Università degli Studi di Perugia Facoltà di Medicina e Chirurgia biomeccanica del sistema muscolo-scheletrico Prof. Andrea Biscarini Capitolo 1: INTRODUZIONE 1.1 - La biomeccanica: definizione e campo di indagine 1.2 - La biomeccanica del sistema muscolo scheletrico Capitolo 2: RICHIAMI DI MECCANICA DEI SISTEMI 2.1 - Braccio e momento di una forza 2.2 - Le leve: definizione, regola di equilibrio, classificazione 2.3 - Le leve: proprietà dinamiche Capitolo 3: FORZE ESTERNE 3.1 - Classi di forze esterne 3.2 - Momento delle forze esterne 3.3 - Misura delle forze esterne Capitolo 4: FORZA MUSCOLARE Aspetti geometrici: 4.1 - Punto di applicazione, direzione, verso 4.2 - Braccio della forza muscolare 4.3 - Angolo di trazione Intensità e regolazione della forza muscolare: 4.4 - Curva lunghezza-tensione 4.5 - Curva forza-velocità 4.6 - Livello di attivazione 4.7 - Parametri dell’architettura del muscolo 4.8 - Momento della forza muscolare Valutazione della forza muscolare: 4.9 - Elettromiografia 4.10 - Modelli biomeccanici Capitolo 5: CARICHI ARTICOLARI 1.1 - La biomeccanica: definizione e campo di indagine 1.2 - La biomeccanica del sistema muscolo scheletrico Capitolo 6 APLLICAZIONI 6.1 - Strength training equipment (leg extension modificato) 6.2 - Ergonomia 6.3 - Supporti per la riabilitazione del ginocchio in acqua 6.4 - Cardio equipment (cardio wave) Capitolo 7 ASPETTI FUNZIONALI 7.1 - Ciclo allungamento-accorciamento 7.2 - Biomeccanica dei muscoli poliarticolari 7.3 - Co-contrazione Capitolo 1: INTRODUZIONE 1.1 - La biomeccanica: definizione e campo di indagine 1.2 - Biomeccanica del sistema muscolo-scheletrico 1.1 La biomeccanica: definizione e campo di indagine Definizioni generali: “Biomechanics is the science that study structures and functions of biological systems using the knowledge and methods of mechanics.” (Hatze, 1971) Definizioni specifiche: “Biomechanics is the science that examines forces acting upon and within a biological structure and the effects produced by such forces.” (Hay, 1973) Società: International Society of Biomechanics European Society of Biomechanics International Society of Biomechanics in Sports American Society of Biomechanics Canadian Society of Biomechanics Riviste: Journal of Biomechanics Clinical Biomechanics Impact Factor 2.4 Impact Factor 1.5 Journal of Applied Biomechanics Journal of Biomechanical Engineering Impact Factor 0.5 Impact Factor 1.7 Campo di indagine: Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. Molecular Biomechanics - Mechanical analyses of biomolecules. Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. Sports Biomechanics - Mechanical analyses of sports performance. 1.2 Biomeccanica del sistema muscolo-scheletrico Definizione: “Biomechanics of the musculo-skeletal system is the science that examines forces acting on the musculo-skeletal system (external loads, muscular forces and joint load) and the effects produced by such forces (movements, deformations, biological change in tissues).” Tre tipi di forze: • Forze esterne • Forze muscolari • Carichi articolari Capitolo 2: RICHIAMI DI MECCANICA DEI SISTEMI 2.1 - Braccio e momento di una forza 2.2 - Le leve: definizione, regola di equilibrio, classificazione 2.3 - Le leve: proprietà dinamiche 2.1 Braccio e momento di una forza Definizione Dato un corpo rigido vincolato a ruotare attorno ad un asse fisso, e una forza agente sul corpo e appartenente a un piano perpendicolare a tale asse, si definisce momento della forza rispetto all’asse il prodotto del modulo della forza per il suo braccio. Il braccio è la minima distanza fra l’asse e retta di applicazione della forza. M a = ± Fb asse di rotazione corpo rigido r F Dimensioni ed unità di misura [M a ] = [FL] = [MLT −2 L] = [ML2T −2 ] Nm = kg m 2 s −2 C corpo rigido r F C corpo rigido r F Il braccio della forza (ed il momento) aumenta all’aumentare della distanza fra punto di applicazione della forza e centro di rotazione Il braccio della forza (ed il momento) aumenta all’aumentare quanto più la forza è perpendicolare alla retta fra il punto di applicazione della forza e il centro di rotazione Il braccio della forza (e il momento) è nullo quando la retta di applicazione della forza passa per il centro di rotazione C 2.2 Le leve: definizione, regola di equilibrio, classificazione Definizione: Corpo rigido vincolato ad asse fisso (fulcro) sollecitato da due forze (dette forza F e resistenza R) che producono momenti assiali di segno opposto (rotazioni di verso opposto). r φ Braccio della resistenza, bR r F r R = mg retta di applicazione della resistenza Regola d’equilibrio: M a( est ) = 0 Se bF = 10bR bF F − bR R = 0 ⇒ F= 1 R 10 bF F = bR R F= bR R bF (per equilibrare la resistenza basa una forza 10 volte più piccola). Utilità: E’possibile equilibrare/spostare un carico elevato con una forza minima r F bF bR r R Classificazione: Leve di primo tipo Fulcro in posizione intermedia fra forza e resistenza Leve di secondo tipo Resistenza in posizione intermedia fra forza e fulcro Leve di terzo tipo forza in posizione intermedia fra resistenza e fulcro Leve vantaggiose Braccio della forza è maggiore del braccio della resistenza bF > bR 1° tipo r F r F ⇒ F<R 2° tipo Leve svantaggiose Braccio della forza è miniore del braccio della resistenza bF < bR r R r R ⇒ F>R r F *** • Le leve di primo genere possono essere vantaggiose o svantaggiose • Le leve di secondo genere sono in genere vantaggiose • Le leve ti terzo genere sono in genere svantaggiose r R 3° tipo Leve di forza e leve di velocità Le leve anatomiche sono in maggioranza svantaggiose. Ciò appare un controsenso. In realtà una leva svantaggiosa dal punto dinamico(delle forze) è vantaggiosa dal punti di vista cinematico (degli spostamenti e delle velocità) e viceversa. r F bF = nbR ∆sF R e ∆sF = n∆sR n ⇒ F∆sF = R∆sR ⇒ LF = LR ⇒ F= ∆sR Il lavoro compiuto dalla forza e la resistenza è lo stesso. Una piccola forza può spostare una grande resistenza, ma lo spostamento della resistenza è piccolo rispetto a quello del punto di applicazione della forza. r R = mg 2.3 Le leve: proprietà dinamiche Momento di inerzia: Data un asse a, si definisce momento di inerzia di un sistema rispetto all’asse a, e si indica con il simbolo Ia , la somma dei prodotti delle masse