezzo cambia prezzo 50 300 50 -50 non entra non cambia prezzo cambia prezzo 150 500 50 200 0 -50 Per induzione all'indietro si individua la soluzione secondo la quale l'impresa A applica un prezzo basso e l'impresa B non entra nel mercato (l'impresa A guadagna 500 e l'impresa B niente). 21.4. Il gioco può essere rappresentato nel modo seguente. Impresa potenziale entrante Non entra 0 Entra Impresa attiva 100 Non reagisce Reagisce -30 20 50 20 Per induzione all'indietro si individua la soluzione secondo la quale l'impresa potenziale entrante entra e l'altra non reagisce. 21.5. Qualora PRIMO scelga a, SECONDO sceglierà C e PRIMO otterrà -20. Qualora PRIMO scelga b o c, SECONDO, pur non conoscendo la scelta di PRIMO, avrà convenienza a scegliere S, che in ogni caso gli dà un risultato migliore di D. Prevedendo questo, PRIMO sa che se sceglie b otterrà 50 e se sceglie c otterrà 20. Pertanto PRIMO sceglierà b e SECONDO S. Se il gioco fosse a informazione perfetta, mediante induzione all'indietro si individuerebbe la stessa soluzione del caso a informazione perfetta. 22.1. Una matrice dei pagamenti che risponde ai requisiti richiesti è la seguente. -50 60 50 -60 -60 50 60 -50 22.2. Le strategie di PRIMO sono tre: S, C e D. Le strategie di SECONDO sono quattro (il gioco è ad informazione imperfetta: SECONDO deve decidere in due insiemi di informazione, in ciascuno dei quali ha due sole alternative tra cui scegliere): aA (ossia: scegliere a nel primo insieme di informazione, costituito da un solo nodo, e scegliere A nel secondo insieme di informazione, costituito da due nodi); aB; bA; bB. La matrice dei pagamenti è pertanto la seguente, nella quale si evidenzia un'unica soluzione di equilibrio di Nash, con scelta della strategia S da parte di PRIMO e della strategia bB da parte di SECONDO. aA S C D aB 10 bA 10 5 6 -5 5 -9 -2 -8 -5 7 6 4 -7 8 bB -9 -2 -8 -5 7 4 -7 8 -5 22.3. Per induzione all'indietro, si osserva che: - se PRIMO sceglie S, SECONDO avrà convenienza a scegliere b, con guadagno 0 per PRIMO; - se PRIMO sceglie C, il gioco finisce e PRIMO avrà un guadagno di 10; - se PRIMO sceglie D, SECONDO avrà convenienza a scegliere d, con "guadagno" di -10 per PRIMO. Pertanto PRIMO ha convenienza a scegliere C, e il gioco finisce con un guadagno di 10 per PRIMO e una corrispondente perdita per SECONDO (il gioco è a somma nulla). Per il passaggio alla forma normale, si osserva che PRIMO ha tre strategie, S, C e D, e SECONDO ha quattro strategie: ac (scegliere a se PRIMO sceglie S e scegliere c se PRIMO sceglie D; se PRIMO sceglie C, SECONDO non ha diritto a scelta alcuna); ad; bc; bd. La matrice dei pagamenti è pertanto la seguente: 366 Trentatreesima lezione ac ad 30 S 30 -30 10 C bc bd 0 0 -30 10 0 10 0 10 -10 -10 -10 -10 50 -10 50 -10 -50 10 -50 10 D Per SECONDO, le strategie ac, ad e bc sono debolmente dominate (pertanto la bd è debolmente dominante). Di conseguenza, PRIMO si aspetta che SECONDO scelga bd, e la sua migliore risposta è C. Ritroviamo quindi la soluzione già individuata per induzione all'indietro. 22.4. Le strategie di PRIMO sono quattro: Ss (scegliere S e, se SECONDO sceglie B, scegliere s) Sd (scegliere S e, se SECONDO sceglie B, scegliere d) C (scegliere C) D (scegliere D) Le strategie di SECONDO sono quattro: Aa (scegliere A se PRIMO sceglie S; scegliere a se PRIMO sceglie C o D) Ab (scegliere A se PRIMO sceglie S; scegliere b se PRIMO sceglie C o D) Ba (scegliere B se PRIMO sceglie S; scegliere a se PRIMO sceglie C o D) Bb (scegliere B se PRIMO sceglie S; scegliere b se PRIMO sceglie C o D). La matrice dei pagamenti del gioco si presenta pertanto nella forma seguente: Aa Ss Ab 10 10 -5 Sd 10 C 20 D -20 10 Ba 30 -5 10 -5 30 35 -5 30 -10 -10 30 10 0 20 -20 10 25 30 35 20 30 0 Bb 10 25 20 Considerando le soluzioni ammissibili per i due giocatori, si ha: Aa Ss 10 10 10 C 20 30 10 -5 0 30 35 -5 30 -20 10 Ba -5 -5 Sd D Ab 30 30 35 -10 20 -10 30 10 0 20 -20 10 25 Bb 10 25 20 Pertanto l’unica soluzione di equilibrio di Nash in strategie pure è C, Ab. 22.5. Il giocatore PRIMO ha quattro strategie: - scegliere S alla prima mossa e, qualora SECONDO scelga b, scegliere s (indichiamo questa strategia con Ss) - scegliere S alla prima mossa e, qualora SECONDO scelga b, scegliere d (indichiamo questa strategia con Sd) - scegliere C alla prima mossa (in questo caso non avrà altre occasioni di scelta) (indichiamo questa strategia con C) - scegliere D alla prima mossa (in questo caso non avrà altre occasioni di scelta) (indichiamo questa strategia con D) Il