CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 7 Settembre 2004 1) Una particella A di massa 1 kg si muove su un gradino alto 35 cm scabro. La velocità iniziale della particella è 3 m/s, il A coefficiente di attrito dinamico del gradino pari a 0.172. Alla fine del gradino, lungo 45 cm, la particella urta una seconda particella B, di egual massa, in modo perfettamente anelastico. Si calcoli: a) la velocità della particella A immediatamente prima dell'urto. b) la lunghezza del tratto CH, dove H è il punto dove le due particelle cadono al suolo. B C H 2) Una zattera vuota, lunga 2 metri, larga 1.5 m e alta 30 cm, galleggia sulla superficie di un lago con il 45% del proprio volume emergente dall'acqua. Calcolare: a) la densità della zattera; b) ìl numero massimo di lingotti di piombo che tale zattera potrebbe trasportare senza che la superficie della zattera finisca sotto il pelo dell'acqua. Cosa succederebbe se fosse caricato sulla zattera un egual numero di lingotti d'oro? (Nota: dimensione di un lingotto: 10 cm x 20 cm x 5 cm; ρPb: 11340 kg/m3; ρAu: 19320 kg/m3 ). 3) Una mole di un gas perfetto monoatomico compie un ciclo reversibile a partire dallo stato iniziale A, in cui la pressione pA = 3 10 5 Pa e il volume VA = 2 10 –3 m 3 , costituito dalle seguenti trasformazioni : AB, in cui la pressione aumenta linearmente con il volume ed inoltre pB = 2 pA e V B = 3 V A ; BC, isovolumica con pC = pA,, e CA , isobara . a) si disegni il ciclo in un diagramma p, V e si calcoli il lavoro compiuto dal gas nelle trasformazioni AB e CA. b) si calcoli la quantità di calore scambiata dal gas nell’intero ciclo e la variazione di entropia relativa alla trasformazione AB . (Nota: R= 8.31 J/Kmole =0.082 l atmo /Kmole) 4) In una regione compresa tra due lamine piane e parallele, cariche con la stessa densita’ superficiale ma di segno opposto, c’è un campo elettrico di intensità E = 104 N/C. La lunghezza delle lamine è pari a L = 5 cm. All’istante iniziale, un elettrone entra tra le lamine con velocità v 0 = 107 m/s, parallela alle lamine stesse. Determinare: a) la forza, in modulo, direzione e verso, di cui risente l’elettrone; b) il modulo della velocità e l’angolo di deflessione dell’elettrone all’uscita dal campo elettrico. (Nota: me= 9.11 10-31 kg, e=1.6 10-19 C) SCRIVERE IN MODO CHIARO GIUSTIFICARE BREVEMENTE I PROCEDIMENTI SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE NON DIMENTICARE LE UNITA` DI MISURA SOLUZIONE ESERCIZIO 1 a) La particella ha inizialmente energia cinetica pari a 2 1 1 = 4.5 J Ecin1 = m ⋅ v 2 = ⋅ 1 kg ⋅ 3 m s 2 2 che in parte viene dissipata, nel movimento verso B, a causa della forza di attrito. Per il teorema di equivalenza fra lavoro di una forza (in questo caso l’unica forza che compie lavoro è la forza di attrito) e variazione di energia cinetica, l'energia della particella nell'istante precedente l'urto è data da: Ecin 2 = Ecin1 − µ ⋅ m ⋅ g ⋅ AB = 4.5 J − 0.172 ⋅ 1 kg ⋅ 9.8 m 2 ⋅ 0.45 m = 3.74 J s da cui discende che la velocità di A è 2 ⋅ E cin 2 2 ⋅ 3.74 J v2 = = = 2.73 m s m 1 kg b) Dopo l'urto anelastico, il sistema costituito dalle due particelle si muove di moto rettilineo uniforme con velocità 1 kg ⋅ 2.73 m m A ⋅ v2 s = 1.37 m v AB = = s m A + mB 1 kg + 1 kg lungo l'asse x, mentre lungo l'asse y ha un moto uniformente accelerato, diretto verso il basso. Quindi il moto delle due particelle è descritto dal seguente sistema: x = v AB ⋅ t y = 1 g ⋅ t 2 2 Il sistema delle due particelle tocca il suolo quando ha percorso nella direzione y un tratto pari all'altezza del gradino. Il tempo necessario a compiere questo spostamento si ricava da ( ) 2 ⋅ 0.35 m = 0.27 s 9.8 m 2 s e lo spazio percorso nella direzione x in questo tempo è dato da x( t = 0.27 s ) = CH = 1.37 m ⋅ 0.27 s = 0.37 m = 37 cm. s t= 2 ⋅ BC = g SOLUZIONE ESERCIZIO 2 a) La densità della zattera si ricava considerando che, per l'effetto della spinta di Archimede, la frazione di corpo immersa risulta essere pari al rapporto tra la densità del corpo stesso e la densità del fluido in cui il corpo è immerso. In questo caso la frazione di zattera immersa è pari a 0.55, da cui discende che: ρ zattera = 0.55 ρ zattera = 0.55 ⋅ ρ H 2O = 0.55 ⋅ 1000 kg 3 = 550 kg 3 m m ρ H 2O ⇒ b) Quando carichiamo sulla zattera i lingotti di Pb, il peso della zattera e dei lingotti