Distribuzione Gaussiana Nella maggioranza dei casi (ma non in tutti) facendo un istogramma delle misure acquisite si ottiene una curva a campana detta ‘normale’ o Gaussiana. G x, , 1 e 2 1 x 2 2 Gx, , dx 1 = Valor Medio (vedi prossimo lucido) = deviazione standard (vedi prossimo lucido) • Si puo dimostrare che l’istogramma ha una forma Gaussiana quando tutte le sorgenti di inceretezza hanno un contributo molto piccolo e casuale • Esistono tuttavia altre curve che incontreremo nel corso, come ad esempio la Binomiale o la Poissoniana • Poiche la Gaussiana è simmetrica attorno al valore medio allora Media = Mediana = Moda Teoremi Nel caso di un numero N finito di misure, ripetibili ed indipendenti, che possano essere descritte da una distribuzione gaussiana G x, , allora 1 e 2 1- La migliore stima del parametro è la media 1 x 2 2 1 x N N x i 1 i 2 – La migliore stima del parametro è la deviazione standard del campione N x (x i 1 i x) 2 N 1 3 – L’incertezza relativa sul valore di è data da incertezza sul valore di x come stima di 2( N 1) Distribuzione Gaussiana Nell’ipotesi che i dati misurati si distribuiscano seguendo una curva Gaussiana è possibile dare una definizione più quantitativa della deviazione standard • Il 68% delle misure cadrà all’interno dell’intervallo x ; x • Il 95% delle misure cadrà all’interno dell’intervallo x 1.96 ; x 1.96 • il 99.7% delle misure cadrà all’interno dell’intervallo x 3 ; x 3 Perche il 68% o il 95% ? G x, , Data una gaussiana normalizzata 1 e 2 1 x 2 Gx, , dx 1 x Allora G x, , x dx 0.68 x x 1.96 G x, , x dx 0.95 x 1.96 x 3 G x, , x dx 0.997 x 3 2 Distribuzione Gaussiana Questa proprietà è vera esclusivamente per una distribuzione Gaussiana. Per altre distribuzioni potranno valere, caso per caso, percentuali differenti Per esempio 1 - Poissoniana con valor medio <x> = 8 e = 2.8 In un intervallo di più o meno una deviazione standard cadono il 62% dei conteggi 2 - Poissoniana con valor medio <x> = 10 e = 3.2 In un intervallo di più o meno una deviazione standard cadono il 73% dei conteggi 3 - Poissoniana con valor medio <x> = 5 e = 2.2 In un intervallo di più o meno una deviazione standard cadono il 74% dei conteggi Nota: Valor medio e deviazione standard sono definite per un qualsiasi set di dati, tuttavia solo per il caso della Gaussiana è possibile dimostrare il legame con i parametri della distribuzione stessa. Probabilità Integrale – ERF – Funzione degli errori Come ho fatto a calcolare gli integrali di prima ? Come posso fare per calcolare l’integrale di una gaussiana per altri intervalli di integrazione ? Oppure .. più in generale ? Come faccio a trovare la probabilità che una data misura x0 faccia parte della distribuzione statistica ‘Gaussiana’ che ha valor medio xbest e ? Il punto di partenza è l’integrale parametrizzato xbest Probabilità Integrale – ERF – Funzione degli errori Come ho fatto a calcolare gli integrali di prima ? Come posso fare per calcolare l’integrale di una gaussiana per altri intervalli di integrazione ? Oppure .. più in generale ? Come faccio a trovare la probabilità che una data misura x0 faccia parte della distribuzione statistica ‘Gaussiana’ che ha valor medio xbest e ? Il punto di partenza è l’integrale parametrizzato P xbest x0 t Gx, , x dx Gx' , ,0 dx' best xbest x0 Nota : x' x - x best xbest x0 t xbest x0 t dove t dx' dx t xbest x0 x 'best 0 Non è una uguaglianza matematica ma una equivalenza dopo un cambio di coordinate. Ricordatevi che una traslazione conserva le differenze P xbest x0 Gx, , x dx best t P Gx, ,0 dx t xbest x0 P( x, , xbest ) xbest x0 xbest x0 con t xbest x0 Sia per esempio t 0.32 0.32 G x, ,0dx P 0.32 Dobbiamo usare la tabella Quindi 0.32 P G x, ,0dx 0.251 0.32 Pagina 289 taylor Quindi: • Data una misura x0 • Data una distribuzione gaussiana con valor medio xbest e deviazione standard • Sia t = |x0 – xbest|/ = 0.32 Allora ho una probabilità pari all’area esterna alla gaussiana, 0.32 P 1 G x, ,0dx 1 0.251 74.9% 0.32 cioè il 74.9% di probabilità, di trovare una misura uguale o ‘peggiore’ (cioè più lontana da xbest) di x0. Quindi ho il 74.9% di probabilità che x0 appartenza alla distribuzione NOTA IMPORTANTE Cosa succede se t=1.96 ? In questo caso, ho solo il 5% di probabilità di avere una misura uguale o peggiore di x0, quindi x0 è una ‘cattiva’ misura. 