Futwora ABCCDEFGGHIJKLMNOPQRST UVWWXYZÆŒaabccdeffghijklm nopqrsßtuvwwxyyzæœfiflªº∆Ωµ 01234567890123456789/#.\·•:,; …„“”‘’‚'!¡?¿?¿⁄⁄½¼¾¹²³*"_&{}[]()() —–-—‹›¢¤$€ƒ£¥∞∫§≈~÷∅=>≥ <≤¬−××≠∂%%/‰+±∏√©®™@@ ◊|¦¶†‡¤¨«¯°´¸»°^´˘ˇ¸ˆ¨˙`˝¯˛ ABCCDEFGGHIJKLMNOPQRST UVWWXYZÆŒaabccdeffghijklm nopqrsßtuvwwxyyzæœfiflªº∆Ωµ 01234567890123456789/#.\·•:,; …„“”‘’‚'!¡?¿?¿⁄⁄½¼¾¹²³*"_&{}[]()() —–-—«»‹›¢¤$€ƒ£¥∞∫§≈~÷∅=>≥ <≤¬−××≠∂%%/‰+±∏√©®™@@ ◊|¦¶†‡¤¨¯°´¸°^´˘ˆ¸ˇ¨˙`˝¯˛ Circle, Square! ÁĂÂÄÀĄÅǺÃǼĆČÇĊĆČÇĊÐĎ ĐÉĚÊËĖÈĒĘĞĢĠĞĢĠĦIJÍÎÏİÌĪĮĶĹĽ ĻĿŁŃŇŅŊÑÓÔÖÒŐŌØÕÞŔŘŖŚ ŠŞȘŦŤŢŢÚÛÜÙŰŪŲŮẂŴẄẀẂ ŴẄẀÝŶŸỲŹŽŻáăâäàāąåǻãǽáăâ äàāąåǻãćčçċćčçċðďđéěêëėèēęğģġ ħıíîï¡ìīįjķľĺļŀłńňņŋñóôöòőōøõþŕřŗśšş șŧťţţúûüùűūųůẃŵẅẁẃŵẅẁýŷÿỳý ŷÿỳźžż ÁĂÂÄÀĄÅǺÃǼĆČÇĊĆČÇĊÐĎ ĐÉĚÊËĖÈĒĘĞĢĠĞĢĠĦIJÍÎÏİÌĪĮĶĹĽ ĻĿŁŃŇŅŊÑÓÔÖÒŐŌØÕÞŔŘŖŚ ŠŞȘŦŤŢŢÚÛÜÙŰŪŲŮẂŴẄẀẂ ŴẄẀÝŶŸỲŹŽŻáăâäàāąåǻãǽáă âäàāąåǻãćčçċćčçċðďđéěêëėèēęğģ ġħıíîï¡ìīįjķľĺļŀłńňņŋñóôöòőōøõþŕřŗ śšşșŧťţţúûüùűūųůẃŵẅẁẃŵẅẁý ŷÿỳýŷÿỳźžż abc FProReg FProReg FProReg FProReg FProBold FProBold FProBold FProBold 60 pts 48 pts 36 pts 24 pts 60 pts 48 pts 36 pts 24 pts AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 fifi La geometria coincide fino all'inizio del XIX secolo con la geometria euclidea. Questa definisce come concetti primitivi il punto, la retta e il piano, e assume la veridicità di alcuni assiomi, gli Assiomi di Euclide, il più noto dei quali è che la somma degli angoli interni di un triangolo corrisponde sempre a 180°. Da questi assiomi vengono quindi dedotti dei teoremi anche complessi, come il Teorema di Pitagora ed i teoremi della geometria proiettiva. La geometria coincide fino all'inizio del XIX secolo con la geometria euclidea. Questa definisce come concetti primitivi il punto, la retta e il piano, e assume la veridicità di alcuni assiomi, gli Assiomi di Euclide, il più noto dei quali è che la somma degli angoli interni di un triangolo corrisponde sempre a 180°. Da questi assiomi vengono quindi dedotti dei teoremi anche complessi, come il Teorema di Pitagora ed i teoremi della geometria proiettiva. La geometria coincide fino all'inizio del XIX secolo con la geometria euclidea. Questa definisce come concetti primitivi il punto, la retta e il piano, e assume la veridicità di alcuni assiomi, gli Assiomi di Euclide, il più noto dei quali è che la somma degli angoli interni di un triangolo corrisponde sempre a 180°. Da questi assiomi vengono quindi dedotti dei teoremi anche complessi, come il Teorema di Pitagora ed i teoremi della geometria proiettiva. The introduction of coordinates by René Descartes and the concurrent developments of algebra marked a new stage for geometry, since geometric figures such as plane curves could now be represented analytically in the form of functions and equations. This played a key role in the emergence of infinitesimal calculus in the 17th century. Furthermore, the theory of perspective showed that there is more to geometry than just the metric properties of figures: perspective is the origin of projective geometry. The subject of geometry was further enriched by the study of the intrinsic structure of geometric objects that originated with Euler and Gauss and led to the creation of topology and differential geometry. The introduction of coordinates by René Descartes and the concurrent developments of algebra marked a new stage for geometry, since geometric figures such as plane curves could now be represented analytically in the form of functions and equations. This played a key role in the emergence of infinitesimal calculus in the 17th century. Furthermore, the theory of perspective showed that there is more to geometry than just the metric properties of figures: perspective is the origin of projective geometry. The subject of geometry was further enriched by the study of the intrinsic structure of geometric objects that originated with Euler and Gauss and led to the creation of topology and differential geometry. SS01 SS02 SS03 SS04 SS05 SS06 Osf Circle Geometric Was, was Algebra Infinite Theory (a×b), 10% 12.380 Circle Geometric Was, was Algebra Infinite Theory (a×b), 10% 12.380 KW/G (2×4), 3% 00 Polygons Solids CC Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a body of practical knowledge concerning lengths, areas, and volumes, with elements of formal mathematical science emerging in the West as early as Thales (6th century BC). Synthetic Geometry Some examples are given by inscribed and circumscribed circles of polygons, lines intersecting and tangent to conic sections, the Pappus and Menelaus configurations of points and lines. In the Middle Ages, new and more complicated questions of this type were considered: What is the maximum number of spheres simultaneously touching a given sphere of the same radius (kissing number problem)? Nikolai Ivanovich Lobachevsky (1792–1856) Carl Friedrich Gauss (1777–1855)