Astronomia Lezione 11/10/2012 Docente: Alessandro Melchiorri e.mail:[email protected] Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf sono quelle di quest’anno ! astronomia_*.pdf sono dell’anno scorso. Libri di testo consigliati: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley - Astronomy: A physical perspective, Marc L. Kutner, Cambridge University Press. - Fundamental Astronomy, Karttunen e altri, Springer - Elementi di Astronomia, P. Giannone. Coordinate Celesti Oggi cominceremo a trattare le coordinate celesti. Gli argomenti trattati li trovate maggiormente su questo libro. La Sfera Celeste Platone (350 A.C.) fu forse il primo a proporre un modello geocentrico con le stelle fisse che ruotano su di una «sfera celeste» con un asse Che passa attraverso il polo nord e sud della terra identificando un Polo nord e sud celeste. Trigonometria Sferica Data una sfera e’ possibile individuare dei cerchi come intersezioni tra la superficie della sfera e dei piani. Se un piano contiene il centro della sfera questo prende il nome di cerchio massimo (Great Circle). Gli altri cerchi prodotti da intersezioni con piani non contenenti il centro si chiamano cerchi minori (small circle). Due punti collegati da una retta passante per il centro ed ortogonale ad un cerchio massimo si chiamano poli del cerchio massimo. Trigonometria Sferica Si chiama triangolo sferico un triangolo sulla superficie sferica i cui lati siano tre archi di cerchi massimi AB, BC, CA. Gli angoli corrispondenti a questi archi sono c, a e b. La lunghezza di un arco |AB| se la sfera è di raggio r è data da: dove c è in radianti. La somma degli angoli A, B e C del triangolo sferico non e’ 180° ma e’ maggiore per un eccesso E dato da: si puo’ dimostrare che l’area del triangolo sferico e’ allora (con E in radianti): Trigonometria Sferica Dato un sistema di assi cartesiani xyz centrato nella sfera un qualunque punto P sulla sfera puo’ essere individuato dagli angoli q e y come in figura. Consideriamo anche un nuovo sistema di riferimento x’ y’ z’ ruotato lungo x di un angolo c come in figura. Si ha che: Trigonometria Sferica Data questa rotazione le coordinate cartesiane saranno legate da: e usando le relazioni precedenti otteniamo le seguenti equazioni tra gli angoli: Coordinate terrestri Ogni punto sulla terra puo’ essere identificato tramite due coordinate. Il piano di riferimento e’ il piano equatoriale che è ortogonale all’asse della rotazione terrestre e che contiene il centro della terra. La sua intersezione con la sfera terrestre disegna l’equatore. I cerchi minori paralleli all’equatore sono detti paralleli. I semi archi di cerchio massimo che collegano i due poli sono detti meridiani. Dato un punto la sua longitudine e’ l’angolo che forma il meridiano passante per il punto con Il meridiano fondamentale passante per Greenwich. si misura generalmente in ore [0-24], incrementando andando verso ovest pero’ vi sono convenzioni diverse. Con latitudine si definisce la latitudine geografica che e’ l’angolo che forma il filo a piombo con il piano equatoriale. E’ positivo nell’emisfero nord, negativo in quello sud [es. 90° al polo nord, -90° al polo sud]. Si puo’ facilmente misurare misurando l’altezza del polo celeste (misurare la longitudine e’ molto piu’ difficile). Coordinate terrestri La terra non è però sferica ma e’ uno sferoide oblato. L’angolo tra la retta perpedicolare alla tangente in un punto e l’equatore e’ detta latitudine geodetica ed e’ molto simile alla latitudine geografica. Tuttavia il filo a piombo non puntera’ verso il centro dello sferoide (lo fa solo sull’equatore e ai poli). Si chiama latitudine geocentrica l’angolo tra la retta passante tra il centro dello sferoide ed il punto e il piano dell’equatore. Se f è la latitudine geografica e f’ la latitudine geocentrica si ha: La Sfera Celeste Platone (350 A.C.) fu forse il primo a proporre