0 t . P( x,0, ) t La probabilità di avere una misura uguale o peggiore di x0 si calcola integrando su tutto l’intervallo esterno a partire dal punto in questione (x0) su entrambi i lati della gaussiana Esercizio: Provate a verificare sulle tabelle se è vero che P P xbest x0 Gx, , x dx Gx, ,0dx 0.68 best xbest x0 xbest x0 2 Gx, , x dx Gx, ,0dx 0.95 best xbest x0 P 2 xbest x0 2.58 Gx, , x dx G x, ,0dx 0.99 best xbest x0 P 2.58 xbest x0 0.5 Gx, , x dx Gx, ,0dx 0.39 best xbest x0 0.5 Nota importante Nei lucidi precedenti abbiamo definito l’osservabile ‘t’ definita come t xbest x0 L’osservabile ‘t’ indica, in questo caso, la distanza della misura x0 dal valor medio in unità di deviazione standard Ovviamente il valore dell’osservabile ‘t’ dipende dalla corretta conoscenza di xbest e della deviazione standard In una distribuzione Gaussiana, noto il valore dell’osservabile ‘t’ è possibile, in qualsiasi caso, calcolare la probabilità di avere una misura di valore uguale o maggiore (in modulo) di x0 attraverso l’uso della proprietà integrale e delle tavole. Nota: La deviazione standard nella formula di ‘t’ è quella ‘VERA’ non quella misurata ! Distribuzione Gaussiana Nell’ipotesi che i dati misurati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard • La prossima misura ha il 68 % di probabilità di cadere all’interno dell’intervallo x ; x • La prossima misura ha il 95 % di probabilità di cadere all’interno dell’intervallo x 2 ; x 2 • La prossima misura ha il 99.7 % di probabilità di cadere all’interno dell’intervallo x 3 ; x 3 La deviazione standard quindi: • E’ una quantita associata alla singola misura • E’ una stima quantitativa della incertezza su una singola misura • E’ una stima quantitativa della dispersione delle singole misure • E’ una stima della larghezza della distribuzione di probabilità delle misure • NON è una stima dell’errore del valor medio ottenuto • NON è una stima dell’incertezza statistica presente nel nostro valor medio • NON dipende dal numero di misure effettuate • Che variabile statistica quantifica l’errore/incertezza presente nel valor medio ? Deviazione Standard della Media E possibile Dimostrare che nel caso di dati che si distribuiscono seguendo una distribuzione Gaussiana l’incertezza a cui è soggetto il valore medio è data dal rapporto della deviazione standard con la radice quadrata del numero di misure effettuate. Deviazione standard della media m x N Altri nomi della Deviazione Standard della media (SDOM) sono: • Errore Standard • Errore Standard della Media • La Deviazione Standard della media decresce con l’aumentare del numero di misure Nell’ipotesi di: • Aver effettuato N misure della medesima quantità (misure ripetute ed indipendenti). • I dati misurati si distribuiscano seguendo una distribuzione Gaussiana. • NON siano presenti errori sistematici. C’e’ il 68% di probabilità che il valore xvero sia all’interno dell’intervallo (xbest – m; xbest + m). Il valore xbest è estratto atrraverso il processo di media. Analogamente per il 95% ed il 99.7% di probabilità con 1.96m e 3m Per comprendere in maniera intuitiva l’origine della deviazione standard della media • Immaginate di avere un numero infinito di dataset composti ciascuno da N misure di una osservabile fisica. • I dati in ciascun dataset si distribuiranno secondo una gaussiana, con un valor medio ed una deviazione standard Media Dev. Std Media Dev. Std Media Dev. Std Media Dev. Std Media Dev. Std • Posso ottenere un numero infinito di valori medi (uno per dataset). • Costruiamo la distribuzione dei valori medi ottenuti in ciascun dataset. • Questa distribuzione è una Gaussiana • Questa distribuzione avrà come valore medio xvero • Questa distribuzione avrà come deviazione standard la deviazione standard della media di un singolo dataset Nota importante La deviazione dalla media è uno strumento molto utile per valutare il numero di misure necessarie per ottenere un certo errore. P.es. Devo misurare una osservabile, una stima a priori mi dice che dovrei ottenere come valor medio <x> ed una deviazione standard Se volessi una incertezza nel valore medio pari all’1% quante misure dovrei fare ? m x m x 1% 1 0.01 N x 1 N x 0.01 2 Nonostante le proprietà della deviazione standard e della deviazione dalla media siano dimostrabili solo sotto precise ipotesi si generalizza la loro definizione e uso. DEFINIZIONI Deviazione Standard