dei punti del sistema per i quadrati delle rispettive distanze dall’asse. Sistema particellare I a = m1d12 + m1d12 + L + mN d N2 ( Sistema continuo I a = lim ∆m1r12 + ∆m1r12 + L + ∆mN rN2 ∆mi →0 ≡ ∫ r 2 dm ∆m d1 m1 d2 di m2 di mi dN mN ∆mi ) Equazione del moto: r φ Braccio della resistenza, bR r F r R = mg retta di applicazione della resistenza M a( est ) = Iα bF F − bR R = Iα F= bR R + Iα bF bF F > bR R ⇒ α > 0 ⇒ ω aumenta bF F = bR R ⇒ α = 0 ⇒ ω costante bF F < bR R ⇒ α < 0 ⇒ ω diminuisce α = accelerazione angolare ω = velocità angolare ω =cost: movimento isocinetico In particolare: ω=0: equilibrio statico Capitolo 3: Forze esterne agenti sul sistema muscolo-scheletrico 3.1 - Classi di forze esterne 3.2 - Momento delle forze esterne 3.3 - Misura delle forze esterne 3.1 Classi di forze esterne • • • • Pesi liberi o vincolati Forze elastiche Resistenze di mezzi fluidi Razioni vincolari di appoggio (“ground reaction”) Le forze esterne, sono note a priori (pesi liberi o vincolati, forze elastiche) o possono essere misurate (resistenze di mezzi fluidi, reazioni vincolari). Possono quindi essere considerate note in modulo direzione e verso. Forza peso g = 9.81 m/s2 alle nostre latitudini g = 9.78 m/s2 all’equatore g = 9.83 m/s2 ai poli Intensità: prodotto della massa del corpo per l’accelerazione di gravità; Direzione e verso : verticale discendente. r r P = mg Esempio (pesi liberi): Esercizi con manubri. r mg r mg r mg Implicazioni biomeccaniche: Durante un esercizio con pesi liberi la resistenza mantiene direzione ed intensità invariate. Esempio (pesi vincolati al moto di leve): Esercizi al la leg extension. r R r R r R Implicazioni biomeccaniche: Durante un esercizio quasi-statico alla leg extension la resistenza mantiene intensità R invariata ma cambia la sua direzione. Esempio (pesi vincolati a cavi): Esercizi ai cavi. r R r R r R Implicazioni biomeccaniche: Durante un esercizio ai cavi la resistenza mantiene intensità R invariata (R=mg) ma cambia la sua direzione. r mg Forza elastica di centro O Forza sempre diretta verso un punto fisso O (detto centro della forza elastica) in modulo proporzionale alla distanza di P da O O r OP = r = rrˆ r̂ r Fel r r r Fel = − kOP = − kr = − kr rˆ P k = costante elastica Esempio (bande elastiche): Forza esercitata da una molla compressa o allungata, o da una banda elastica allungata rispetto alla configurazione a riposo (assenza di sollecitazione). banda elastica a riposo banda elastica allungata O banda elastica allungata O Implicazioni biomeccaniche: Durante un esercizio con bande elastiche varia sia la direzione che l’intensità della resistenza. P P Resistenze di mezzi fluidi Quando un corpo si muove all’interno di un fluido esercita una forza sulle particelle del fluido. Le particelle, per il terzo principio, esercitano sul corpo forze uguali e contrarie: la somma di queste forze costruisce la resistenza offerta dal mezzo fluido al moto del corpo. r F = − γρ Af ( v ) vˆ f (v ) = v 0≤ v ≤ 2 m/s (regime viscoso) f (v ) = v 2 2 < v ≤ 200 m / s (regime idraulico) ρ = densità del fluido γ = coefficiente di forma A = superficie investita Esempio: I due corpi rappresentati hanno lo stesso valore di A ma differenti valori di γ. fluido r v Implicazioni biomeccaniche: Durante un esercizio in acqua l’intensità della resistenza può essere modulata variando la velocità dell’esercizio e la superficie esposta. r v A Ground reaction Forza esercitata dal piano di appoggio sulla zona di contatto fra piede e piano di appoggio. Per il terzo principio della dinamica è uguale ed opposta alla forza esercitata dal piede sul piano 3.2 Momento delle forze esterne Estensione del ginocchio con cavigliera bR bR r mg r mg M R = bR Mg r mg La resistenza mg resta costante, il braccio della resistenza bR cresce, quindi il momento della resistenza cresce Estensione del ginocchio con leg-extension bR bR r mg M R = bR Mg bR r mg r mg La resistenza mg resta costante e pari al peso del pacco di piastre selezionate, il braccio della resistenza bR resta costante, quindi il momento della resistenza resta costante Estensione del ginocchio con elastici bR r Fel M R = bR Mg bR bR r Fel r Fel La resistenza elastica aumenta all’aumentare della lunghezza dell’elastico, il braccio della resistenza bR diminuisce, Momento della resistenza???? 3.3 Misura delle forze esterne Pedane di forza Pedane baropodometriche Capitolo 4: FORZA MUSCOLARE Aspetti geometrici: 4.1 - Punto di applicazione, direzione, verso 4.2 - Braccio della forza muscolare 4.3 - Angolo di trazione Intensità e regolazione della forza muscolare: 4.4 - Curva lunghezza-tensione 4.5 - Curva forza-velocità 4.6 - Livello di attivazione 4.7 - Parametri dell’architettura del muscolo 4.8 - Momento della forza muscolare Valutazione della forza muscolare: 4.9 - Elettromiografia 4.10 - Modelli biomeccanici Capitolo 4: FORZA MUSCOLARE Aspetti geometrici: 4.1 - Punto di applicazione, direzione, verso 4.2 - Braccio della forza muscolare 4.3 - Angolo di trazione Intensità e regolazione della forza muscolare: 4.4 - Curva lunghezza-tensione 4.5 - Curva forza-velocità 4.6 - Livello di attivazione 4.7 - Parametri dell’architettura del muscolo 4.8 - Momento della forza muscolare Valutazione della forza muscolare: 4.9 - Elettromiografia 4.10 - Modelli biomeccanici 4.1 Punto di applicazione, direzione e verso Parametri noti (studi anatomici): • Punto di applicazione: inserzione (e origine) • Direzione: tangente alla linea inserzione - origine nel punto di inserzione (e di origine) • Verso: inserzione → origine (origine → inserzione) • • Braccio della forza rispetto all’asse di rotazione articolare Angolo di trazione rispetto all’asse meccanico del segmento anatomico su cui il muscolo si inserisce r F r −F r F 4.2 Braccio della forza muscolare Definizione Il braccio della forza muscolare è la minima distanza fra la retta di applicazione della forza muscolare ed il centro di rotazione articolare r F r F Importanza Il momento assiale M della forza muscolare è definito come il prodotto del braccio della forza muscolare per l’intensità della forza muscolare: Forza muscolare M = ± aF F Determina l’accelerazione angolare a del segmento anatomico in accordo alla seconda equazione cardinale della dinamica dei sistemi: Iα = M M = momento assiale della forza I = momento di inerzia α = accelerazione angolare Braccio della forza muscolare r F aF Variazione del braccio della forza muscolare Il braccio della forza muscolare varia al variare dell’angolo articolare Esempio Il braccio della forza del quadricipite femorale varia al variare dell’angolo di flessione del ginocchio. Forza del quadricipite femorale Braccio r F aF Esempio Braccio dei muscoli flessori ed estensori del gomito. 4.3 angolo di trazione Definizione Angolo individuato della forza muscolare e l’asse meccanico longitudinale del segmento anatomico su cui il muscolo si inserisce Forza muscolare Angolo di trazione r F ϕ Variazione dell’angolo di trazione L’angolo di trazione varia al variare dell’angolo articolare Esempio: quadricipite femorale Angolo individuato dal tratto rettilineo di tendine rotuleo che si inserisce sulla tibia e l’asse meccanico longitudinale della tibia Forza del quadricipite femorale Angolo di trazione r F ϕ Importanza Determina la componente rotatoria e componente stabilizzatrice della forza muscolare r F ϕ Componente stabilizzatrice e de-stabilizzatrice Nel caso del bicipite brachiale la componente stabilizzatrice, ad elevati angoli di flessione del gomito, diviene de-stabilizzatrice (lussante) r F Gomito: Angolo di flessione 70° r F Gomito: Angolo di flessione 135° Funzione meccanica della rotula Funzione meccanica dei condili mediali e dei malleoli Capitolo 4: FORZA MUSCOLARE Aspetti geometrici: 4.1 - Punto di applicazione, direzione, verso 4.2 - Braccio della forza muscolare 4.3 - Angolo di trazione Intensità e regolazione della forza muscolare: 4.4 - Curva lunghezza-tensione 4.5 - Curva forza-velocità 4.6 - Livello di attivazione 4.7 - Parametri dell’architettura del muscolo 4.8 - Momento della forza muscolare Valutazione della forza muscolare: 4.9 - Elettromiografia 4.10 - Modelli biomeccanici 4.4 Curva lunghezza-tensione Curva lunghezza tensione del sarcomero e sua interpretazione La forza che il sarcomero è in grado di produrre dipende dalla sua lunghezza. Si possono individuare 4 regimi: e 1 d c f g b h 0 i 1.25 a 1.65 2.05 2.65 Lunghezza del sarcomero (µm) 4.05 0.025 1.2 1.6 1.2 0.025 µm 0.2 a 4.05 b c 2.65 d 2.45 e 2.05 f g 1.65 h i 1.25 Forza delle fibre muscolari • Since sarcomeres are arranged in series, the force that a muscle fiber can generate is independent of the number of sarcomeres, i.e. provided that sarcomere length is not-changing, the force produced by each sarcomere will be equal. The force produced by the muscle fiber will be equal to the sarcomere force. LFIBER = NSARC LSARC • FFIBER = FSARC Because the maximum force which can be produced by a sarcomere depends on sarcomere length, the maximum force which can be produced by a muscle fiber will depend on its length. The relationship between maximum force and muscle fiber length will depend on the number of sarcomeres that make up the fiber. FMAX depends on: LSARC = LFIBER / NSARC • Sarcomeres may not be uniform and homogeneous. Sarcomere diameter, myofilament length and myofilament density may vary along the length of the muscle fiber. This will result in different lengthtension relations for different sarcomeres. Curva lunghezza tensione del muscolo When a muscle fiber is stretched beyond a certain point, the structural proteins acting in parallel with contractile proteins begin to be stretched. The force produced by these parallel elastic structures then increases rapidly with muscle length. Consequently, the total sarcomere force (active + passive) is generally a monotonically increasing function of length, despite the fact that myofilament overlap decreases at long lengths. Esempio: muscoli che attraversano il gomito Estimated operating ranges of the elbow flexors over 100° of elbow flexion and of the extensors over 90° flexion. Estimated fascicle excursions were normalized by optimal fascicle length (l0M) and super-imposed on a normalized force-length curve based on the sarcomere lengths measured from the five extended specimens. The variation in force-generating capacity during elbow flexion is expressed as a proportion of peak isometric force (F0M). Results shown are averages of the 10 extremities in this study. Both muscle moment arm and optimal fascicle length determine how much of the isometric forcelength curve each muscle uses. 4.5 Curva forza-velocità Fase eccentrica (allungnamento) • When a muscle fiber is activated to produce a steady force while being held isometric and is then stretched at constant velocity, the resulting force is greater than the isometric force (Fig. 2.1). • For low velocities of stretch the force increases with velocity, but as the velocity increases further the force levels off or drops slightly, reaching a maximum of between 1.2-1.8 times the isometric force (Fig 2.3). Interpretation The increase in force with muscle lengthening velocity is probably largely due to stretching of attached cross-bridges (Fig. 1.6). Cross-bridges, which are being stretched, will generate a greater average force during their period of attachment than crossbridges which are isometric. The higher the lengthening velocity, the greater the amount of stretch that will occur during the period of attachment and hence, the greater the average force during the period of cross-bridge attachment. When the lengthening velocity becomes too high, cross-bridges are stretched beyond the limits that can be supported by the binding force between actin and myosin, resulting in forcible detachment. This limits the maximum force during muscle lengthening. Fase concentrica (accorciamento) • When a muscle fiber is held isometric and is then released and allowed to shorten at a constant velocity, the contractile force produced by the muscle fiber drops to a lower relatively constant value. The higher the shortening velocity the lower the force (Fig. 2.2).Conversely, by decreasing the load on a muscle fiber, its shortening velocity can be increased. • If contractile force is plotted against shortening velocity a hyperbolic relation is obtained where force is inversely proportional to velocity, decreasing continuously from its isometric value to zero at maximum shortening velocity (Fig. 2.3). Interpretation There are several possible