MATEMATICA 2^A CAT - IIS Vignarelli Sanluri

PROGRAMMA DI MATEMATICA
CLASSE SECONDA A Cat
ANNO SCOLASTICO 2014/2015
Algebra
Capitolo 7 ( vol. 1 ).
Capitolo 7 ( vol. 1 )
LE EQUAZIONI LINEARI.
LE DISEQUAZIONI LINEARI.
1.
2.
3.
4.
5.
6.
Le equazioni.
I principi di equivalenza.
Le equazioni numeriche intere.
Equazioni e problemi.
Equazioni numeriche fratte.
Le equazioni letterali.
1.
2.
3.
4.
5.
Le disuguaglianze numeriche.
Le disequazioni di primo e di secondo grado.
Le disequazioni numeriche intere.
Le disequazioni fratte.
I sistemi di disequazioni.
Capitolo 9 ( vol. 2 ).
Capitolo 10 ( vol. 2 ).
I SISTEMI LINEARI.
I NUMERI REALI E I RADICALI.
1.
2.
3.
4.
5.
6.
7.
I sistemi di due equazioni in due incognite.
Il metodo di sostituzione.
I sistemi determinati, impossibili, indeterminati.
Il metodo del confronto.
Il metodo di riduzione.
Il metodo di Cramer.
I sistemi di tre equazioni in tre incognite.
1.
2.
3.
4.
5.
6.
7.
8.
10.
11.
12.
La necessità di ampliare l’insieme ℚ.
Dai numeri razionali ai numeri reali.
I radicali in ℝ+
0.
La proprietà invariantiva dei radicali.
La moltiplicazione e la divisione fra radicali.
La potenza e la radice di un radicale.
L’addizione e la sottrazione di radicali.
La razionalizzazione del denominatore di una frazione.
Le equazioni, i sistemi e le disequazioni con coefficienti
irrazionali.
Le potenze con esponente razionale.
I radicali in ℝ.
Capitolo 11 ( vol. 2 ).
Capitolo 12 ( vol. 2 ).
LE EQUAZIONI DI SECONDO GRADO.
COMPLEMENTI DI ALGEBRA.
1.
2.
3.
5.
6.
Le equazioni di secondo grado.
La risoluzione di un’equazione di secondo grado.
La somma e il prodotto delle radici.
La scomposizione di un trinomio di secondo grado.
Le equazioni parametriche.
1.
2.
3.
4.
1
Le equazioni di grado superiore al secondo.
Le equazioni irrazionali.
I sistemi di secondo grado.
I sistemi simmetrici.
Geometria euclidea
Capitolo 4.
Capitolo 5.
LA FORMULA DELLA DISTANZA .
ALCUNE APPLICAZIONI DEI TRIANGOLI
RETTANGOLI.
1.
2.
3.
Distanza tra punti arbitrari.
Spazio a dimensione più alta.
Equazione della circonferenza.
1.
2.
3.
Asse di un segmento.
Triangoli isosceli e equilateri.
Teoremi sui cerchi.
Capitolo 6.
Capitolo 7.
POLIGONI.
TRIANGOLI CONGRUENTI.
1.
2.
3.
1.
2.
3.
Idee fondamentali.
Convessità e angoli.
Poligoni regolari.
Test di Euclide per la congruenza.
Alcune applicazioni dei triangoli congruenti.
Triangoli particolari.
Capitolo 8.
DILATAZIONI E SIMILITUDINI.
1.
2.
3.
4.
5.
6.
7.
8.
9.
Definizioni.
Variazione dell’area sotto una dilatazione.
Variazione della lunghezza sotto una dilatazione.
La lunghezza della circonferenza.
Triangoli simili.
Il teorema delle due corde.
Il teorema delle due secanti.
Il teorema della tangente e della secante.
Le proiezioni parallele.
9.1 Corollario 1.
9.2 Corollario 2.
9.3 Corollario 3.
9.4 Corollario 4.
9.5 Dividere un segmento in parti congruenti
9.6 Corollario 5
Alunni
Docente
Roberto Dessì
2