giocatore SECONDO ha quattro strategie: - - - - scegliere a se si trova nel primo insieme di informazione (cioè qualora PRIMO scelga A o scelga C: il gioco è a informazione imperfetta, perciò lui non sa quale delle due scelte è avvenuta) e scegliere A se PRIMO ha scelto D (di questo lui potrà rendersi conto) (indichiamo questa strategia con aA) scegliere a se si trova nel primo insieme di informazione e scegliere B se PRIMO ha scelto D e scegliere A se PRIMO ha scelto D (indichiamo questa strategia con aB) scegliere b se si trova nel primo insieme di informazione e scegliere A se PRIMO ha scelto D e scegliere A se PRIMO ha scelto D (indichiamo questa strategia con bA) scegliere b se si trova nel primo insieme di informazione e scegliere B se PRIMO ha scelto D e scegliere A se PRIMO ha scelto D (indichiamo questa strategia con bB) La matrice dei pagamenti è la seguente 368 Trentatreesima lezione aA aB 1 1 Ss Sd C D bA 0 2 1 0 1 3 3 4 1 0 0 0 2 2 1 2 0 2 4 4 4 2 3 3 0 0 1 bB 2 1 2 Si possono quindi determinare le soluzioni diequilibrio di Nash (in strategie pure) (se ne esistono) considerando le migliori risposte di SECONDO alle strategie di PRIMO e le migliori risposte di PRIMO alle strategie di SECONDO: aA aB 1 Ss Sd C D bA 1 1 0 2 1 0 1 3 3 4 1 0 0 2 2 0 2 0 2 1 2 4 4 4 2 3 3 0 0 bB 1 2 Risultano quindi ben cinque soluzioni di equilibrio di Nash in strategie pure: Sd, bA Sd, bB C, bA C, bB D, aB La prima e la quarta portano allo stesso esito e lo stesso vale per la terza e la quarta. Questa soluzione è l’unica efficiente (per entrambi i giocatori è migliore o uguale delle altre) e vi sono quindi ragioni per ritenere che i giocatori si orientino su questa soluzione. 22.6. Considerando le soluzioni ammissibili per entrambi i giocatori, si individua un’unica soluzione di equilibrio di Nash in strategie pure, (B, b). Questa soluzione è dominata in senso paretiano dalla (C, a) (nel senso che quest’ultima soluzione è migliore per entrambi i giocatori). Non si tratta pertanto di un ottimo paretiano. a A B 10 30 60 C b 0 20 30 30 -10 40 c 20 0 -10 -30 40 -30 40 -80 50 22.7. Il gioco è a informazione perfetta. PRIMO deve decidere alla prima mossa (A o B) e, nel caso in cui scelga A e SECONDO scelga S, deve anche scegliere tra a e b. Perciò le strategie possibili per PRIMO sono le seguenti: Aa, Ab, B SECONDO deve solo scegliere tra S e D qualora PRIMO scelga A alla prima mossa. Perciò le strategie di SECONDO sono: S, D. La matrice dei pagamenti si presenta pertanto come segue: 370 Trentatreesima lezione S D -40 30 Aa -30 40 50 30 Ab -50 20 -30 20 B -20 -20 L'unico equilibrio di Nash in strategie pure è Ab, D (che corrisponde alla soluzione ricavabile per induzione all'indietro) 22.8. Per il giocatore PRIMO la C è una strategia dominata; SECONDO non ha strategie dominate. Eliminando però la strategie C di PRIMO, per SECONDO la a risulta dominata. Eliminando anche questa strategia, si ottiene la matrice seguente: b c 40 A 40 -30 -30 B 80 30 140 60 A questo punto B risulta essere una strategia dominata e pertanto si individua la coppia (A, c) come soluzione. (A, c) è una soluzione di equilibrio di Nash in strategie pure, ottenibile anche considerando le migliori risposte di ciascun giocatore alle strategie dell'altro e quindi individuando una coppia di strategie ammissibile per entrambi: a A B C b 50 c 40 -30 60 40 -30 -30 90 -50 30 140 30 100 80 60 -20 -20 0 23.1. Sulla matrice dei pagamenti si possono individuare le soluzioni ammissibili per ciascuno dei due giocatori. α β 100 χ 50 -300 A 120 B C 200 -400 -50 30 -200 -20 70 40 0 -10 20 D 0 -30 -80 150 -40 50 -30 100 0 Risultano pertanto due soluzioni di equilibrio di Nash. Entrambe sono inefficienti (non sono ottimi paretiani), perché paretianamente dominate dalla soluzione (A, α ); poiché tra le due, la (D, β ) dominala (A, χ ), è ipotizzabile che la prima sia la soluzione verso la quale i due giocatori si orienteranno. 23.2. Le soluzioni ammissibili per il giocatore PRIMO sono (A, α) e (B, β); le soluzioni ammissibili per il giocatore SECONDO sono (A, β ) e (B, α ). Non esistono perciò soluzioni di equilibrio di Nash in strategie pure. Detta allora p la generica strategia mista di PRIMO consistente nel giocare la strategia pura A con probabilità p e la strategia B con probabilità (1-p), a detta q la generica strategia mista di SECONDO consistente nel giocare la strategia pura α con probabilità q e la strategia β con probabilità (1-q), i risultati attesi se sarà giocata una coppia di strategie miste saranno: per PRIMO: 2pq+3p(1-q)+0(1-p)q+4(1-p)(1-q)=2pq+3p-3pq+4-4p-4q+4pq= =3pq-p-4q+4=p(3q-1)-4q+4 per SECONDO: 1pq+2p(1-q)+3(1-p)q+2(1-p)(1-q)= =pq+2p-2pq+3q-3pq+2-2p-2q+2pq=-2pq+q+2=q(-2p+1)+2. Si avrà soluzione in strategie miste se sarà 3q-1=0 (altrimenti PRIMO avrebbe convenienza a scegliere una delle strategie pure) e -2p+1=0 (altrimenti SECONDO avrebbe convenienza a scegliere una delle strategie pure). Le strategie di equilibrio saranno perciò p*=1/2 e q*=1/3. 