reasons why muscle force drops as the velocity of shortening increases. • First, there are fewer cross-bridges attached during shortening and their number decreases as the velocity of shortening increases. It has been suggested that this is a consequence of an increase in the rate of cross-bridge detachment during muscle shortening and a decrease in the rate of attachment. Both of these rates may be functions of velocity. • Second, shortening likely reduces the tension in attached myosin cross-bridges (Fig. 1.6). Crossbridges, which are shortening, will generate a smaller average force during their period of attachment than cross-bridges which are isometric. The higher the shortening velocity, the greater the amount of shortening that will occur during the period of attachment and hence, the lower the average force during the period of crossbridge attachment. • Third, some cross-bridges may be compressed as the result of shortening before they detach. These cross-bridges would generate negative force, thereby reducing the overall tension developed by the fiber. The higher the shortening velocity the more quickly cross-bridges would compress, resulting in a greater number of cross-bridges generating negative force before detachment. Maximum velocity of muscle fiber shortening • The maximum velocity of muscle fiber shortening occurs when there is no load on the muscle fiber. • Conversely, when the muscle fiber is shortening at maximum velocity it does not generate any contractile force. The maximum shortening velocity of a muscle fiber depends • on the number of sarcomeres that make up the muscle fiber • their average length of sarcomeres that make up the muscle fiber Velocity of muscle fiber shortening and fiber length • The velocity of muscle fiber shortening (V) is the sum of the shortening velocities of the individual sarcomeres (vsarc). Each sarcomere has a maximum shortening velocity. Therefore, the maximum shortening velocity of the muscle fiber will be equal to the sum of the maximum shortening velocities of the sarcomeres. The greater the number of sarcomeres the higher the maximum velocity. Long fiber: number of sarcomeres nlong ; length llong = nlonglsarc t t + ∆t fiber shortening (slong) Short fiber: number of sarcomeres nshort ; length lshort = nshortlsarc t t + ∆t sarcomere shortening (ssarc) Vlong = slong ∆t = nlong ssarc ∆t = nlong vsarc Vshort fiber shortening (sshort) s n s = short = short sarc = nshort vsarc ∆t ∆t Vlong Vshort = nlong nshort = llong lshort Velocity of muscle fiber shortening and sarcomere length At sarcomere lengths that are long enough to stretch the parallel elastic structures of the muscle fiber, passive tension acts as a driving force on the contractile system and increases the speed of shortening above its maximum value at zero load. For very short sarcomere lengths, the maximum shortening velocity decreases in parallel with the isometric tension (Fig. 2.4). 4.6 Livello di attivazione Motor unit: functional unit of neuro-muscular systems • A muscle consists of thousands of muscle fibers organized into motor units. Each motor unit comprises a group of muscle fibers, often several hundred, which are innervated by a single motoneuron. The muscle fibers belonging to one motor unit may be distributed throughout a large region of the muscle, i.e., they need not be adjacent to one another. • A motor unit is activated in an all-or-none fashion by a single action potential, which travels from the motoneuron along the axon to the muscle fibers. The neural action potential leads to an action potential in each muscle fiber innervated by that motoneuron. Twitch • A single muscle action potential produces a brief contraction of the muscle fiber called a twitch. The duration of the twitch depends on the muscle fiber type. The duration of both the contraction and relaxation phases of the twitch are longer for slow-twitch (type I) than fasttwitch (type II) fibers (Fig. 2.8). • In skeletal muscle the range of contraction times (time to peak) is from 7.5 ms for fast (extraocular muscle: IR- internal rectus); 40 ms for intermediate (G - gastrocnemius); to 90 ms for slow (S - soleus) muscle fibers. Most skeletal muscles have a mixture of different types of fibers: slow; fast oxidative glycolytic (rare); or fast glycolytic. However, all fibers in a given motor unit are of the same type - the type being determined to some extent, by the nature of the motoneurone. Small tonically active motoneurones prompt development of slow fibre types; large, phasic motoneurones favour fast glycolytic fibres. Frequency of activation (firing rate) • Motor unit force is a function of the frequency of activation (firing rate) of the innervating motoneuron. Firing rate is defined as number of action potentials per second. • The force produced by each muscle fiber, innervated by the motoneuron, increases with firing rate because of the accumulation of intracellular calcium (Ca+2). Each action potential depolarizes the muscle membrane, which results in more Ca+2 being released from the terminal cisternae, diffusing through the intracellular space and activating more actin-binding sites. 1 second T time Action potential T: period ν: Frequency of activation. Numbers of action potential per second Mechanical summation (temporal summation) • The intracellular calcium concentration produced by a single action potential, increases and decreases more rapidly than the isometric twitch force. Therefore, the amount of force added by a second action potential occurring immediately after the first will depend on the time interval between them, i.e., on the amount of intracellular calcium at the time of occurrence. The additional force contribution by a second action potential drops steeply as a function of the interval between two successive action potentials. Fast units Slow units Twitch sequences of fast and slow motor units. Numbers to the right of each trace indicate the time interval in ms, between successive action potentials. Tetanus • If a motor unit is activated at a steady frequency, the force will initially rise and then oscillate about a new mean value at the frequency of activation, producing what is called an unfused tetanus. Both the mean force and the initial