un modello geocentrico con le stelle fisse che ruotano su di una «sfera celeste» con un asse Che passa attraverso il polo nord e sud della terra identificando un Polo nord e sud celeste. Coordinate orizzontali o altazimutali Il piano di riferimento e’ l’orizzonte., il piano tangente alla terra che contiene l’osservatore. La retta perpedincolare all’orizzonte passante per l’osservatore identifica due poli celesti: lo Zenith (sopra l’osservatore) ed il Nadir (il polo opposto). I cerchi massimi attraverso lo Zenith sono chiamate verticali ed intersecano l’orizzonte perpendicolarmente. Le circonferenze minori formate dai punti di uguale altezza sono i cerchi d'altezza o almucantarat. Quindi come coordinate si usano: l‘altezza (a) è l’angolo dell'astro dall'orizzonte, e varia tra -90° e +90°. Si usa anche la distanza di zenith z con z=(90° -a) l‘azimut (A) è l’angolo tra il punto Sud e il piede dell'astro (corrispondente alla distanza angolare tra meridiano locale e meridiano passante per l'astro), misurata in senso orario, e varia tra 0° e 360°. Attenzione pero’ che la definizione cambia !! Coordinate orizzontali o altazimutali In questo sistema di riferimento le stelle si muovono da Est ad Ovest. Le coordinate di una stella dipendono quindi dal tempo. Non solo, il sistema di riferimento dipende dalla posizione sulla terra dell’osservatore. In figura vediamo il moto delle stelle visto da un osservatore a due latitudini diverse. Chiaramente non possiamo costruire un catalogo astronomico di stelle usando queste coordinate !!! Coordinate Equatoriali Il sistema equatoriale usa come cerchi di riferimento l'equatore e il meridiano passante per il punto gamma g. Il punto g corrisponde all’intersezione tra il piano dell’equatore e quello dell’eclittica dove ha luogo La rivoluzione terrestre intorno al sole. Le coordinate sono la declinazione d e l'ascensione retta a, misurate a partire, rispettivamente, dall'equatore verso il Polo Nord celeste (vicino alla stella polare) e dal punto gamma g in senso antiorario. Il moto diurno delle stelle avviene parallelamente all'equatore celeste e il punto gamma si comporta come un qualsiasi oggetto celeste, per cui le coordinate equatoriali non cambiano con il trascorrere del tempo. Questo sistema di coordinate si muove, nelle 24 ore, insieme ai corpi celesti ed è indipendente dalla latitudine del luogo. a si misura in ore, minuti, secondi (di tempo); d si misura in gradi, primi, secondi (d'arco) Coordinate Equatoriali Il punto gamma vernale è anche noto con il nome di punto dell'Ariete o primo punto d'Ariete perché in corrispondenza dell'equinozio di primavera di circa 2100 anni fa (più precisamente nel periodo 2000 a.C. ÷ 100 a.C.), il Sole si trovava nella costellazione dell'Ariete. Oggi a causa della precessione degli equinozi non è più così e in corrispondenza dell'equinozio di primavera il Sole si trova nella costellazione dei Pesci; a partire dal 2700 d.C. si troverà in quella dell'Acquario e così via fino al completamento dell'intero zodiaco. Il moto del sole sulla sfera celeste cambia nei giorni dato che il piano dell’equatore Interseca quello dell’eclittica. Il moto del sole apparira’ quindi andare da sud a nord nell’equinozio vernale (in primavera) e da nord a sud nell’equinozio autunnale (detto punto omega o della Bilancia). Piano dell’Eclittica e Piano Equatoriale Il piano equatoriale celeste e’ definito come il piano passante per l’equatore della terra ed intersecante la volta celeste. Questo forma un angolo di circa 23.5° con il piano dell’eclittica. Per questo angolo l’eclittica si muove su e giu’ in un anno rispetto all’equatore. Si ha quando il sole interseca il piano equatoriale: - Equinozio di Primavera (notte e giorno uguali in durata) 21 o 22 Marzo - Equinozio d’ Autunno 22 o 23 Settembre Agli estremi abbiamo (il giorno e la notte piu’ lunghi): - Solstizio d’estate 20 o 