23.3. Le soluzioni ammissibili per il giocatore PRIMO sono (A, β) e (B, α); le soluzioni ammissibili per il giocatore SECONDO sono (A, α ) e (B, β ). Non esistono perciò soluzioni di equilibrio di Nash in strategie pure. Detta allora p la generica strategia mista di PRIMO consistente nel giocare la strategia pura A con probabilità p e la strategia B con probabilità (1-p), a detta q la generica 372 Trentatreesima lezione strategia mista di SECONDO consistente nel giocare la strategia pura α con probabilità q e la strategia β con probabilità (1-q), i risultati attesi se sarà giocata una coppia di strategie miste saranno: r PRIMO: 2pq+4p(1-q)+3(1-p)q+0(1-p)(1-q)=2pq+4p-4pq+3q-3pq=-5pq+4p+3q= =p(-5q+4)+3q per SECONDO: 3pq+2p(1-q)+1(1-p)q+3(1-p)(1-q)= =3pq+2p-2pq+q-pq+3-3p-3q+3pq=3pq-2q-p+3=q(3p-2)-p+3. Si avrà soluzione in strategie miste se sarà -5q+4=0 (altrimenti PRIMO avrebbe convenienza a scegliere una delle strategie pure) e 3p-2=0 (altrimenti SECONDO avrebbe convenienza a scegliere una delle strategie pure). Le strategie di equilibrio saranno perciò p*=2/3 e q*=4/5. 23.4. Il problema può essere rappresentato come un gioco in forma normale, con la seguente matrice dei pagamenti. P P 30 NP 20 NP 80 30 20 50 80 50 Fare pubblicità è una strategia dominante per entrambe le imprese. La soluzione di equilibrio di Nash (in strategie dominanti) è quindi (Pubblicità, Pubblicità) ed è una soluzione inefficiente. Il gioco ha infatti la struttura del "dilemma dei prigionieri". 23.5. Strategie di PRIMO: S C DL DM Strategie di SECONDO: ac ad bc bd ac S 20 C 10 DL DM ad 20 10 10 20 0 10 10 50 bd 20 10 10 -20 bc 0 10 10 -20 80 100 80 -20 40 -20 80 0 80 10 50 100 40 0 Dalla forma normale risultano tre equilibri di Nash: (S, ac); (DL, ad) e (DL, bd). Il primo può essere scartato sulla base del fatto che S è una strategia (debolmente) dominata per PRIMO. Analogamente, l'equilibrio (DL, bd) può essere scartato sulla base del fatto che bd è una strategia (debolmente) dominata per SECONDO. Resta quindi soltanto l'equilibrio (DL, ad), l'unico cui si perverrebbe mediante induzione all'indietro sulla forma estensiva, come appare dalla figura qui sotto. PRIMO S SECONDO a 20 10 SECONDO C b 20 D 10 c 10 -20 0 d PRIMO 80 L 50 100 M 40 0 Dalla forma estensiva emerge che (S, ac) non è un equilibrio perfetto nei sottogiochi (non è razionale per SECONDO scegliere c se si trova nel nodo corrispondente); analogamente, (DL, bd) non è un equilibrio perfetto nei sottogiochi (non è razionale per SECONDO scegliere b se si trova nel nodo corrispondente). L'unico equilibrio di Nash perfetto nei sottogiochi è (DL, bd). 24.1. Una rappresentazione del problema in termini di gioco in forma estensiva è la seguente. 374 Trentatreesima lezione ALFA entrare aggressivo entrare conciliante BETA 1200-900 0 non entrare 0 accettare reagire 550-150 550 1200 -150 1200-500 Procedendo per induzione all'indietro, si osserva che, qualora ALFA entri "conciliante", BETA ha convenienza a reagire (rimane monopolista e, nonostante un costo di reazione di 500, il valore attuale dei suoi profitti netti resta 700, contro 550 nel caso di accettazione del rivale nel mercato). Perciò ALFA deve attendersi: - di avere un profitto di 300 se entra aggressivo; - di avere una perdita di 150 se entra conciliante (la perdita corrisponde al costo di entrata, non recuperabile); - di avere profitto nullo se decide di non entrare. ALFA ha quindi interesse a entrare aggressivo. La soluzione del gioco vede quindi ALFA insediato come monopolista al posto di BETA. Questa soluzione non è però efficiente (se ALFA entrasse conciliante e BETA accettasse l'ingresso, ALFA avrebbe un profitto netto di 400 (contro un profitto di solo 300 nel caso di entrata aggressiva) e BETA avrebbe un profitto di 550 (contro un profitto nullo nell'altro caso). Teoricamente vi è quindi spazio per un accordo, con tutte le difficoltà del caso perché la situazione corrispondente all'accordo (ALFA entra conciliante e BETA l'accetta) non è un equilibrio. 