rate of force development will increase as firing rate increases. The higher the firing rate the smaller the oscillation with respect to the mean force. At high firing rates, there is no noticeable oscillation in force. This smooth steady force is called tetanus. Because type I motor units have longer twitch contraction times than type II units they reach tetanus at lower frequencies. Fast units Slow units Unfused and fused tetanus of fast and slow motor units. Numbers to the right of each trace indicate the time interval in ms, between successive action potentials. At low stimulation rates (long intervals between action potentials) tetanus is unfused Characteristic frequencies • Humans can voluntarily activate motor units briefly at instantaneous firing rates of about 100 Hz during brief forceful contractions. • The maximum firing rates that they can sustain during steady contractions are considerably lower and generally do not exceed 30 Hz. However, these rates are sufficiently high that several action potentials can occur before the twitch force from the first action potential has dropped to zero. Whereas the muscle action potential has a duration of less than 10 ms, the twitch duration for skeletal muscle fibers is of the order of 100-200 ms. Action potentials which arrive before the twitch force has dropped to its pre-activation level produce additional force by causing more Ca+2 to be released. ν = 30 Hz T = 1/ 30 s = 0.033 s = 33 ms ν = 100 Hz T = 1/ 100 s = 0.01 s = 10 ms Motor unit time-tension curve Single stimulus Twitch Double stimulus Slow train Fast train Summation Un-fused tetanus Fused tetanus Motor unit recruitment: size principle • When a muscle is activated voluntarily under isometric conditions, motor units tend to become active in a fixed order. • The recruitment order is correlated with the amount of force that a motor unit can produce. • Motor unit force is related to the number of muscle fibers and the size of the muscle fibers that it comprises. • The motor unit that produces the smallest force is recruited first. It remains active and the next motor unit is recruited as the total muscle force increases. The motor units that produce the largest forces are the last to be recruited. As total muscle force increases, each newly recruited unit contributes an increment in force, which is a similar percentage of the total muscle force. In this way force can be increased smoothly. Muscular force regulation: • frequency of activation • recruitment strategy of different motor units 4.7 Parametri dell’architettura del muscolo La forza muscolare dipende anche dai parametri dell’architettura del muscolo: • • • • • Sezione fisiologica del muscolo Angolo di pennazione Lunghezza delle fibre muscolari (numero di sarcomeri in serie) Lunghezza del tendine Braccio della forza muscolare Pennation angle • • • The arrangement of the muscle fibres has an important role to play. The muscle fibre direction is not always in the same direction as the line of pull of the muscle. When the line of action of the muscle does not match the line of action of the fibres then the muscle is known as pennate. There are a number of sub-classifications but the important property of these pennate muscles is the angle of pennation: the angle between the two lines of action. Fig.1. The internal architecture of skeletal muscles: (A) non-pennate; (B, E, F) unipennate; (C) bipennate. Physiological cross-section • • • The maximum force a muscle can generate depends on its physiological cross-section area (PCA): area of the fibers perpendicular to fiber direction. In a non-pennate muscle this is simply the area of a slice taken in the middle of a muscle perpendicular to the line of pull (fig.1A). In a pennate muscle this would miss some of the muscle fibers (fig.2). In this case the cross-sectional area would need to be taken perpendicular (at right angles) to the average fiber direction so as to include all the fibers in the muscle (fig.1B,1C). Fig.2 Fig.1: PCA for fusiform (A), unipinnate (B) and bipinnate (C) muscles. • Relation between Physiological cross-section and pennation angle: PCSA increases with increasing the pennation angle Fiber length • • • Long fibers have more sarcomeres in series Long fibers are capable of shortening over a greater distance Long fibers have greater maximum velocity of shortening if 30000 sarcomeres shorten 1 mm if 20000 sarcomeres shorten 1 mm total fiber shortens 3 cm total fiber shortens 2 cm • Relation between fiber length and pennation angle: Fiber length decreases with increasing the pennation angle Fig.1 Schematic representation of muscle with different architecture: muscles with short fibers and a large PCA (A); muscles with long fibers and a small PCA (B); Length-tension and force-velocity curves for muscles with different architectural properties: • Long fibers • Short fibers • Large PCSA • Small PCSA Length-tension and force-velocity curves for muscles with different architectural properties: • Long fibers and Small PCSA • Short fibers and Large PCSA Long fibers, Small PCA Muscle Shorthening Muscle Force Muscle Force Short fibers, Large PCA Short fibers, Large PCA Long fibers, Small PCA Muscle Velocity Example: Muscles that cross the elbow Biceps brachii (BIC, long and short heads), brachialis (BRA) brachioradialis (BRD) extensor carpi radialis longus (ECRL) pronator teres (PT) and triceps brachii (TRI, long and lateral heads) W.M. Murray et al. Journal of Biomechanics 33 (2000) 943-952 Tendon slack length Diagram illustrating the relationships between optimal muscle-fiber length (LOM) tendon slack length (LST) and the minimum and maximum physiological lengths of a muscle (LminM) and (LmaxM) and a musculotendon actuator, (LminMT) and (LmaxMT) respectively. For the purpose of illustration, pennation angle is assumed to be zero. • When tendon slack length is large, musclefiber length is small; thus, muscle excursion will be small. • When tendon slack length is small, musclefiber length is large, and muscle excursion will be large B. A. Garner and M. G. Pandy. Annals of Biomedical Engineering, Vol. 31, pp. 207–220, 2003 B. A. Garner and M. G. Pandy. Annals of Biomedical Engineering, Vol. 31, pp. 207–220, 2003 B. A. Garner and