viene equilibrato dalla spinta di Archimede: m zattera ⋅ g + nlingotti ⋅ mlingotto ⋅ g = FArch . = Vimmerso ⋅ ρ H 2O ⋅ g La situazione richiesta nel problema (che la superficie della zattera non vada sott'acqua) corrisponde al caso in cui il volume immerso è tutto e solo il volume della zattera. Ricordando inoltre che V zattera = 2 m ⋅ 1.5 m ⋅ 0.3 m = 0.9 m 3 m zattera = V zattera ⋅ ρ zattera = 0.9 m 3 ⋅ 550 kg 3 = 495 kg m mlingotto = Vlingotto ⋅ ρ lingotto = 0.1 m ⋅ 0.2 m ⋅ 0.05 m ⋅ 11340 kg 3 = 11.34 kg m si ricava che il massimo numero di lingotti che la zattera può trasportare senza che la sua superficie finisca sotto il pelo dell'acqua è pari a kg 3 V zattera ⋅ ρ H 2O − m zattera 0.9 m ⋅ 1000 m 3 − 495 kg nlingotti = = = 35.71 mlingotto 11.34 kg Il numero di lingotti deve essere un numero intero, quindi la risposta esatta a questo quesito è 35 (e non 36). In questo caso si deve sempre approssimare per difetto. Se si mettessero 36 lingotti sulla zattera, infatti, la superficie della stessa andrebbe sott'acqua, e non verrebbero rispettate le condizioni del problema. Siccome l'oro ha una densità molto maggiore del Pb, ci si aspetta che mettere 35 lingotti d'oro sulla zattera ne determini l'affondamento sott'acqua: il peso dei lingotti più quello della zattera (11478 N) è infatti superiore alla spinta di Archimede sulla sola zattera (8820 N). SOLUZIONE ESERCIZIO 3 a) La figura mostra il ciclo in un diagramma pV . p B A C V In un diagramma di questo tipo il Lavoro compiuto dal gas nelle trasformazioni AB e CA è pari all’area delimitata dalle trasformazioni stesse e dall’asse V , tra lo stato iniziale e quello finale. Pertanto: LAB = (pB + p A ) ( VB -VA) /2 = 1800 J , LCA = ( VA- VC ) pA= -1200J b) La variazione di energia interna relativa all’intero ciclo è nulla e pertanto la quantità di calore scambiata nell’intero ciclo è uguale al lavoro compiuto dal gas nell’intero ciclo. Il lavoro totale è la somma di quello compiuto nella trasformazione AB e nella trasformazione CA ( quello relativo alla trasformazione BC e’ nullo ) . La quantità di calore scambiata nell’intero ciclo è pertanto Qtot= 1800 J- 1200 J = 600 J. La variazione di entropia relativa all’intero ciclo è nulla e pertanto la variazione di entropia relativa alla trasformazione AB è uguale alla somma delle variazioni di entropia delle trasformazioni BC e CA, cambiata di segno. È quindi ∆SAB = - (∆SBC + ∆SCA ) . Inoltre ∆SBC = ∫ dQBC/T = ∫ n cV dT/T = n cV ln ( TC / TB ) , mentre ∆SCA = ∫ dQCA/T = ∫ n cP dT/T = n cp ln ( TA / TC ) . Poiche’ TB= p B VB/ nR = 6 TA e TC= pC VC/ nR= 3 TA , si ha ∆SAB = -R ( 3ln ( 1/ 2) + 5 ln (1/3) ) /2 = 31.5 J/K SOLUZIONE ESERCIZIO 4 a) Il campo elettrico è perpendicolare alle lamine ed ha verso dalla lamina carica positivamente alla lamina carica negativamente, come mostrato in figura. La forza elettrostatica F=qE è anch’essa ortogonale alle lamine e, nel caso in esame, ha verso opposto al campo E, essendo l’elettrone dotato di carica negativa. Il modulo della forza elettrostatica agente sull’elettrone vale quindi: F = −eE = −(1.6 × 10 −19 C ) × (104 N / C ) = −1.6 × 10−15 N da cui segue che, utilizzando la geometria in figura, r r F = −(1.6 × 10 −15 N ) j b) L’elettrone risente unicamente della forza elettrostatica che gli imprime una accelerazione verso il basso, parallelamente all’asse y: eE ay = − m da cui si ottiene che la velocità lungo y è data da: v y = a y t + v0 y = a y t L’elettrone non risente invece di alcuna forza nella direzione x, per cui il moto lungo x è rettilineo ed uniforme, con velocità pari alla velocità iniziale: v x = v0 = 10 7 m / s x( t ) = v x t + x0 = v0 t All’interno del campo elettrostatico la traiettoria dell’elettrone è quindi parabolica. All’uscita del campo: L = v0 t da cui si ricava il tempo di percorrenza all’interno del campo t = L / v0 , e quindi:: eE L (1.6 × 10 −19 C ) × (10 4 N / C ) 0.05m vy = a yt = − =− = −8.8 × 106 m / s 7 −31 m v0 9.11 × 10 kg 10 m / s La velocità finale ha quindi modulo: v fin = v x2 + v 2y = (107 m / s ) 2 + ( −8.8 × 106 m / s ) 2 = 1.33 × 107 m / s Per calcolare l’angolo di deflessione α, indicato in figura, utilizzo la relazione fra il vettore velocità e le sue componenti: r v x = v cos α vy vy − 8.8 × 106 m / s α = α = = = −41.30 tg a a tan tan r 10 7 m / s vx vx v y = v sin α ⇒ ⇒