24.2. Il problema può essere impostato come gioco in forma normale, le strategie delle due imprese essendo rappresentate dal livello dei due prezzi. Il profitto della prima impresa, come funzione dei due prezzi, è espresso dalla seguente funzione: ΠA=(pA-20)QA=(pA-20)(1000-30pA+10pB)=1000pA-20000-30pA2+600pA+10pApB200pB)=-30pA2+1600pA+10pApB-200pB-20000 Derivando rispetto a pA e uguagliando a zero si ottiene la condizione di massimizzazione del profitto di A, dato il prezzo pB: -60pA+1600+10pB=0 pA*=(1600+10pB)/60. Analogamente si ottiene la condizione di massimizzazione del profitto di B, dato il prezzo pA: ΠB=(pB-20)QB=(pB-20)(1000-30pB+10pA)=1000pB-20000-30pB2+600pB+10pApB200pA)=-30pB2+1600pB+10pApB-200pA-20000 -60pB+1600+10pA=0 pB*=(1600+10pA)/60. Considerando il sistema formato dalle due "funzioni di reazione", si ottiene: pA*=(1600+10pB*)/60. pB*=(1600+10pA*)/60, da cui: pA*=pB*=32. 24.3. Il problema può essere impostato come gioco (a informazione imperfetta) in forma normale, le strategie delle due imprese essendo rappresentate dal livello dei due prezzi. Il profitto della prima impresa, come funzione dei due prezzi, è espresso dalla seguente funzione: ΠA=(pA-200)QA=(pA-200)(100000-300pA+100pB)=100000pA-20000000300pA2+60000pA+100pApB-20000pB)=-300pA2+160000pA+100pApB-20000pB20000000. Derivando rispetto a pA e uguagliando a zero si ottiene la condizione di massimizzazione del profitto di A, dato il prezzo pB: -600pA+160000+100pB=0 pA*=(160000+100pB)/600. Analogamente si ottiene la condizione di massimizzazione del profitto di B, dato il prezzo pA: ΠB=(pB-200)QB=(pB-200)(100000-300pB+100pA)=100000pB-20000000300pB2+60000pB+100pApB-20000pA)=-300pB2+160000pB+100pApB-20000pA20000000. -600pB+160000+100pA=0 pB*=(160000+100pA)/600. Considerando il sistema formato dalle due "funzioni di reazione", si ottiene: pA*=(160000+100pB*)/600. pB*=(70000+100pA*)/600, da cui: pA*=pB*=320. 24.4. Dette q1 e q2 le quantità prodotte e vendute dalle due imprese, il prezzo si determinerà secondo l'espressione: p = 250 - 3 q1 - 3 q2 . Perciò il ricavo marginale della prima impresa sarà MR1 = 250 - 6 q1 - 3 q2 e quello della seconda impresa sarà MR2 = 250 - 3 q1 - 6q2 . Uguagliando ricavo marginale e costo marginale (uguale al costo medio perché quest'ultimo è supposto costante) si determinerà la funzione di reazione di ciascuna impresa: 250 - 6 q1 - 3 q2 = 100 funzione di reazione della prima impresa 250 - 3 q1 - 6q2 = 130 funzione di reazione della seconda impresa. Secondo il modello di Cournot, l'equilibrio è raggiunto nel punto di incontro delle due curve di reazione, ossia quando entrambe le equazioni che esprimono le funzioni di reazione sono soddisfatte: 376 Trentatreesima lezione 250 - 6 q1 - 3 q2 = 100 250 - 3 q1 - 6q2 = 130 La soluzione di questo sistema è q1 *= 20 q2 *= 10 In tale situazione di equilibrio il prezzo sarà p = 250 - 3 (q1 *+ q2 *) = 250 - 3*30 = 160. 24.5. Dette q1 e q2 le quantità prodotte e vendute dalle due imprese, il prezzo si determinerà secondo l'espressione: p = 260 - 2 q1 - 2 q2 . Perciò il ricavo marginale della prima impresa sarà MR1 = 260 - 4 q1 - 2 q2 e quello della seconda impresa sarà MR2 = 260 - 2 q1 - 4q2 . Uguagliando ricavo marginale e costo marginale (uguale al costo medio perché quest'ultimo è supposto costante) si determinerà la funzione di reazione di ciascuna impresa: 260 - 4 q1 - 2 q2 = 100 funzione di reazione della prima impresa 260 - 2 q1 - 4q2 = 120 funzione di reazione della seconda impresa. Secondo il modello di Cournot, l'equilibrio è raggiunto nel punto di incontro delle due curve di reazione, ossia quando entrambe le equazioni che esprimono le funzioni di reazione sono soddisfatte: 260 - 4 q1 - 2 q2 = 100 260 - 2 q1 - 4q2 = 120 La soluzione di questo sistema è q1 *= 30 q2 *= 20 In tale situazione di equilibrio il prezzo sarà p = 260 - 2 (q1 *+ q2 *) = 260 - 2*50 = 160. 24.6. Vedi Frank, p.463, § 13.2.1. 24.7. Dette q1 e q2 le quantità prodotte e vendute dalle due imprese, il prezzo si determinerà secondo l'espressione: p = 100 - 2 q1 - 2 q2 . Perciò il ricavo marginale della prima impresa sarà MR1 =100 - 4 q1 - 2 q2 e quello della seconda impresa sarà MR2 = 100 - 2 q1 - 4q2 . Uguagliando ricavo marginale e costo marginale (uguale al costo medio perché quest'ultimo è supposto costante) si determinerà la funzione di reazione di ciascuna impresa: 100 - 4 q1 - 2 q2 = 10 funzione di reazione della prima impresa 100 - 2 q1 - 4q2 = 16 funzione di reazione della seconda impresa. Secondo il modello di Cournot, l'equilibrio è raggiunto nel punto di incontro delle due curve di reazione, ossia quando entrambe le equazioni che esprimono le funzioni di reazione sono soddisfatte: 100 - 4 q1 - 2 q2 = 10 100 - 2 q1 - 4q2 = 16 La soluzione di questo sistema è q1 *= 16 q2 *= 13. In tale situazione di equilibrio il prezzo sarà p = 100 - 2 (q1 *+ q2 *) = 100 - 2*29 = 42. 