MATEMATICA - CLASSE TERZA 1 - OBIETTIVI DISCIPLINARI acquisire la capacità di risolvere disequazioni intere e fratte di 2° grado e sistemi di disequazioni conoscere il grafico di funzioni esponenziali, logaritmiche e goniometriche collegare l'aspetto algebrico-analitico a quello grafico-geometrico 2 - LIVELLI MINIMI DI SUFFICIENZA risolvere disequazioni intere e fratte di 1° e di 2° grado risolvere semplici problemi sulle coniche (circonferenza, parabola) conoscere la definizione di logaritmo risolvere equazioni logaritmiche ed esponenziali elementari risolvere espressioni goniometriche. 3 – PROGRAMMAZIONE 1 MODULO CONOSCENZE ABILITA’ Complementi di algebra 1 Disequazioni fratte con termini di 1° o 2° grado e sistemi di disequazioni 3 Risolvere disequazioni fratte e sistemi di disequazioni di 1° e 2° grado Geometria analitica 1 La retta 2 Le coniche: parabola e circonferenza 1 Risolvere problemi sulla retta 2 Tracciare il grafico di una conica 3 Trovare l’equazione della conica soddisfacente date condizioni 4 Determinare le rette tangenti ad una parabola Esponenziali 1 Potenze ad esponente razionale e reale 2 Proprietà delle potenze 3 Funzione esponenziale e grafico 4 Definizione di equazione esponenziale 1 Definizione di logaritmo 2 Proprietà dei logaritmi 3 Logaritmi decimali e naturali 4 Funzione logaritmica e grafico 5 Definizione di equazione logaritmica 1 Applicare le proprietà delle potenze 2 Riconoscere equazione e grafico di una funzione esponenziale 3 Risolvere equazioni esponenziali elementari 2 3 Logaritmi 4 Goniometria 5 1 Angoli e misure 2 funzioni goniometriche e relativi grafici 3 angoli associati 4 relazioni fondamentali 1 Usare la definizione di logaritmo 2 Applicare le proprietà dei logaritmi 3 Riconoscere equazione e grafico di una funzione logaritmica 4 risolvere equazioni logaritmiche elementari e con l’uso delle proprietà dei logaritmi 1 rappresentare funzioni circolari 2 individuare le caratteristiche di una curva goniometrica P R I M O S E C O N D O