M. G. Pandy. Annals of Biomedical Engineering, Vol. 31, pp. 207–220, 2003 Braccio della forza muscolare minima distanza fra la retta di applicazione della forza muscolare ed il centro di rotazione articolare Muscle force moment arm r F aF Joint center of rotation Muscle force Example Biceps brachii r F r F Effect of muscle moment arm on muscle shortening With increasing muscle moment arm the muscle shortens further for a given range of motion (say from 20° to 120°) of joint angles and utilizes a greater portion of the force-length curve small muscle moment arm large muscle moment arm ROM ROM muscle shortening muscle shortening Effect of muscle moment arm on joint angular velocity and range of motion With increasing muscle moment arm joint angular velocity increases small muscle moment arm large muscle moment arm large ROM small ROM lengthen muscle contracted muscle shortening Example: Muscles that cross the elbow Estimated operating ranges of the elbow flexors over 100° of elbow flexion and of the extensors over 90° flexion. Estimated fascicle excursions were normalized by optimal fascicle length (l0M) and super-imposed on a normalized force-length curve based on the sarcomere lengths measured from the five extended specimens. The variation in force-generating capacity during elbow flexion is expressed as a proportion of peak isometric force (F0M). Results shown are averages of the 10 extremities in this study. Both muscle moment arm and optimal fascicle length determine how much of the isometric forcelength curve each muscle uses. Example: upper limb B. A. Garner and M. G. Pandy. Annals of Biomedical Engineering, Vol. 31, pp. 207–220, 2003 4.8 Momento della forza muscolare Momento assiale M della forza muscolare prodotto del braccio della forza muscolare per l’intensità della forza muscolare: M = ± aF F Forza muscolare Braccio della forza muscolare r F aF Centro di rotazione articolare Regola di equilibrio: In esercizi con sovraccarico, in condizioni di equilibrio articolare, il momento della forza muscolare è uguale in modulo al momento della forza esterna. M a( est ) = 0 bF F − bR R = 0 bF F = bR R F= bR R bF Sistema meccanico = avambraccio + manubrio r F r F bF r R bR r R Forza muscolare Carico esterno = peso dell’avambraccio e del manubrio applicato nel cenrto di massa del sistema avambraccio + manubrio Equazione del moto: Determina l’accelerazione angolare a del segmento anatomico in accordo alla seconda equazione cardinale della dinamica dei sistemi: M a( est ) = Iα bF F − bR R = Iα α = accelerazione angolare Ι = Momento di inerzia F= r F bF bR R + Iα bF La forza muscolare dipende anche dall’accelerazione articolare bR r R bF F > bR R ⇒ α > 0 ⇒ ω aumenta ω =cost: movimento isocinetico bF F = bR R ⇒ α = 0 ⇒ ω costante In particolare: bF F < bR R ⇒ α < 0 ⇒ ω diminuisce ω=0: equilibrio statico (ω = velocità angolare) Architecture parameters, joint angular velocity and moment generating capacity • • • • • PCA (number of fibers in parallel) Fiber length (number of sarcomeres in series) Pennation angle (arrangement of the fibers) Moment arm Tendon length can be thought of as being designed for: • Moment generating capacity - short fibres, large pennation angle, large PCA - large moment arm • Joint angular velocity - long fibres, small pennation angle, small PCA - small moment arm • Compromise between two capacities - short fibres, large pennation angle, large PCA (more fibres in parallel) - small moment arm or - long fibres, small pennation angle, small PCA (more fibres in series) - large moment arm Example of collection of architectural parameters W.M. Murray et al. / Journal of Biomechanics 33 (2000) 943-952 Capitolo 4: FORZA MUSCOLARE Aspetti geometrici: 4.1 - Punto di applicazione, direzione, verso 4.2 - Braccio della forza muscolare 4.3 - Angolo di trazione Intensità e regolazione della forza muscolare: 4.4 - Curva lunghezza-tensione 4.5 - Curva forza-velocità 4.6 - Livello di attivazione 4.7 - Parametri dell’architettura del muscolo 4.8 - Momento della forza muscolare Valutazione della forza muscolare: 4.9 - Elettromiografia 4.10 - Modelli biomeccanici 4.9 Elettromiografia Elettromiografia di superficie Scatola interconnessione Software Elettrodi Unità centrale Risultati dell’indagine elettromiografica Valori sincronizzati nel tempo dell’attività elettrica dei principali muscoli agonisti, sinergici, stabilizzatori, antagonisti. 4.10 Modelli biomeccanici Estensione del ginocchio: muscoli agonisti RF Vas vastus medialis (VasMed), vastus intermedius (VasInt), vastus lateralis (VasLat), rectus femoris (RF). Estensione del ginocchio: muscoli antagonisti, … GRA TLF & SAR BFSH BFLH MEM TEN Gas vastus medialis (VasMed), vastus intermedius (VasInt), vastus lateralis (VasLat), rectus femoris (RF), biceps femoris long head (BFLH), biceps femoris short head (BFSH), semimembranosus (MEM), semitendinosus (TEN), medial gastrocnemius (GasMed), lateral gastrocnemius (GasLat), and tensor fascia latae (TFL). Also included in the model but not shown are sartorius (SAR) and gracilis (GRA). Modello biomeccanico The muscles of the leg is modeled by thirteen actuators (34): vastus medialis (VasMed), vastus intermedius (VasInt), vastus lateralis (VasLat), rectus femoris (RF), biceps femoris long head (BFLH), biceps femoris short head (BFSH), semimembranosus (MEM), semitendinosus (TEN), medial gastrocnemius (GasMed), lateral gastrocnemius (GasLat), and tensor fascia latae (TFL). Also included in the model but not shown are sartorius (SAR) and gracilis (GRA). Capitolo 5: CARICHI ARTICOLARI 5.1 - Carico articolare: forze di contatto e tensione dei legamenti 5.2 - Determinazione del carico articolare 5.1 Carico articolare: forze di contatto e tensione dei legamenti Il carico articolare è la risultante delle • Forze di contatto di compressione che si esplicano fra segmenti anatomici adiacenti attraverso le superfici articolari di contatto. Si oppongono alle sollecitazioni di compressione • Forze attivate dalla tensione dei legamenti. Si oppongono alle sollecitazioni di trazione e di scorrimento. Esempio: Forze di contatto tibiofemorali Superficie di contatto tibiofemorale Forze di contatto (di compressione) tibiofemorali Esempio Legamenti che contribuiscono al carico articolare dell’articolazione tibiofemorale The ligaments of the tibiofemoral joint can be modeled by 14 elastic bundles: anterior (aACL) and posterior (pACL) bundles of the anterior cruciate ligament; the anterior (aPCL) and posterior (pPCL) bundles of the posterior cruciate ligament; the anterior (aMCL), central (cMCL), and posterior (pMCL) bundles of the superficial medial collateral ligament; the anterior (aCM) and posterior (pCM) bundles of the deep medial collateral ligament; the lateral collateral ligament (LCL); the popliteofibular ligament (PFL); the anterolateral structures (ALS); and the medial (Mcap) and lateral (Lcap) posteriorcapsule. * Kevin B. Shelburne, Michael R. Torry, Marcus G. Pandy Med. Sci. Sports Exerc., Vol. 37, No. 11, pp. 1948–1956, 2005. 