25.1. Vedi Frank, p.483, § 13.2.5. 25.2. Entrambe le imprese sanno che il prezzo si determina sul mercato secondo l'espressione: p = 200 - 2 qL - 2qF dove qL è la quantità prodotta e venduta dall'impresa leader e q F la quantità prodotta e venduta dall'impresa follower. Il ricavo marginale dell'impresa follower sarà pertanto: MRF = 200 - 2qL - 4 qF. L'impresa follower, data la quantità che l'impresa leader deciderà di vendere, massimizzerà il suo profitto uguagliando ricavo marginale e costo marginale (il quale è, per ipotesi, costante): 200 - 2 qL - 4qF = 120; da cui qF(qL) = (80 - 2 qL)/4 = 20 - 0,5 qL è la funzione di reazione dell'impresa follower. L'impresa leader è, per ipotesi del modello, in grado di prevedere il comportamento dell'impresa follower, ossia conosce la sua funzione di reazione. Pertanto sa che, se decide di vendere la quantità q L, il prezzo si collocherà sul livello indicato dalla seguente espressione: p = 200 - 2 qL - 2 qF(qL) = 200 - 2qL - 2(20 - 0,5 qL) = 160 - qL. Pertanto il ricavo marginale dell'impresa leader sarà: MRL = 160 - 2 qL. Uguagliando tale ricavo marginale al costo marginale (costante per ipotesi), si avrà: 160 - 2 qL = 100, da cui qL* = 30 e pertanto qF* = qF(30) = 20 - 0,5*30= 5. Il prezzo sarà: p = 200 - 2(qL* + qF*) = 200 - 2*35 = 130. 25.3. Entrambe le imprese sanno che il prezzo di determina sul mercato secondo l'espressione: p = 900 - 6 qL - 6qF dove qL è la quantità prodotta e venduta dall'impresa leader e q F la quantità prodotta e venduta dall'impresa follower. Il ricavo marginale dell'impresa follower sarà pertanto: 378 Trentatreesima lezione MRF = 900 - 6qL - 12 qF. L'impresa follower, data la quantità che l'impresa leader deciderà di vendere, massimizzerà il suo profitto uguagliando ricavo marginale e costo marginale (il quale è, per ipotesi, costante): 900 - 6 qL - 12qF = 240; da cui qF(qL) = (660 - 6 qL)/12 = 55 - 0,5 qL è la funzione di reazione dell'impresa follower. L'impresa leader è, per ipotesi del modello, in grado di prevedere il comportamento dell'impresa follower, ossia conosce la sua funzione di reazione. Pertanto sa che, se decide di vendere la quantità q L, il prezzo si collocherà sul livello indicato dalla seguente espressione: p = 900 - 6 qL - 6 qF(qL) = 900 - 6qL - 6(55 - 0,5 qL) = 570 - 3 qL. Pertanto il ricavo marginale dell'impresa leader sarà: MRL = 570 - 6 qL. Uguagliando tale ricavo marginale al costo marginale (costante per ipotesi), si avrà: 570 - 6 qL = 210, da cui qL* = 60. e pertanto qF* = qF(60) = 55 - 0,5*60= 25. Il prezzo sarà: p = 900 - 6(qL* + qF*) = 900 - 6*85 = 390. 26.1. L'impresa organizza la produzione di uno o più beni o servizi, acquistando materie prime, semilavorati, fonti di energia, stipulando contratti di lavoro e coordinando le diverse attività che confluiscono nella realizzazione del prodotto: attribuzione di compiti specifici ai dipendenti, decisioni circa la quantità e i tempi della produzione dei semilavorati ottenuti nei diversi reparti (o in diversi stabilimenti), gestione delle scorte, gestione delle vendite e così via. Per molte di queste operazioni, in alternativa alla realizzazione all'interno dell'impresa, si possono acquistare servizi specifici o semilavorati "sul mercato". La scelta dell'una o dell'altra strada (o di una opportuna versione intermedia) dipende in via principale dai costi dell'organizzazione dell'impresa confrontati con i costi di negoziazione (costi del mercato). Al limite, se la produzione è caratterizzata da rendimenti costanti di scala (ossia se è possibile ottenere il prodotto anche in quantità molto limitate senza aumento significativo di costo), può essere lo stesso consumatore ad acquistare sul mercato (o autoprodurre) tutto quanto serve per ottenere il prodotto. 26.2. Nell’impresa di tipo capitalistico la gestione dell’impresa è affidata ai proprietari del capitale, direttamente o attraverso persone da essi nominate e controllate. Il profitto è l’obiettivo in base al quale ci si aspetta che questa impresa venga gestita; tale profitto viene in parte distribuito ai proprietari (se si tratta di una società per azioni, in forma di dividendi) in parte investito nell’attività dell’impresa. Nell’impresa cooperativa, la gestione dell’impresa è attribuita ai lavoratori, anche attraverso manager da essi nominati e controllati. La cooperativa non ha come obiettivo la massimizzazione del profitto, il che non significa che profitti non possano essere conseguiti; la loro utilizzazione è però vincolata. 