La similitudine
La similitudine
• Due poligoni sono simili se hanno gli angoli
congruenti e i lati corrispondenti in proporzione.
• Il rapporto di similitudine è il rapporto tra due
lati corrispondenti.
© Casa Editrice G. Principato
2009
2
La similitudine
• Primo criterio di similitudine dei triangoli:
due triangoli sono simili se hanno gli angoli
congruenti.
© Casa Editrice G. Principato
2009
3
La similitudine
• Secondo criterio di similitudine dei triangoli:
due triangoli sono simili se hanno due lati in
proporzione e l’angolo tra essi compreso
congruente.
© Casa Editrice G. Principato
2009
4
La similitudine
• Terzo criterio di similitudine dei triangoli:
due triangoli sono simili se hanno i tre lati in
proporzione.
© Casa Editrice G. Principato
2009
5
La similitudine
• I perimetri di due poligoni simili stanno tra loro
come due lati corrispondenti.
• Le altezze di due triangoli simili stanno tra loro
come due lati corrispondenti.
• Le aree di due poligoni simili stanno tra loro
come i quadrati di due lati corrispondenti.
© Casa Editrice G. Principato
2009
6
La similitudine
• Primo teorema di Euclide
In un triangolo rettangolo il quadrato che ha per
lato un cateto è equivalente al rettangolo che
ha per dimensioni l’ipotenusa e la proiezione
del cateto stesso sull’ipotenusa.
© Casa Editrice G. Principato
2009
7
La similitudine
• Secondo teorema di Euclide
In un triangolo rettangolo il quadrato che ha per
lato l’altezza relativa all’ipotenusa è
equivalente al rettangolo che ha per dimensioni
le proiezioni dei cateti sull’ipotenusa.
© Casa Editrice G. Principato
2009
8