5.2 Determinazione del carico articolare Parametri noti: • Punto di applicazione: Superfici articolari di contatto Punti di inserzione dei legamenti • Verso Dalla superficie articolare verso il segmento anatomico adiacente Dall’inserzione del legamento verso l’origine Incognite: • Intensità • Direzione • Misure in vivo mediante strain gauge impiantati nell’articolazione • Modelli biomeccanici Problema della dinamica diretta “Note le forze attive (carichi esterni e forze muscolari), ricavare il moto e le reazioni vincolari” Noti: • • • Carichi esterni Parametri anatomici: bracci a angoli di trazione delle forze Intensità delle forze muscolari (misure elettromiografiche, modelli meccanici del muscolo) Ricavare: • • Cinematica: traiettorie, velocità ed accelerazioni angolari Intensità, direzione dei carichi articolari Problema della dinamica inversa “Noto il moto del sistema ed alcune forze attive (carichi esterni), ricavare le altre forze attive (forze muscolari) e le reazioni vincolari” Noti: • • • Carichi esterni Parametri anatomici: bracci a angoli di trazione delle forze muscolari Cinematica: traiettorie, velocità ed accelerazioni angolari Ricavare: • • Intensità delle forze muscolari Intensità, direzione dei carichi articolari L’analisi cinematica nel problema della dinamica inversa Risultati dell’analisi cinematica Velocità angolari e accelerazioni angolari articolari in funzione dell’angolo articolare Capitolo 6: APPLICAZIONI 6.1 - Strength training equipment (leg-extension modificato) 6.2 - Ergonomia 6.3 - Supporti per la riabilitazione del ginocchio in acqua 6.4 - Cardio equipment (cardio wave) 6.1 Strength training equipment Ottimizzazione della forza muscolare Most selectorized equipments provide a fine control and optimization of the muscular force, through the entire range of motion (ROM), by including a cam in their mechanics, and selecting properly: • the shape and the dimension of the cam, • the spatial configuration of the cam around its axis of rotation in a given reference working position, • the radius of the first re-directional pulley (connected by the cable to the cam), the position of this pulley with respect to the cam. selected weight stack first re-directional pulley cable knee cam hip resistance rod selected weight stack θ resistance pad shank r R Progettazione del profilo della cam Typically, the system is configured to reproduce the user’s strength curve, such that the greatest (least) amount of resistance torque is felt at the user’s strongest (weakest) point in the ROM. This kind of calibration may be obtained by replacing the weight stack with an isokinetic dynamometer and modifying the geometrical parameters of the cam/pulley system until a constant torque is provided by the dynamometer within the entire ROM during maximal effort trials. first re-directional pulley cable knee cam Isokinetic dynamometer hip resistance rod θ resistance pad shank r R first re-directional pulley cable knee cam Isokinetic dynamometer hip resistance rod θ resistance pad shank r R Ottimizzazione dei carichi articolari Unfortunately, a general procedure for the optimization (minimization) of the joint load is lacking. Progetto di ricerca Calcolo delle componenti di (compressione, trazione e taglio) delle sollecitazioni articolari mediante modelli biomeccanici. Minimizzazione delle componenti delle sollecitazioni articolari. Progetto meccanico per la realizzazione di attrezzature per il potenziamento o la riabilitazione che minimizzano la sollecitazione articolare complessiva o la sollecitazione su specifiche strutture articolari. Leg extension equipment Schema meccanico r FPT r φ Sistema = gamba + piede r F γ Forza muscolare r R Carico esterno r φ Carico articolare θ γ angolo di trazione θ angolo articolare r R x Determinazione della forza muscolare La forza muscolare può essere determinata mediante la seconda equazione cardinale I a&θ& = FbF − RbR Braccio della forza muscolare (bPT) r F ( 1 && FF = I a θ + RbR bF ) Esercizi quasi-statici o isocinetici FbF = RbR Braccio del carico esterno (bR) r R bR >> bF bR F= R bF → F >> R Determinazione del carico articolare Nota la forza muscolare, il carico articolare può essere determinato mediante prima equazione cardinale φA r φTF r r r r maG = R + F + φ FT r r r r r φTF = −φ FT = R + F − maG r F Esercizi quasi-statici o isocinetici r r r r φTF = −φ FT = R + F φT φT = componente di taglio del carico articolare φA r R r R = componente assiale del carico articolare r φTF r F Componente di taglio della sollecitazione sull’ articolazione tibiofemorale PCL stress ACL stress aR r R aR r R r R φt = mS lGS &θ& + mS g sin(θ + εGS ) sin(γ + ε GS ) dy && d2y &2 − I + I + a m θ + a m θ + a m g + m gl sin( θ + ε ) + m gl sin( θ + ε ) M C W C W C W M GM GM S GS GS S aPT dθ dθ2 1 dy && d2y &2 + θ + a m g + m gl sin( θ + ε ) I M + aC mW θ + aC mW C W M G G M M aR dθ dθ2 PCL stress ACL stress 90° flex full ext. 90° flex full ext. Minimizzazione della componente di taglio della sollecitazione sull’ articolazione tibiofemorale φt = mS lGS &θ& + mS g sin(θ + ε GS ) sin( γ + ε GS ) dy && d2y &2 − + + θ + θ + + sin( θ + ε ) + sin( θ + ε ) I I a m a m a m g m gl m gl M C W C W C W M GM GM S GS GS S aPT dθ dθ2 1 + aR dy && d2y &2 sin( ) + θ + θ + + θ + ε I a m a m a m g m gl C W C W C W M GM GM M dθ dθ 2 Calcolo del valore di aR per cui φt = 0 aR r R (a R ) OPT dy && d2y &2 θ + aC mW g + mM glGM sin(θ + ε GM ) I M + aC mW θ + aC mW dθ dθ 2 = sin( γ + ε GS ) dy && d2y &2 θ + aC mW g + mM