ISIS “PITAGORA” PROGRAMMA DI MATEMATICA DOCENTE: SCHIANO DI COLA SONIA ANNO SCOLASTICO: 2014/2015 CLASSE: II iti SEZ: A MODULO 1: RIEPILOGO U.D.1 - LE FRAZIONI ALGEBRICHE: frazioni algebriche e loro semplificazione, campo di esistenza, addizione, sottrazione, moltiplicazione e divisione, espressioni con le frazioni algebriche. MODULO 2: ALGEBRA LINEARE UD 1 – LE EQUAZIONI: Identità ed equazioni. Equazioni di primo grado: definizione, soluzioni di un’equazione, equazione determinate, indeterminate, impossibili. Equazioni equivalenti; principi di equivalenza e sue conseguenze. Esercizi. Le equazioni e i problemi di primo grado. La legge di annullamento del prodotto per risolvere le equazioni. Equazioni fratte: definizione, campo di esistenza, risoluzione. Esercizi UD 2 – SISTEMI LINEARI DI DUE EQUAZIONI IN DUE INCOGNITE: definizione, sistemi determinati, indeterminati, impossibili. Relazione tra i coefficienti di un sistema determinato, indeterminato, impossibile. Risoluzione algebrica: metodo di sostituzione, eliminazione, regola di Cramer. UD 2 – LE DISEQUAZIONI ed i SISTEMI: disuguaglianze e disequazioni, risoluzione di una disequazione, disequazioni intere e frazionarie, particolari disequazioni di grado superiore al primo, i sistemi di disequazioni. Rappresentazione grafica di una disequazione di I grado. UD 3 – MODELLI E PROBLEMI: i modelli, dal problema al modello,problemi che hanno per modello un’equazione o una disequazione, problemi che hanno per modello un sistema, problemi di natura geometrica. MODULO 3: ALGEBRA in R UD 1 - I RADICALI: radicali quadratici e cubici, radicali di indice n. indice pari, indice dispari: osservazioni e proprietà. Condizioni di esistenza; proprietà fondamentali dei radicali; semplificazione; riduzione di radicali allo stesso indice. Operazioni con i radicali: prodotto e quoziente; trasporto di un fattore fuori e dentro il simbolo di radice; somma algebrica di radicali. Razionalizzazione. MODULO 4: ALGEBRA DI GRADO SUPERIORE AL PRIMO UD 1 – LE EQUAZIONI DI SECONDO GRADO: caratteristiche generali. Equazioni pure, spurie, complete. Calcolo del delta e formula generale per la risoluzione. Studio del segno del delta per la determinazione del numero delle soluzioni (nessuna, reali e distinte, reali e coincidenti). Equazioni parametriche. Esercizi applicativi di vario genere. UD 2 – LE EQUAZIONI DI GRADO SUPERIORE AL SECONDO: equazioni risolubili mediante la scomposizione in fattori. Applicazione della legge di annullamento del prodotto. Equazioni biquadratiche. Esercizi applicativi di vario genere. UD 3 – LE DISEQUAZIONI: caratteristiche generali. Schema riassuntivo per la ricerca delle soluzioni. Rappresentazione delle soluzioni sulla retta reale. MODULO 6: GEOMETRIA NEL PIANO UD 1: GLI ELEMENTI INTRODUTTIVI 1. Gli assiomi: gli assiomi di appartenenza; gli assiomi di ordinamento. 2. Le prime definizioni: semiretta; segmento; semipiano; angolo; angolo convesso e concavo; angoli consecutivi; angoli adiacenti; angolo piatto, giro, nullo; retto; angoli opposti al vertice 3. Il concetto di congruenza; la bisettrice di un angolo; angoli supplementari; complementari; esplementari; angoli acuti; angoli ottusi UD 2: LA CONGRUENZA E I TRIANGOLI 1. I poligoni: poligono convessi e poligoni concavi 2. I triangoli: triangolo scaleno; isoscele; equilatero. La bisettrice; la mediana. 3. La congruenza nei triangoli: i primi due criteri (senza dimostrazione) 4. Il terzo criterio di congruenza (senza dimostrazione) UD 3 – LUOGHI GEOMETRICI 1. Il concetto di luogo geometrico. 2. La circonferenza e il cerchio: definizione proprietà. 3. Angoli al centro e angoli alla circonferenza. 4. Posizione reciproca tra retta e circonferenza. Posizioni reciproche tra due circonferenze. Poligoni inscritti e circoscritti. Punti notevoli dei triangoli. Pozzuoli, 10/06/2015