26.3. Le seguenti sono alcune delle principali obiezioni che vengono rivolte all'ipotesi di massimizzazione del profitto da parte dell'impresa: - alcune indagini empiriche hanno messo in evidenza comportamenti (per esempio, pratica del mark up) e dichiarazioni delle imprese non coerenti con tale ipotesi; - in mercati non perfettamente concorrenziali, l'esigenza di prevenire l’ingresso sul mercato di altri concorrenti può rendere opportuno per l'impresa scegliere prezzi e quantità prodotte diversi da quelli che massimizzerebbero il profitto; - la separazione tra proprietà dell'impresa e suo controllo - che si verifica nelle grandi imprese costituite in forma di società per azioni - può far sì che l'obiettivo perseguito dall'impresa si avvicini di più a obiettivi che interessano direttamente i manager (crescita dell'impresa, presenza sui mercati) piuttosto che al profitto in senso stretto; - vi sono problemi di informazione (soprattutto di asimmetria informativa) che possono ostacolare l'individuazione delle scelte che massimizzerebbero il profitto; - l'individuazione delle scelte che massimizzerebbero il profitto richiede, da parte dei soggetti che agiscono per l'impresa, una razionalità forte, mentre può essere osservata una "razionalità limitata", che accetta una situazione soddisfacente senza insistere - con tempi e costi elevati - a perseguire l'ottimo assoluto. 26.4.Il modello ipotizza una situazione di oligopolio nella quale ciascuna impresa si aspetta che i concorrenti abbiano un comportamento asimmetrico in caso di aumento o di diminuzione del prezzo da parte dell'impresa considerata: più esattamente si aspetta che, in caso di aumento del prezzo, i concorrenti manterranno invariato il loro, conquistando così una maggior quota di mercato a spese di chi ha aumentato il prezzo; mentre, in caso di diminuzione del prezzo, i concorrenti si adegueranno per non perdere quote di mercato. La rappresentazione analitica di questa ipotesi è una curva di domanda che, in corrispondenza di prezzo e quantità attuali, ha un "gomito", ossia un cambiamento di pendenza e di elasticità. 27.1. Si definisce Prodotto Interno Lordo (P.I.L.) il valore dei beni e servizi finali prodotti su un certo territorio in un certo intervallo di tempo. Beni (e servizi) finali sono quelli prodotti su quel territorio e in quell'intervallo di tempo non utilizzati (sempre su quel territorio e in quell'intervallo di tempo) come input di altre produzioni. Il valore aggiunto di una unità produttiva è definito come differenza tra il valore del prodotto e il valore degli input acquistati presso altre unità produttive. Pertanto sommando tutti i valori aggiunti si otterrà un totale che è uguale alla differenza tra il valore complessivo dei beni e servizi prodotti e il valore di quelli utilizzati come input in altre produzioni, ossia è uguale al valore dei beni finali e quindi al P.I.L.. 27.2. Le funzioni a), d) e f) sono omogenee di primo grado (in quanto funzioni di produzione, sono caratterizzate da rendimenti costanti di scala); le funzioni c) ed e) sono omogenee di grado inferiore al primo (in quanto funzioni di produzione, sono caratterizzate da rendimenti decrescenti di scala); la funzione b) è omogenea di grado superiore ad 1 (in quanto funzione di produzione, è caratterizzata da rendimenti crescenti di scala). 380 Trentatreesima lezione 27.3. Affinché il costo sia minimizzato, i due input dovranno essere impiegati in quantità tali che il rapporto tra prodotto marginale e prezzo dell'input sia uguale per ogni input. Pertanto: MPL 0,6 K 0, 4 L−0.4 MPK 0,4 K −0,6 L0,6 = = = w 12000 r 0,5 K 0, 4 L0,6 = 2000 Da queste due equazioni si ottiene: K = 16000 L da cui: K* = 666042,57 L* = 41,6276 La funzione di produzione è caratterizzata da rendimenti costanti e pertanto il costo medio risulta costante al variare della quantità prodotta. Posto, in generale: K 0, 4 L0,6 = Q si ottiene: K*= 333,0213 Q L* = 0,020814 Q AC = (rK*+wL*)/Q = (0,5 K* + 12000 L*)/Q = 0,5*333,0213+12000*0,020814 = 416,2766 Posto p = 416,2766, il prodotto marginale in valore del capitale risulta essere: p*MPK = 416,2766*0,001201 = 0,5 = r p*MPL = 416,2766*28,82699 = 12000 = w Reddito distribuito al capitale = r K* = 0,5*666042,57= 333021 Reddito distribuito al lavoro = w L* = 12000*41,6276= 499532 Valore del prodotto = p Q = 416,2766*2000=832553 = 333021 + 499532. 