Sistemi di unità di misura. La legge di Coulomb, di interazione tra le cariche elettriche, si scrive: F k q1 q 2 r2 (1) Nel sistema cgs elettrostatico (le cui unità si chiamano anche ues = unità elettro\statiche) si assume k = 1 e adimensionale. L’unità di carica elettrica ues ( chiamata anche stat-coulomb) è quindi quella carica che posta alla distanza di 1 cm da una carica uguale, la respinge con la forza di 1 dine ( 1 dine = 10 – 5 Newton). L’unità elettrostatica di corrente corrisponde a uno stat-coulomb / s, detto anche stat-ampere. Due fili rettilinei indefiniti paralleli posti a distanza r , e percorsi da correnti i1 e i2 , di verso concorde, si attraggono con una forza (di natura magnetica) per unità di lunghezza (i fili sono indefiniti, quindi non possiamo parlare della forza totale di attrazione tra i fili, che è infinita) data dall’espressione: ii F 2k ' 1 2 L r (2) dove k’ è una costante che dipende dalle unità di misura. ( Il fattore 2, inessenziale, viene introdotto per poter scrivere la forza di Lorentz come F qv B ). Nel sistema cgs elettromagnetico (le cui unità sono chiamate anche uem = unità elettro magnetiche) si definisce l’unità di corrente ponendo k’ = 1, e adimensionale. L’unità di corrente uem è quindi quella corrente che percorrendo in modo concorde due fili rettilinei indefiniti paralleli posti a distanza di 1 cm, determina una forza, per unità di lunghezza, di attrazione tra i fili pari a 2 dine / cm. L’ampere (A) fu definito originariamente come unità pratica pari a 1/10 di uem di corrente. Nel Sistema Internazionale SI l’ampere è assunto come unità fondamentale insieme al metro, al Kilogrammo e al secondo ( oltre che al kelvin, alla mole e alla candela ). Si trova immediatamente, nel sistema SI, che k’ = 10 – 7 N / A2, ossia l’ampere è la corrente che percorrendo due fili rettilinei indefiniti paralleli distanti 1 metro determina su di essi una forza per unità di lunghezza pari a 2 x 10 – 7 N / m ( infatti r = 100 cm; i1 = i2 = 1 / 10 uem; quindi F / L = 2 x 10 – 4 dine / cm = 2 x 10 – 7 N / m ). 1 Nel SI l’unità di carica elettrica è quindi il Coulomb (C) pari al quantitativo di carica che attraversa in un secondo la sezione di un filo percorso da una corrente di 1 Ampere ( ossia la corrente di 1 A corrisponde a 1 C / s ). Definito il Coulomb è possibile determinare sperimentalmente il valore di k nella legge di Coulomb. Si ottiene k = 9 x 10 9 (N – m2 )/C2 (circa). Il Coulomb cioè è quella carica che posta alla distanza di 1 m da una carica uguale la respinge con la forza di 9 x 10 9 N. Risulta : 1 C = 3 x 10 9 ues (infatti per ottenere una forza di 9 x 10 9 N = 9 x 10 14 dine tra due cariche distanti 1 m = 100 cm è necessaria una carica in ues tale che q2 = 9 x 10 14 x 10 4 = 9 x 10 18 ues2, ossia 1 C = 3 x 10 9 ues ). Risulta inoltre: 1 uem di corrente = 10 A = 3 x 10 10 ues di corrente (3). E’ importante notare che le dimensioni del rapporto iues ques iuem quem ottenibili dal confronto di (1) e (2) con k = 1 e k’ = 1 (e adimensionali), sono quelle di una velocità. Questo rapporto, come si vede utilizzando la (3), è pari numericamente alla velocità della luce c = 3 x 10 10 cm / s (circa). Passando al sistema SI: k N 2m ; k ' 2 C N A2 2 2 m2 k N m A k ' C2 N s2 numericamente uguale a c2. Su questo importante risultato è basato il sistema di unità di Gauss, che è stato quello più usato nella fisica moderna. In esso le grandezze elettrostatiche sono misurate in ues, quelle elettromagnetiche in uem. Quando in una stessa formula compaiono grandezze elettriche e 2 magnetiche, viene introdotta esplicitamente la costante c. Per esempio la forza di Lorentz viene scritta, nel sistema di Gauss, come: q F qE v B c con q ed E in ues e B in uem. Inoltre q / c può essere considerato il valore della carica in uem. Nel sistema di Gauss le unità fondamentali meccaniche sono quelle del sistema cgs. Nel Sistema razionalizzato, si introducono due nuove costanti nel modo seguente: k 1 4 0 k' da cui si ricava 0 8.85418781 1012 farad / m detta costante dielettrica del vuoto; 0 da cui si ricava 0 4 10 7 henry / m detta permeabilità magnetica del vuoto. 4 Vale quindi la relazione: c2 1 k 1 ovvero c k ' 0 0 0 0 Ogni miglioramento per via sperimentale della misura di c modifica il valore della costante ε0 mentre rimane invariato il valore di µ0. 3