B OLLETTINO U NIONE M ATEMATICA I TALIANA S. K. Chatterjea On a generating function of Laguerre polynomials. Bollettino dell’Unione Matematica Italiana, Serie 3, Vol. 17 (1962), n.2, p. 179–182. Zanichelli <http://www.bdim.eu/item?id=BUMI_1962_3_17_2_179_0> L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Bollettino dell’Unione Matematica Italiana, Zanichelli, 1962. On a generating function of Laguerre polynomials Nota di S. K. CHATTERJEA (a Calcutta, India) (*) (*) Sninmary. - A generating function for the Laguerre polynomials is derived from their reçuttion formtdae-. Introduction: The following generating funotion of polynomials Ln (x). : is due to and follows from DOETSCH oo (2) / xt S LM(x)t« = (1 - t)~«-Hxp [- by means of the LAPLACE mials \ ; transformation. Recently [1] proved the known generating function for CVn+J{x), LAGUERRE (| t\ < 1) TSCHAUNER GEGENBATJER polyno- n = 0 , 1, 2 , , . . ; j p > - * ; : G 2 (x) Tii + n) /vt\—P where y = (1 — as*)2 from the recursion formula. Following the method adopted by TSCHATJNER we like to prove (1) from the recursion formula of LAGTJERRE polynomials: (4) (n H- 2)^n+2 - (2n + 3 + a » a;)w«4.i -+ (n H- a H- 1)MW = 0 where un = un(x, a) = Ln(x), t*0 = 1, Mj — a H- 1 — x. (*) Pervenuta alla Segreteria delPU.M.I. 1*8 aprile 1962. (4) Department of Mathematics, Bangahasi College, Calcutta, India. 180 S. K. CHATTERJEA using njX, a) L(n\x) _ we dérive from (4) the recursion formula for vn(x, oc): (5) (n -H 2)(n -H a -t- 2)vn+2 — (%n -+• 3 H- a — £c)^n-t-i •+• s>n = 0 with 1 a H - 1 — as l "o — r(oc H- t) ' "" (a -H l)r(a -H 1) ' so that (oc H- l)u 1 — (a H- 1 — a^o =r 0. Next multiplying both members of (5) by tn and summing from n — 0 to oo w e obtain the following homogeneous differential équation of order t w o : (6) * 7 + ( a + l - 2£)y — (a ^- i — œ - *)V ==(«+• l)vl — (a H- 1 — x)v 0 = 0, where = S v»«». Using the substitution we dei'ive from (6) the following differential équation (7) WW + W + (Ux — a») W = 0 Finally using the substitution V? = 3 and 2yx — y we obtain from (7) the (8) 0 BESSEL differential équation . ^ + 0 ^ + t o v _ a . ) W - = o, which leads to the particular solutions W = AJa{yB), W=BYa(yz). ON A GENEE AT ING FUNCTION OF LAGUEBEE FOLYNOMIALS 181 Thus the particular solutions of (6) are V(t) = A#(fT*aJa(2\rt)9 (9) V(t) == J3e'(t)~ W fl (2Vô*). Now since V(0)=v0 is finite, we take the particular solution V{t) = AetC1*aJa{2yJtó). To détermine the normalising factor A, we notice Y(0) = v0 = r(a _^ jj ^= il . 2 a r ( a _^ ^ , whence A = x *" . Thus we obtain the generating fanction for the LAGTJERRE polynomials V(t) = S. ««(», a)<« = S r .^"f!_ 1 , (10) = e«(te)~ ^ V a (2 V ^ ) ; (a > — 1). In particular; ^when a — 0. we derirè froni (10) (H) 2 ^ = ^.(2V5,. Next using a = — ^, x = x2 and noticing the relation we dérive ultimately where s zn:V Again using a = ^, x = acs and noticing the relation 182 S. K. CHATTERJE we similarly dérive Lastly from (12) and (13) w e obtain on taking s = 2: (14) both of which may be compared with the formulae in [2]. REFERENCES [1] J. TSCHAUNERJ Zur Evzeugung der Gegenbauerschen Polynôme, « Math Zeitschr. -, Band 75, Seite 1-2, (1961). [2] W. MAGNUS & F. OBERHETÏINGER, Formulas and theorems for the functions of mathematical physics, Translated loy J. Wermer, ]NTew York, JNT. Y., (1954), p. 81.