La deviazione standard è una stima dell’incertezza sulla singola misura, in altre parole è una valutazione quantitativa delle fluttuazioni casuali e quindi di come si disperdono le singole misure attorno al valore medio. In particolare, nella gaussiana, esiste il 68% di probabilità che una singola misura sia all’interno dell’intervallo (xbest – ; xbest + ) Deviazione Standard della Media m La deviazione standard della media è una stima dell’incertezza sul valor medio, in altre parole è una valutazione quantitativa di quanto (in assenza di errore sistematico) xbest è lontano da xvero . In particolare, esiste il 68% di probabilità che xvero sia all’interno dell’intervallo (xbest – m; xbest + m) Nota Importante Voglio conoscere il valore di una osservabile attraverso una operazione di misura. Ipotizzo che i dati si distribuiscano secondo una gaussiana attorno al valore medio Effettuo N misure (indipendenti e ripetibili) dell’osservabile. • Estraggo il valore medio (la migliore stima del valore vero) • Estraggo la deviazione standard del campione (la migliore stima di ) • Estraggo la deviazione dalla media (la migliore stima del mio errore) • Estraggo il valore dell’osservabile ‘t’ t xbest x0 • Posso quindi affermare che ho il 68% (t=1) di probabilità che il valore vero sia nell’intervallo (xmedio ± m) o il 99.7% (t=3) che il valore vero sia nell’intervallo (xmedio ± 3m) Tuttavia: • per estrarre la deviazione dalla media devo usare la deviazione standard, che tuttavia non conosco ma di cui ho una stima (la deviazione standard del campione) non necessariamente corretta. • Come posso stimare l’errore della misura se non conosco il valore vero della deviazione standard ? • Se il numero di misure N è ‘piccolo’ posso aspettarmi che il valore della deviazione standard del campione possa essere molto differente dal valore vero della deviazione standard Il grafico riporta l’andamento della deviazione standard al variare del numero di misure nel caso di un dado equiprobabile. Il valore ‘vero’ è indicato dalla linea gialla. Osservate che dopo 3-5 tiri la deviazione standard del campione può essere molto differente dal valore vero della deviazione standard Per risolvere questo problema bisogna studiare la distribuzione dell’osservabile ‘t’ La distribuzione dell’osservabile ‘t’ è definita “Student’s t distribution” ed data dalla relazione: 1 Gn 1 / 2 t 1 p(t ,n ) n Gn / 2 n 2 n 1 / 2 Dove G indica una funzione matematica speciale (vedi pg. 196 del Bevington). Nella formula l’osservabile ‘n’ indica il numero di gradi di libertà (n = N-1 se dal medesimo set di dati si estrae anche il valor medio) e l’osservabile ‘t’ è data dalla relazione t x x0 x x valor medio estrattodai dati x deviazione standard estratta dai dati P((t,n) indica quindi la probabilità di ottenere un determinato t avendo fatto un numero di misure pari a N La pagina 266 del Bevington (e la tabella che segue) indicano il valore dell’integrale della distribuzione della ‘t’ di Student nell’intervallo da x1 = <x> - tx a x2 = <x> + tx fissato il valore dell’osservabile ‘t’ e del numero di gradi di libertà. Facciamo un esempio: • Vengono fatte n (numero piccolo, 2-7) misure e si ottiene un valor medio di 5,88 ed una deviazione della media di 0,31. Il valore atteso è pari a 6.5 • Nel caso di una distribuzione gaussiana il parametro t assume un valore pari a t = (6.5-5,88)/0.31 = 2, in altre parole il valor medio misurato dista due deviazioni standard della media misurate dal valore atteso. • Se la deviazione standard fosse nota esattamente (e quindi anche la deviazione dalla media) potremmo dire che esiste il 4.55 % di probabilità che la distanza tra il valore misurato ed il valore atteso sia dovuto alle fluttuazioni statistiche • la misura, tuttavia, ha dato solo una stima, non necessariamente precisa, della deviazione standard • Questo è il tipico caso in cui è utile la distribuzione della ‘t’ Student La tabella degli integrali della distribuzione ‘t’ riporta che per t = 2: Gradi di Liberta Numero Misure Probabilità che la differenza dal valor medio sia una fluttuazione statistica (t=2) 2 3 18.3 % 3 4 13.9 % 4 5 11.6 % 5 6 10.2 % 8 9 8 .0% 10 11 7.3 % 20 21 5.9 % 50 51 5.1 % infinite Infinite 4.6 % Notate che per un numero infinito di misure si ottengono gli stessi risultati della gaussiana Notate che il risultato dipende dal numero di misure Notate che la tabella non entra in gioco nel determinare il valore l’errore ma - la compatibilità o meno di misure tra loro o verso un valore atteso - l’intervallo di probabilità entro il quale ci aspettiamo di avere il valor medio La tabella C.8 pg 266 del Bevington Esercizio: Uno studente misura l’accelerazione di gravità, g, cinque volte con i seguenti risultati 9.9 m/s2 9.6 m/s2 9.5 m/s2 9.7 m/s2 9.8 m/s2 Trovare il valor medio, la deviazione standard e l’errore sulla misura di g. Calcolare con che probabilità la differenza tra il valore misurato e quello atteso possa essere ricondotta ad una fluttuazione statistica usando la proprietà integrale della gaussiana e la distribuzione della ‘t’ di Student In questo caso l’osservabile t = (9.806 – 9.70)/0.08 = 1.33 Secondo l’integrale Gaussiano ho una probabilità del (1-0.8165) = 18.4 % che la differenza tra la misura ed il valore atteso sia una fluttuazione statistica. Secondo la distribuzione di student la probabilità è di circa 26.7 % Esercizio Dopo aver misurato la velocita del suono v molte volte, uno studente conclude che la deviazione standard v è pari a 10 m/s. Assumendo che tutte le incertezze siano casuali, lo studente puo’ raggiungere una precisione desiderata facendo un numero sufficiente di misure e mediando. Quante misure sono necessarie per avere un errore sulla velocità del suono pari a 3 m/s ? Quante misure sono necessarie per avere un errore sulla velocità del suono pari a 0.5 m/s ? m m N 3 m / s N m 2 m 10 m / s 10 11 3 2 m N 0.5 m / s N m 2 10 m / s 10 400 0.5 2 ESERCIZI Provate a fare gli esercizi 4.15, 4.16, 4.17 Attenzione L’errore finale su una qualsiasi quantità non puo essere di molto inferiore alla sensibilità strumentale. Altrimenti sarebbe possibile raggiungere precisioni NON fisiche semplicemente ripetendo le misure più e più volte indipendentemente dallo strumento utilizzato. Esempio: Vogliamo misurare la lunghezza di un tavolo con un metro a nastro con tacche da 1 mm. La sensibilità strumentale è di circa 0.5 mm. • Eseguendo 9 misure otteniamo un valor medio di 178.2 mm con una deviazione standard di 1.2 mm. • La deviazione della media è di 0.4 mm dello stesso ordine di grandezza della sensibilità strumentale. • Non ha il minimo senso fare più misure, tanto l’errore sul valor medio non potrà essere ridotto in maniera significativa. • questo anche se la matematica ci dice che misurando 9000000 volte potremmo ottenere una precisione di 0.0004 mm (del decimillesimo di millimetro). Esempio: Vogliamo misurare la posizione di una massa appesa ad una molla con un sensore ad ultrasuoni con la sensibilità di 0.5 millimetri. A cause di tutte le influenze esterne la massa non è mai ferma ma oscilla leggermente in tutte le direzioni. Queste oscillazioni casuali rendono ovviamente la misura meno precisa. • Eseguendo 9 misure otteniamo un valor medio di 67.2 mm con una deviazione standard di 3.2 mm. • La deviazione della media in questo caso è di 1.1 mm, valore superiore (più che doppio) alla sensibilità strumentale. • In questo caso, potrebbe essere utile arrivare a circa 50 misure. In questo modo la deviazione dalla media sarebbe 0.45 mm. • In questo caso l’effetto delle fluttuazioni casuali è dominante rispetto alla sensibilità strumentale. Effettuare più misure, quindi, giova per aumentare la precisione della misura. Livello di confidenza Abbiamo visto che nel caso di un numero infinito di misure ripetibili ed indipendenti che si distribuiscano secondo una gaussiana il 68 % dei dati sperimentali deve cadere all’interno di una deviazione standard. In altre parole abbiamo un “livello di confidenza” che, eseguendo una misura più volte, nel 68% dei casi il risultato cadrà entro una deviazione standard. Spesso, ma non sempre, si sceglie la deviazione standard, un livello di confidenza del 68%, come riferimento. Ovviamente questo non vale per una distribuzione poissionana o piatta. Per distribuzioni non gaussiane di fa il viceversa, si dice xo ± xx al 95% C.L. Questo significa che il 95% delle misure cadono nell’intervallo xo-xx xo+xx E’ tutto Chiaro ? Dovreste aver chiari i seguenti argomenti: • Deviazione standard della media • Differenza tra la deviazione standard e la deviazione standard dalla media • Gaussiana • Distribuzione di ‘t’ di Student • Errore minimo • Livello di Confidenza