27.4. Affinché il costo sia minimizzato, i due input dovranno essere impiegati in quantità tali che il rapporto tra prodotto marginale e prezzo dell'input sia uguale per ogni input. Pertanto: ovvero: e MPL /w=MPK/r, (0,8K 0,2 L-0,2)/15000=(0,2K-0,8L0,8 )/0,5 K0,2 L0,8 =2000 da cui K = 7500 L. Da queste due equazioni si ottiene: K* = 2518135 L* = 335,7513. La funzione di produzione è caratterizzata da rendimenti costanti e pertanto il costo medio risulta costante al variare della quantità prodotta. Posto, in generale: K 0, 2 L0,8 = Q, si ottiene: K*= 1259,0675 Q L* = 0,167876 Q AC = (rK*+wL*)/Q = (0,5 K* + 15000 L*)/Q = 0,5*1259,0675 +15000*0,167876 = 3147,6737 Posto p = 3147,6737, il prodotto marginale in valore del capitale risulta essere: p*MPK = 3147,6737*0,000159 = 0,5 = r p*MPL = 3147,6737*4,765432 = 15000 = w Reddito distribuito al capitale = r K* = 0,5*2518135= 1259068 Reddito distribuito al lavoro = w L* = 15000*335,7513= 5036269 Valore del prodotto = p Q = 3147,6737*2000=6295347 = 1259068 + 5036269. 28.1. Vedi Frank, p. 514, § 14.2 e p. 516, § 14.3. 28.2. Il prodotto(produttività) marginale del lavoro è rappresentabile con la seguente espressione: MPKLKLL==−−1008804020402*,,,,, . Posto K = 10000 e uguagliando il prodotto marginale del lavoro in valore al saggio di salario si ottiene l'espressione seguente: pMPLwL***,,==−12008100000402 38218302Lw−=, , che è l'espressione della funzione di domanda di lavoro dell'impresa. 28.3. Per prodotto marginale di un input in una data situazione produttiva si intende l’incremento di prodotto che si ottiene aumentando di una unità l’impiego dell’input considerato, ferma restando la quantità impiegata di ogni altro input. Nella situazione considerata, il prodotto marginale del lavoro risulta inferiore al prodotto medio. Pertanto, aumentando l’impiego di lavoro il prodotto medio diminuirà. Il prodotto marginale del lavoro, in valore, è pari a 1,5*12000 = 18000, che risulta superiore alla retribuzione oraria del lavoro. Conviene pertanto aumentare la quantità di lavoro impiegata. 28.4. Vedi Frank, p.514 e ss., § 14.2 e § 14.3. 382 Trentatreesima lezione 28.5. Vedi Frank, p.516 e ss., § 14.3. 29.1. Vedi Frank, p.520, § 14.6. 29.2. Vedi Frank, p.520 e ss., § 14.6. 29.3. Vedi Frank, p.520 e ss., § 14.6. 29.4. Il vincolo di bilancio sarà rappresentato da una retta la cui intercetta sull’asse delle ascisse è 24 e la cui intercetta sull’asse delle ordinate è 24*25000 = 600000. 600000 P 100000 14 24 Ore di tempo libero La scelta ottima del consumatore corrisponde al punto P, punto di tangenza tra il vincolo di bilancio e una delle curve di indifferenza. Il lavoratore-consumatore avrà quindi convenienza a scegliere 14 ore (circa) di tempo libero e quindi 10 ore di lavoro al giorno. 29.5. V. Frank, pag. 520 e ss., § 14.6 e § 14.7. 30.1. V. Frank, p. 568 e ss., § 15.3 e § 15.4. 30.2. V. Frank, p. 572 e ss., § 15.7. 30.3. In ciascuno dei tre anni successivi all’acquisto l’impresa avrà un guadagno incrementale netto (in milioni) di 900-200=700. Pertanto il valore attuale dei rendimenti attesi è dato dall’espressione seguente: 700 700 700 + + = 1906,3 1,05 1,05 2 1,053 Una spesa di 2 miliardi non è pertanto conveniente. 31.1. Nel modello considerato tutti gli agenti sono price taker. E’ perciò necessario supporre che vi sia un agente particolare cui è demandata la determinazione dei prezzi. Il banditore svolge questo ruolo, “chiamando” inizialmente dei prezzi provvisori, dandone notizia a tutti gli operatori economici, ricevendo da loro domande e offerte per tutti i beni e verificando in quali mercati la domanda uguaglia l’offerta e in quali ciò non avviene. Se l’equilibrio generale è raggiunto, tutti gli agenti sono costretti ad onorare le loro proposte di acquisto o di vendita; se l’equilibrio non è raggiunto, nessuno scambio ha luogo e il banditore chiama un nuovo vettore di prezzi, aumentando tutti quelli per i quali si è verificato un eccesso di domanda e diminuendo tutti quelli per i quali si è verificato un eccesso di offerta. 31.2. All’interno della teoria dell’equilibrio economico generale un bene è definito come scarso (e quindi come “bene economico”) quando si verifica che un aumento anche piccolo della quantità disponibile consentirebbe a qualche soggetto di raggiungere un più alto livello di utilità. Un bene è invece definito come “bene libero” quando anche una (piccola) diminuzione della quantità disponibile non modificherebbe l’utilità di alcun soggetto. 