Logica Matematica - Dipartimento di Matematica e Fisica

LOGICA MATEMATICA
a.a. 2013-2014
Insegnamento: Logica Matematica
Docenti: Paola D’Aquino
Settore Scientifico - Disciplinare: MAT/01
CFU
ORE
8=8L
64
Obiettivi formativi: Il corso si propone di introdurre gli studenti al linguaggio formale del calcolo
proposizionale e del calcolo dei predicati. Familiarità con deduzioni formali e strutture al primo
ordine. Acquisizione di nozioni di base di computabilità
Propedeuticità: nozioni di base di algebra
Modalità di svolgimento: lezioni ed esercitazioni in aula.
Modalità di accertamento del profitto: superamento di una prova orale.
Legenda: L= Lezioni, E= Esercitazioni, La= Attività di Laboratorio.
PROGRAMMA
Calcolo proposizionale: linguaggio, connettivi e formule. Valutazioni, formusle soddisfacibili,
tautologie, contraddizioni. Formule logicamente equivalenti. Insieme di formule soddisfacibile, con
seguenza logica. Forme normali congiuntive e disgiuntive. Insieme adeguato di connettivi. Tableaux
semantici: completezza e validità. Teorema di compattezza con applicazione alla teoria dei grafi.
Deduzione naturale, regole deduttive. Completezza e validità. Insiemi di formule inconsistenti.
Calcolo dei predicati: linguaggio, termini e formule. Strutture al primo ordine. Soddisfacibilità.
Teorema di coincidenza. Formula vera in una struttura, formule soddisfacibili e formule logicamente
valide. Conseguenza logica. Formule logicamente equivalenti. Strutture elementarmente equivalenti,
strutture isomorfe. Omomorfismi, monomorfismi e isomorfismi tra strutture. Insiemi definibili in una
struttura. Isomorfismi e insiemi definibili. Sottostruttura elementare. Test di Tarski-Vaught (senza
dimostrazione) e applicazione alle strutture ordinate dei razionali e dei reali. Tableaux semantici per
il calcolo dei predicati. Deduzione naturale. Teorema di completezza (senza dimostrazione). Teorema
di compattezza ed alcune applicazioni.
Computabilità: funzioni parziali ricorsive, tesi di Church. Macchine di Turing, tesi di Turing. Insiemi
ricorsivi, insiemi ricorsivamente enumerabili. Problema della fermata. Alcuni problemi non
decidibili.
Testi consigliati:
P. Cintioli e C. Toffalori, Logica Matematica, McGraw-Hill
Mordechai Ben-Ari, Mathematical Logic for Computer Scientists, Springer D.
van Dalen, Logic and Structures, Springer