21 Giugno - Solstizio d’inverno 21 o 22 Dicembre Coordinate Equatoriali Quando osserviamo con il telescopio trovare la declinazione e’ semplice perche’ uno degli assi del telescopio e’ orientato come l’asse di rotazione terrestre. Per l’ascensione retta si prende come riferimento un meridiano (es. il Sud). L’angolo orario h e’ la distanza angolare Di una stella rispetto a questo meridiano. Si chiama tempo siderale l’angolo orario del punto vernale. Dalla figura e’ chiaro che: Quindi in pratica: - Si misura h di una stella di cui si conosce l’ascensione retta. - Si conosce quindi il tempo siderale e tutte le altre stelle si possono quindi trovare conoscendone l’ascensione retta da un catalogo. Tempo Solare e Tempo Siderale Il "tempo solare" è un tempo rotazionale definito in riferimento al Sole, mentre il "tempo siderale" è riferito alle Stelle lontane, considerate all'infinito. Il Giorno Solare è l'intervallo di tempo compreso tra due passaggi successivi del Sole al meridiano di riferimento. La durata del giorno solare vero non è però costante, a causa della velocità variabile con cui la Terra compie la sua rivoluzione intorno al Sole. Si è definito perciò un giorno solare medio, fittizio, la cui durata è di 24 ore esatte. Giorno Siderale è l'intervallo di tempo compreso tra due passaggi successivi del primo punto d'Ariete al meridiano di riferimento. La durata del giorno siderale è di 23h 56m 4.091s. La differenza nelle due durate è dovuta alla vicinanza della Terra al Sole rispetto alle altre stelle, e al moto di rivoluzione della Terra intorno ad esso, che in un giorno ammonta a circa 1 grado sui 360 dell'intera orbita (360/365). Per il giorno solare la Terra deve quindi ruotare un pò di più per ritrovare il Sole in meridiano; mentre ciò non è necessario per il giorno siderale in quanto le stelle risultano a distanza "infinita" rispetto al sole, e quindi le due linee di vista restano parallele. Così un secondo solare dura 1,00278 secondi siderali. Coordinate eclittiche In questo sistema di coordinate si usa come piano di riferimento il piano dell’eclittica. Si ha una latitudine eclittica indicata da b e una longitudine eclittica indi cata con l. La latitudine si misura dal punto vernale in senso antiorario. La longitudine e’ la distanza angolare dal piano dell’eclittica. Queste coordinate possono essere geocentriche o eliocentriche. Per oggetti vicini c’e’ una differenza tra i due tipi di coordinate, per quelli lontani no. Passaggio coordinate eclittichecoordinate equatoriali. I due sistemi di riferimento differiscono solo per la differente orientazione dei piani avendo entrambe in ascissa ome riferimento il punto gamma o vernale. Ricordando quindi la trasformazione di coordinate tra angoli trovata precedentemente data da: Considerando quindi gli angoli si ha: Con e che indica l’inclinazione tra i due piani e pari a circa 23° 26’ Discussione delle leggi di Keplero e Newton le trovate qui. Il moto retrogrado dei pianeti Alcune stelle pero’ mostrano di non seguire l’andamento delle stelle fisse ma sono come erranti, queste sono chiamate «pianeti» (dal termine di «vagabondo» in greco». In particolare un pianeta come Marte si muove lentamente da ovest ad est rispetto alle stelle fisse ma poi «tornare indietro» ad un certo momento per poi ritornare al moto normale. Ipparco (150 a.c.) risolse il problema del moto retrogrado mettendo i pianeti a Ruotare attorno a dei piccoli epicicli che a loro volta ruotavano in modo piu’ ampio Attorno alla terra lungo un deferente. Il sistema Tolemaico Con il progredire delle osservazioni il sistema degli epicicli non andava piu’ bene. Tolomeo (circa 100 d.c.) introduce allora l’equante. Gli epicicli ruotano circolarmente a velocita’ angolare costante intorno all’equante che e’ dislocato rispetto al centro del deferente (centro della terra). L’idea platonica di moto circolare uniforme e’ praticamente scomparsa. Il modello tolemaico divenne sempre piu’ complesso aggiungendo «epicicli» ulteriori negli anni ma non venne messo in discussione per secoli. La rivoluzione Copernicana Il modello Copernicano era molto piu’ semplice e permetteva di risolvere anche altri punti: - Mercurio e Venere vengono visti al massimo ad una distanza di 28° e 47° rispettivamente dal Sole (non sono mai in opposizione). Per questo prendono il nome e di pianeti inferiori o interni. Si definiscono Massima Elongazione est o ovest le loro massime distanze angolari dal Sole. Solo questi pianeti possono trovarsi tra la terra ed il Sole (congiunzione inferiore). - Gli altri pianeti (Marte, Giove, Saturno, etc) sono su orbite esterne, si chiamano pianeti superiori o esterni si possono trovare in opposizione e congiunzione (vedi figura). Modello Copernicano e Pianeti «Retrogradi» Il sistema Copernicano spiega in modo elegante il moto retrogrado di pianeti come Marte. La Terra occupando una orbita piu’ interna ruota piu’ velocemente di Marte attorno al Sole. Il passaggio in 3,4,5 di Marte in opposizione spiega l’apparente moto retrogrado del pianeta. Tycho Brahe 1546-1601 Brahe, astronomo danese, per primo identifica la SN-1572 come appartenente alla volta Celeste (il cielo non e’ piu’ immutabile). Dirige e costruisce l’osservatorio di Uraniborg grazie al re Federico II (1576). Il piu’ grande investimento scientifico (in termini di PIL) che si ricordi. Alla morte del re gli tagliano I fondi e va a Praga (1597) dal re Rodolfo II, portando con se i dati delle sue preziose osservazioni. Uraniborg viene distrutta dal popolo danese furioso per le tasse elevate. Una immagine di SN1572 (oggi) e della grande cometa del 1577. Notare come le osservazioni fossero senza telescopi (inventati da Galileo in seguito). Notare gli orologi (vero simbolo di alta tecnologia dell’ epoca). SN-1604 Johannes Kepler 1571-1630 Studente di Brahe, dai dati portati da Tycho a Praga determina che l’orbita di marte e’ ellittica. Le tre leggi di Keplero: - Le orbite dei pianeti sono ellittiche - Coprono aree uguali in tempi uguali - 1 AU = Astronomical Unit – Distanza media Terra-Sole Equazione dell’ellisse: a e’ una costante detta semi-asse maggiore. b e’ il semiasse minore. F e F’ sono i due punti focali dell’ellisse. Il Sole e’ nel punto focale maggiore F. e e’ l’eccentricita’ dell’ellisse e va da 0 a 1. e’ definita come la distanza di uno dei fuochi divisa a. e=0 e’ un cerchio. Il punto piu’ vicino al fuoco principale e’ detto perielio, quello opposto afelio. Si puo’ dimostrare che: Galileo e Newton Galileo: Padre della fisica moderna. Principio di Relativita’ Galileana, fasi di Venere (quindi non brilla di luce propria), Satelliti di Giove. Newton parte da Galileo per formulare le sue famose 3 Leggi. Leggi di Newton - Legge di Inerzia. Un oggetto in quiete rimarra’ in quiete, un oggetto in moto rimarra’ in moto uniforme percorrendo una linea retta. (e’ una definizione di sistema di riferimento inerziale!).L’impulso p=mv di una particella non soggetta a forze e’ costante In un sistema di riferimento inerziale. - La forza netta (la somma di tutte le forze) su di un oggetto e’ proporzionale alla massa dell’oggetto e la sua accelerazione risultante. - Per ogni azione c’e’ una reazione opposta e contraria. Legge di Keplero, Leggi di Newton e Legge di Gravitazione Universale. Terza Legge di Keplero Assumendo orbita circolare: Inserendo nella Terza Legge di Keplero: Inserendo nella Terza Legge di Keplero: Moltiplicando ambo i membri: Si ha: Usando la II legge di Newton questa e’ la forza a cui e’ soggetto il pianeta Legge di Keplero, Leggi di Newton e Legge di Gravitazione Universale. Usando la III Legge di Newton abbiamo che la forza esercitata sull’altro pianeta di massa M sara’: Uguagliando le due forze in modulo si ha: dove definendo e abbiamo la Legge di Gravitazione !: