B OLLETTINO U NIONE M ATEMATICA I TALIANA Leonard Carlitz On a formula of Kogbetliantz. Bollettino dell’Unione Matematica Italiana, Serie 3, Vol. 15 (1960), n.3, p. 409–413. Zanichelli <http://www.bdim.eu/item?id=BUMI_1960_3_15_3_409_0> L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Bollettino dell’Unione Matematica Italiana, Zanichelli, 1960. On a formula of Kogbetliantz. Nota di LÉONARD CARLITZ a (Dûrham, N. C , U. S. A.) Summary. - A simple proof is given of KOGBETLIANTZ'S formula (1) below ; a generalized version of this formula is given in (5). Also analogs of (t)j for the LAGUERRE and HERMITE polynomials are obtained* 1. KoGBETLiANTZ [1] has recently obtained the elegant formula (1) ë*Âas, y) -+- eyfty, x) = e*-* - Jo(2 where (2) and 70(#) dénotes the BESSEL. function with imaginary argument. has derived the formula hj means of LAPLACE; transformation. The formula can be obtained very simply as follows. Since KOGBETLIANTZ it follows from (2) that It is easily verified that n -e~x S x -; 410 LEONARD CARLITZ so that y) = S ^ - S -, Therefore OO sfiT OO /yW r=o *" • n~o % • OO r—o evidently prores (1). 2, It may be of interest to mention that the functional équation (3) erf{x, y) -+- eyf{y, x) = e*+v - F(xy), ce y)=je-iF(yt)dt and JF(£) is analytic about the origin, characterizes J o . Indeed if we put w n=0 n ! n! then as above |- S —\y* n—O% * S r=n+i ON A FORMULA OF KOGBETLIANTZ It follows that £ x)= S £\y« S £ OO -H J OO 2 ^=ar S r=o »"! «=r j Comparison "with (3) gives An = l, so that F{e) = 2 ^ Hence the only function F(^). analytic about the origin, that satisfies (3) and (4) is 3. KOGKBETLJANTZ' s formula can be generalized as follows. Put X tJi*, y) = %f m, y) = ƒ « - ^ o Then we have X n ç so that no ^! ^4 sl n=o 412 LEONARD CAELITZ It follows that 4*fr(*> y) •+• •=i n=o * ! (n + a) ! ^ M~0 n ! (n -+- s) ! Since we get (5) eY,(*. «/) + «»/U», *) = e ^ » — J0(2 — (x3- S 3=1 For r - ö , (5) evidently reduces to (1). 4. For the LAGÏÏERRE polynomial [2, p. 97] - — s/ r! we have Since / *+i \ l ^ : = 2 ( - ^ ON A FORMULA OF KOGBETLIANTZ 413 it follows that (6) e*[e-'L%\xt)dt = - S (J In particular for a r= 0, (6) reduces to e* (e-'Ln(yt)dt = S J 0 S-0 For the Hermite polynomial [2, p. 102] we get similarly =- 5 S (—l)"^ REFERENCES [1] E. Gr. KOGBBTLIANTZ, Sur une identité remarquable concernant la fonction I o , Chiffres, 1 (1958), pp. 121-122. [2] G. SZEGÖ, Orthogonal polynomials, New York, 1939.