N. Beverini - Esercizi per il Corso di Fisica #1 Polo Universitario

N. Beverini - Esercizi per il Corso di Fisica
#1
1. La velocità di caduta di un corpo sferico di raggio r in un liquido è data dalla formula:
2 (! " !0 ) 2
gr
9
#
dove ρ è la densità del corpo (densità = massa/volume), ρ la densità del liquido, g l'accelerazione di
gravità e η è una grandezza che prende il nome di viscosità.
Se ρ0=1 g/cm3, ρ=2 g/cm3, g=9,8 m/s2, r=10 µm e η=10-3 unità S.I.,
a) calcolare il valore di v.
b) determinare le dimensioni fisiche di [η]
c) calcolare la massa del corpo.
v=
2. Un corpo si sta muovendo secondo la legge oraria (s è espresso in metri, t in secondi):
s(t) = 8 + 2t - 3t2
Disegnarne il grafico. Qual è la posizione, la velocità e l'accelerazione all'istante t=2 s ?
Qual è la velocità con cui passa nella posizione s=0 ?
3. Determinare l'equazione del moto di un corpo che si muove con accelerazione costante,
sapendo che all'istante t1=1 s si trova nella posizione s=0 con velocità 3 m/s e che all'istante t2=4 s
ha una velocità v2= 6 m/s.
4. Due corpi A e B si muovono lungo una retta. Il corpo A parte da fermo al tempo t=0 dalla
posizione sA=0 con accelerazione costante aA= 1 cm/s2. Il corpo B si muove con accelerazione
costante aB= –1 cm/s2 e al tempo t = 0 è nella posizione sB = 6 cm con velocità vB= 1 cm/s.
Determinare il punto e l'istante d'incontro.
Rappresentare i due moti su un grafico.
5. Due corpi si muovono lungo una retta. Il primo corpo parte da fermo dal punto A, con
accelerazione costante aA= 2 cm/s2. Il secondo corpo all’istante iniziale si trova nel punto B,
distante 36 cm da A e si muove con accelerazione costante aB= 0,5 cm/s2; al tempo t =3 s si trova
nel punto C, a 95 cm di distanza da A. Determinare la legge del moto dei due corpi e il punto e
l'istante d'incontro.
6. Un corpo si muove partendo dal punto A secondo la legge oraria s(t) = b(t-1)3 – ct2. All’istante
iniziale, l’accelerazione vale 4 m/s2 e la velocità è 3 m/s. Calcolare la posizione del corpo e la sua
velocità dopo 3 s. Un secondo corpo gli si muove incontro, partendo all’istante iniziale dal punto
B, distante 150 m, con moto rettilineo uniforme con velocità v0. Se i due corpi si incontrano dopo
4 s, qual è il valore di v0?
Polo Universitario della Spezia - Corso di laurea in Informatica
Applicata- A.A. 2005-2006