31.3. Un modello di equilibrio economico generale competitivo è definito dai seguenti elementi: - il sistema economico è costituito da G beni (o servizi), N consumatori e M imprese; - per ciascun consumatore è dato il sistema di preferenze, la dotazione iniziale di beni e servizi e la quota di partecipazione alla proprietà delle imprese; - per ciascuna impresa è data la tecnologia che la caratterizza (ossia l’insieme dei processi produttivi che possono essere attivati nell’impresa); - per ciascun bene o servizio esiste un mercato perfettamente competitivo (consumatori e imprese sono price taker su tutti i mercati); - gli scambi avvengono solo quando tutti i mercati sono in equilibrio; - esiste un agente particolare, il banditore, cui è affidato il compito di individuare, per tentativi ed errori, un vettore di prezzi che metta in equilibrio tutti i mercati. Sotto opportune ipotesi circa le preferenze e le dotazioni dei consumatori e la tecnologia delle imprese, è possibile dimostrare che un vettore di prezzi di equilibrio esiste. Sotto ipotesi molto più restrittive, è possibile dimostrare anche che tale vettore è unico (a meno della scelta dell’unità di misura) e che il procedimento di approssimazioni successive attraverso il quale il banditore opera converge verso il vettore di equilibrio dei prezzi. 32.1. Se vi è efficienza produttiva, le quantità prodotte definiranno un punto sulla frontiera delle possibilità di produzione. Se la quantità prodotta di cibo è 50, la quantità di vestiario sarà pertanto 700. In tale situazione, il saggio marginale di trasformazione è misurato dal (valore assoluto del)la pendenza della curva di trasformazione: dalla figura si vede che tale pendenza è uguale a circa a 1,25 (unità di cibo per unità di vestiario). 384 Trentatreesima lezione 32.2. Dalla figura, leggendo gli indici di coppie di isoquanti fra loro tangenti, si ricava quanto segue: - se la quantità di cibo prodotta è 0, la massima quantità di vestiario producibile è 150 - se la quantità di cibo prodotta è 30, la massima quantità di vestiario producibile è 145 - se la quantità di cibo prodotta è 40, la massima quantità di vestiario producibile è 135 - se la quantità di cibo prodotta è 50, la massima quantità di vestiario producibile è 125 - se la quantità di cibo prodotta è 60, la massima quantità di vestiario producibile è 110 - se la quantità di cibo prodotta è 70, la massima quantità di vestiario producibile è 95 - se la quantità di cibo prodotta è 80, la massima quantità di vestiario producibile è 75 - se la quantità di cibo prodotta è 90, la massima quantità di vestiario producibile è 55 - se la quantità di cibo prodotta è 100, la massima quantità di vestiario producibile è 30 - se la quantità di cibo prodotta è 110, la massima quantità di vestiario producibile è 0. E' possibile quindi disegnare la corrispondente frontiera delle possibilità produttive (curva di trasformazione) come nella figura seguente. vestiario 150 100 50 10 10 20 30 40 50 60 70 80 90 100110cibo 32.3. Dalla figura, leggendo gli indici di coppie di isoquanti fra loro tangenti, si ricava quanto segue: - se la quantità di cibo prodotta è 0, la massima quantità di vestiario producibile è 1525 - se la quantità di cibo prodotta è 30, la massima quantità di vestiario producibile è 1475 - se la quantità di cibo prodotta è 40, la massima quantità di vestiario producibile è 1400 vestiario 1500 1000 500 100 10 20 30 40 50 60 70 80 90 100110cibo - se la quantità di cibo prodotta è 50, la massima quantità di vestiario producibile è 1300 - se la quantità di cibo prodotta è 60, la massima quantità di vestiario producibile è 1150 - se la quantità di cibo prodotta è 70, la massima quantità di vestiario producibile è 975 - se la quantità di cibo prodotta è 80, la massima quantità di vestiario producibile è 775 - se la quantità di cibo prodotta è 90, la massima quantità di vestiario producibile è 550 - se la quantità di cibo prodotta è 100, la massima quantità di vestiario producibile è 300 - se la quantità di cibo prodotta è 110, la massima quantità di vestiario producibile è 0. E' possibile quindi disegnare la corrispondente frontiera delle possibilità produttive (curva di trasformazione) come nella figura sopra. 32.4. Vedi Frank, p. 604, § 16.2.2. 32.5. Vedi Frank, p. 605 e seguente. 32.6. Vedi Frank, p.610 e seguenti. 33.1. Vedi Frank, p. 617, § 16.7. 33.2. Vedi Frank, p. 618. 33.3. Vedi Frank, p. 618 e p. 626, §17.2. 33.4. Vedi Frank, p. 664, § 18.2.