. - Statistica II PROF. BENITO VITTORIO FROSINI; PROF. DIEGO ZAPPA OBIETTIVO DEL CORSO Il corso si propone di introdurre i fondamenti dell’inferenza statistica, necessaria per poter prendere decisioni in presenza di informazioni campionarie. PROGRAMMA DEL CORSO OBIETTIVI FORMATIVI CHE LO STUDENTE DOVREBBE AVER RAGGIUNTO PRIMA DI ACCEDERE AL CORSO Il programma del corso di Statistica II assume le conoscenze propedeutiche comprese nei programmi dei corsi di Statistica I e di Matematica generale II. OBIETTIVI FORMATIVI CHE LO STUDENTE POTREBBE ACQUISIRE NEL CORSO 1. Argomenti di calcolo delle probabilità. – Complementi su alcune variabili casuali: a) Processo di Poisson; b) Funzione Gamma e funzione Beta; c) variabili casuali Gamma (e chi-quadrato) e Beta; d) v.c. normale, a una, due e p dimensioni; e) v.c. di Poisson, e v.c. esponenziale negativa; f) la v.c. logistica. – Teorema centrale di convergenza. Cenni su altri teoremi asintotici. – Momenti e funzioni generatrici dei momenti, in particolare per le v.c. binomiale, di Poisson, Gamma (e chi-quadrato), normale. – Il teorema di Cochran. 2. Argomenti di statistica matematica. – Trasformazioni di v.c. . Campionamento e v.c. campionarie: la v.c. t di Student, e F di Fisher. – L’Informatore Statistico. La funzione di verosimiglianza. Informatori sufficienti, minimi sufficienti, completi. La famiglia esponenziale. – Stima puntuale. Proprietà degli stimatori. Metodo per la determinazione degli stimatori: metodo dei momenti e della massima verosimiglianza. Statistiche sufficienti e stimatori a varianza minima. – Stima intervallare. Costruzione degli intervalli di confidenza. – Verifica delle ipotesi. Lemma di Neyman Pearson. Test UMP. Test basati sul rapporto di verosimiglianza. Test di significatività. 3. Argomenti di analisi di regressione. – Analisi della varianza con un criterio di classificazione. – Richiami sulla funzione di regressione: aspetti descrittivi. – Le funzioni di regressione nel caso della v.c. normale bivariata. – Analisi di regressione semplice. Teorema di Gauss-Markov. Stime di massima verosimiglianza per il modello di regressione normale, e test collegati. Stima della media condizionale. Calcolo di un intervallo predittivo. – Regressione semplice con errori in entrambe le variabili. – Analisi di regressione multipla: (a) col metodo dei minimi quadrati ordinari, (b) col metodo dei minimi quadrati ponderati. Il problema della multicollinearità. BIBLIOGRAFIA Testi consigliati: G. CICCHITELLI, Probabilità e statistica, Maggioli editore, Rimini, 2001. Letture complementari: G. CASELLA-R.L. BERGER, Statistical inference, Pacific Grove CA, Duxbury. B.V. FROSINI, Analisi di regressione, EDUCatt, Milano. R. HOGG-J. MCKEAN-A. CRAIG, Introduction to Mathematical Statistics, Pearson Education, 2005. D. PICCOLO, Statistica per le decisioni, Il Mulino, Bologna. C.R. RAO, Linear statistical inference and its applications, Wiley, New York. N.A. WEISS, Calcolo delle probabilità, Pearson-Addison Wesley, Milano. DIDATTICA DEL CORSO Lezioni in aula. METODO DI VALUTAZIONE Esame scritto. AVVERTENZE Orario e luogo di ricevimento I docenti ricevono gli studenti come da avviso affisso all’albo presso il Dipartimento di Scienze statistiche (via Necchi 9, I piano) e indicato sulle pagine web dei docenti sul sito www.unicatt.it