I.S.S. N. Machiavelli di Roma PROGRAMMA DI MATEMATICA Classe II H A.S. 2009/10 Prof. Daniela Aresu Scomposizione di un polinomio Scomposizione di un polinomio Raccoglimento a fattor comune parziale e totale Riconoscimento di un prodotto notevole Il trinomio caratteristico Scomporre mediante la regola di Ruffini Somma e differenza di due cubi MCD e mcm di polinomi Frazioni algebriche Le frazioni algebriche Condizioni di esistenza La semplificazione Le operazioni con le frazioni algebriche: somma algebrica, moltiplicazione, divisione e elevamento a potenza Equazioni intere di primo grado Le equazioni (le incognite, le soluzioni, il grado). Equazioni determinate, indeterminate e impossibili. Le equazioni numeriche di I grado in una incognita. Le equazioni equivalenti ed i principi di equivalenza. La riduzione delle equazioni intere numeriche di I grado ad una incognita. I problemi di primo grado (accenni) Equazioni fratte Equazioni fratte numeriche. Campo di esistenza di una equazione. Metodo risolutivo delle equazioni numeriche fratte riconducibili ad equazioni di I grado. Sistemi di equazioni di primo grado in due incognite I sistemi di equazione di primo grado in due incognite. Un sistema di equazioni. Il metodo di sostituzione per risolvere un sistema di I grado in due incognite. Sistemi di equazioni fratte (accenni) Disequazioni di primo grado in una incognita Disequazioni numeriche di primo grado in una incognita Le disequazioni equivalenti ed i principi di equivalenza. La risoluzione delle disequazioni intere numeriche di I grado ad una incognita Il grafico associato alle disequazioni intere numeriche di I grado ad una incognita Sistemi di disequazioni di primo grado in una incognita Geometria: rette perpendicolari e rette parallele Rette perpendicolari (definizione e teoremi associati) e rette parallele (definizione generalizzata). V postulato di Euclide. Il criterio di parallelismo. II Teorema dell’angolo esterno. Geometria: quadrilateri Quadrilateri: definizioni e proprietà Parallelogrammi: definizioni e proprietà Parallelogrammi particolari: rettangoli e rombi Trapezi Testo adottato per geometria: Testo adottato per algebra: Roma 27 maggio 2010 Gli alunni …………………………………. …………………………………. …………………………………. Geometria Algebra 1 M. Refraschini G. Grazzi M. Refraschini G. Grazzi L’insegnante ………………………………. Atlas Atlas