glGM sin(θ + ε GM ) + mS glGS sin(θ + ε GS ) − mS lGS &θ& − mS g sin(θ + ε GS ) θ + aC mW I S + I M + aC mW 2 a PT dθ dθ Tensione del tendine rotuleo, ovvero, forza complessiva del quadricipite femorale FPT 1 = aPT dy && d2y &2 I + I + a m θ + a m θ + a m g + m gl sin( θ + ε ) + m gl sin( θ + ε ) S M C W C W C W M G GM S G G M S S dθ dθ2 E’ indipendente da aR aR E’possibile minimizzare il carico articolare (spostamento del punto di applicazione della resistenza) senza interferire con l’ottimizzazione della forza muscolare (progettazione del profilo della cam) r R Componente assiale della sollecitazione sull’ articolazione tibiofemorale φn = mS lGS θ& 2 + mS g cos(θ + εGS ) cos(γ + ε GS ) dy && d2y &2 − + + θ + θ + + sin( θ + ε ) + sin( θ + ε ) I I a m a m a m g m gl m gl M C W C W C W M GM GM S GS GS S aPT dθ dθ 2 E’ indipendente da aR ed approssimativamente coincide con la tensione del tendine rotuleo aR r R Compressione assiale esterna Pad mobile e compressione assiale esterna 6.2 Ergonomia 6.3 Supporti per la riabilitazione del ginocchio in acqua r FPT ϕ hip ϕ: traction angle knee Lx Lz z z: flexion-extension axis x: longitudinal shank axis θ : joint angle θ x Conclusions … In conclusion, this work highlights that aquatic exercises can be safely and usefully utilized in the rehabilitation program following ACL surgery. However, the shape, the dimensions, the density, the surface roughness and the location of the resistive device must be carefully selected, according to the indications established in the present study. 6.4 Cardiovascular equipments Cardio wave presentation Conclusioni I modelli biomeccanici consentono • di valutare in modo non invasivo i carichi articolari durante esercizi statici o dinamici in presenza di carichi esterni • di progettare nuove attrezzature per il potenziamento muscolare o la riabilitazione che simultaneamente ottimizzano la forza muscolare e minimizzano i carichi articolari Capitolo 7: ASPETTI FUNZIONALI 7.1 - Ciclo allungamento-accorciamento 7.2 - Muscoli poliarticolari 7.3 - Co-contrazione 7.1 Stretch-shorten cycle Definition: A common pattern (scheme) of muscle activation in which an activated muscle first lengthens (is stretched) before it shortens. Importance: It occurs in most movements that we perform, for example: − in the knee extension and ankle plantarflexor muscle after footstrike in runing − in the knee extensor muscles during kicking − In the trunk and arm muscles during throwing − In the hip, knee, and ankle extensor muscles during the countermovement jump and long-jump takeoff. Advantages: 1. It can enhance the positive work done by muscle during the shortening contraction. 2. It can lower the metabolic cost of performing a prescribed amount of positive work. Mechanisms underlying the enhancement of performance with the stretch-shorten cycle: − Time to develop force (1): increased time that the muscle has to become fully activated when there is an initial lengthening contraction, and consequet increase in the muscle force at the beginning of the shortening contraction. − Elastic energy (1,2): storage of elastic energy in tendon (and muscle connective tissue) during the lengthening contraction, and subsequent use of this energy in the shortening contraction. This capability is greatest in muscles with long tendons. − Force potentation (1): force from individual cross-bridges is enhanced as a consequence of the preceding stretch. − Reflexes (1): the stretch reflex may be evoked by the forced lengthening of the muscle at the beginning of the stretchshorten cycle. Open questions: − Incomplete description of muscle function during the task: the change in whole-muscle (muscle fibers and tendon) length do not necessary coincide with or parallel the change in length experienced by the muscle fibers. − In slow eccentric contractions and in muscle with long tendons, the increase in the whole-muscle length may be accomplished by a fiber shortening (and a greater tendon lengthening). 7.2 Two-joint muscles Definition: A muscle whose attachment sites span two joints. Importance: There are a significant number two joints muscles (biceps brachii, rectus femoris, gastrocnemius) Advantages: • Two-joint muscle couple the motion at the two joints that they cross. Thus, two-joint muscle may refine the coordination. • The shortening velocity of two-joint muscle may be less than that of its one-joint synergists. Thus, the two-joint muscle are higher on the force-velocity relation compared with the one-joint muscle and hence are capable of exerting a force that is a greater proportion of the isometric maximum within the joint ROM. • Two-joint muscle can redistribute muscle torque, joint power, and mechanical energy throughout a limb Activation of one-joint muscles 1 and 3 produce extensor torque at knee and hip Co-activation of two-joint muscle 5 results in a reduction in the net torque at the hip but an increase in the net torque at the knee. Thus, two-joint muscle 5 is described as redistributing some of the extensor torque and power from the hip to the knee. 7.3 Co-activation Definition: Concurrent activation of the muscles around a joint, usually involving the agonist and antagonist muscles. Importance: It is frequently used in many different activities. Advantages: • Increases the stiffness and hence the stability of a joint . − lift heavy loads − lift loads about which the lifters are uncertain − learn novel tasks • Transfer of power from one joint to another − coactivation at the hip joint can result in an increase of the torque at the knee joint: coactivation of a single-joint hip extensor (e.g., gluteus maximus) and a two-joint hip flexor (e.g., rectus femoris) has the net effect of increasing the extensor torque at the knee joint. • Perform a movement requiring a high degree of accuracy − fine movements of the finger require complex patterns of co-activation. • Economize movements that involve changes in direction (e.g., extension to flexion). − It is more economical to modulate the level of tonic activity in an agonist-antagonist set of muscle than to alternately turn then on and off. − Activation of the stretch-shorten cycle. • Protect the joint at extreme joint angles Disvantages: Reduction of the net muscle torque.