Matematica Discreta I Lezione del giorno 19 ottobre 2007 Funzione identica Dato un insieme A, si definisce la funzione identica di A: essa è la funzione che ha dominio e codominio coincidenti entrambi con A, ed associa ogni elemento di A con sé stesso. Tale funzione si indica con il simbolo: iA: A A ed è quindi definita ponendo iA(x)=x per ogni xA. Composizione di funzioni Siano A,B,C, 3 insiemi e siano f: A B, g: B C delle funzioni (notare che il codominio di f coincide con il dominio di g). Se prendiamo un elemento generico xA, la f associa a tale elemento x un unico elemento y=f(x)B; a sua volta la g associa a tale elemento y un unico elemento z=g(y)C. In tal modo, associando ad xA l’elemento zC si ottiene una nuova funzione con dominio A e codominio C, detta composizione di f e g (o funzione composta di f e g), e indicata con il simbolo gf: A C. In pratica l’azione di gf è ottenuta facendo agire prima f e poi g: (gf)(x)=z=g(y)=g(f(x)), quindi, in totale, (gf)(x)=g(f(x)) (notare che la funzione f, che agisce per prima, è scritta per seconda nel simbolo gf). Esempi: 1) Siano A={1,2,3,4}, B={a,b,c}, C={5,6,8} e siano f: A B, g: B C le funzioni descritte graficamente da: 1 a 5 2 b 6 3 c 8 4 f g Allora la composizione gf: A C è descritta graficamente da: 1 5 2 6 3 4 gf 8 2) Se A è l’insieme dei numeri interi positivi, B l’insieme dei numeri razionali positivi, C l’insieme dei numeri reali positivi, date le 2 funzioni f: A B, g: B C definite da f(x)=(2x+1)/3, g(x)= x 2 1 , la composizione gf: A C è definita da: (gf)(x)=g(f(x))=g((2x+1)/3)= ((2x 1)/3 )2 1 Teorema. La composizione di 2 funzioni iniettive è una funzione iniettiva. La composizione di 2 funzioni surgettive è una funzione surgettiva. La composizione di 2 funzioni biunivoche è una funzione biunivoca. Dimostrazione: Siano f: A B, g: B C due funzioni. Supponiamo dapprima che f, g siano iniettive e dimostriamo che gf è iniettiva: se a,bA, ab, si ha f(a)f(b) (per l’iniettività di f), e allora g(f(a))g(f(b)) ((per l’iniettività di g) dunque si conclude che (gf)(a) (gf)(b), ossia gf è iniettiva. Supponiamo ora che f, g siano surgettive e dimostriamo che gf è surgettiva: dato cC, cerchiamo una elemento aA tale che (gf)(a)=c; ma, per la surgettività di g, esiste bB tale che g(b)=c; inoltre, per la surgettività di f, esiste aA tale che f(a)=b, da cui in totale (gf)(a)=c. La terza affermazione segue ovviamente dalle prime due. Calcoliamo la composizione di funzioni in alcuni casi particolari. Siano A,B insiemi, sia f: A B una funzione e consideriamo la funzione identica di B: iB : B B Possiamo allora considerare la composizione iBf : A B. Per ogni elemento xA si ha (iBf)(x)= iB(f(x))=f(x), e si conclude che le funzioni iBf ed f sono uguali: iBf = f Analogamente siano A,B insiemi, sia f: A B una funzione e consideriamo la funzione identica di A: iA : A A Possiamo allora considerare la composizione fiA : A B. Per ogni elemento xA si ha (fiA)(x)= f(iA(x))=f(x), e si conclude che le funzioni fiA ed f sono uguali: fiA = f Se A,B sono insiemi e se f: A B una funzione biunivoca, possiamo considerare la funzione inversa f-1: B A, e le due composizioni: f-1f : A A ff-1 : B B Per ogni elemento xA si ha (f-1f)(x)= f-1(f(x))=x, e si conclude che la funzione f-1f coincide con la funzione identica di A: f-1f = iA Con ragionamento analogo di ha che la funzione ff-1 coincide con la funzione identica di B: ff-1 = iB .