TOMO V convenzione: i simboli in grassetto vanno frecciati Modulo 2 La Fisica quantistica Unità 2 La meccanica quantistica Per spiegare i fatti sperimentali, nei primi anni del Novecento, fu necessario ammettere che l’energia fosse quantizzata (Planck) e la luce manifestasse natura corpuscolare (Einstein), di ciò trovando in seguito conferma grazie a ulteriori esperimenti. Gli anni successivi videro poi la costruzione di una teoria rigorosa della meccanica quantistica, oggi universalmente accettata sebbene alcune sue interpretazioni siano tuttora oggetto di dibattito. Questa teoria ha guidato tutte le ricerche successive nel mondo atomico e subatomico, ha condotto a risultati pratici di grande portata, per esempio nell’elettronica, e offre attualmente prospettive straordinarie nel campo delle nanotecnologie. La trattazione della meccanica quantistica, i cui fondamenti matematici sono assai complessi, va certamente oltre gli scopi di questo corso, ma vogliamo darne almeno le idee essenziali. Figura 0. Vignetta con due ragazzi “La meccanica quantistica: penso che per capirne qualcosa ci vorrebbe la capoccia di uno come Einstein!” “Veramente Einstein ci credeva poco, tanto è vero che scrisse: “Dio non gioca a dadi con l’universo”. Quanto poi a capirla, Richard Feynman, uno dei fisici più acuti del secolo scorso, una volta scrisse: ”Penso di poter dire con sicurezza che nessuno capisce la meccanica quantistica”. 2.1 La dualità onda-particella della luce Ma insomma, la luce, e in generale la radiazione elettromagnetica, è fatta di onde oppure di particelle? Di onde, come fu stabilito a seguito dell’esperimento di Young sulla diffrazione attraverso la doppia fenditura e come del resto risulta da tutte le osservazioni macroscopiche; oppure di corpuscoli, come invece indica, senza ombra di dubbio, l’effetto fotoelettrico? La meccanica quantistica che oggi conosciamo afferma che questa domanda non possiede risposta, perché si tratta una domanda mal posta. Il fatto è che parlare di onde oppure di corpuscoli significa fare riferimento a modelli basati sulla nostra esperienza. Ma questa riguarda il mondo macroscopico con cui abbiamo a che fare normalmente, non certamente quello microscopico, che sfugge totalmente ai nostri sensi e che possiamo investigare solo indirettamente. Sappiamo del resto che un modello è sempre una rappresentazione semplificata La luce: onde o particelle? Si tratta in della realtà, che funziona benissimo soltanto fino a che non gli realtà di qualcos’altro ancora, a cui il chiediamo di spiegare ciò che in esso non è rappresentato. fisico ucraino George Gamow diede il nome di wavicle (da wave, cioè onda, Dovrebbe essere chiaro allora che il complesso dei e corpuscle), che potremmo rendere fenomeni riguardanti la luce non è spiegabile nella sua in italiano con onduscolo. interezza né parlando soltanto di onde né soltanto di particelle. Alcune delle proprietà della luce si manifestano infatti come quelle di un’onda, altre come quelle di particelle (un insieme di fotoni si comporta collettivamente come un’onda, ma possiamo rivelare i fotoni come singole particelle). E in ciò consiste la dualità onda-particella, che come vedremo subito non riguarda soltanto la luce. Le proprietà corpuscolari e quelle ondulatorie della luce, d’altra parte, tutte essenziali per la sua descrizione completa, sono fra loro complementari, nel senso che quando si osservano le une le altre non si manifestano. Infatti la luce si comporta a volte come onda, altre volte come particella, ma mai simultaneamente come entrambi, e una più forte manifestazione della sua natura corpuscolare conduce inevitabilmente a una più debole manifestazione di quella ondulatoria, e viceversa. Questo principio di complementarità, uno dei punti chiave della meccanica quantistica, venne formulato nel 1927 dal fisico danese Niels Bohr. Un esempio concreto che evidenzia la duplice natura della luce è quello della formazione di un’immagine fotografica. Dal punto di vista ondulatorio tradizionale, l’immagine si forma perché le onde luminose provenienti dai diversi punti dell’oggetto vengono rifratte dalla lente, sicchè convergono sulla pellicola nei corrispondenti punti immagine. Ma come funziona effettivamente la pellicola? La sua parte sensibile è un’emulsione contenente minuscoli grani di un sale d’argento: quando un grano è colpito da un fotone, lo assorbe e la sua energia hf viene spesa per attivare una 1 reazione fotochimica che libera l’argento dagli atomi del sale. Come è mostrato in figura 1, se la luce è debole, cioè costituita da relativamente pochi fotoni, l’immagine corrispondente manifesta l’arrivo sulla pellicola dei singoli fotoni, con una distribuzione apparentemente casuale; soltanto al crescere del numero dei fotoni l’immagine acquista gradualmente la sua corretta forma definitiva. Un comportamento analogo si osserva, come è mostrato nella figura 2, quando si esegue il classico esperimento di Young sulla interferenza della luce attraverso una doppia fenditura ( Tomo III, pag. xxx) con una una pellicola fotografica disposta sullo schermo. Anche qui l’immagine finale si forma, fotone dopo fotone, a partire da una distribuzione iniziale apparentemente casuale fino alla forma definitiva costituita dall’alternarsi di bande chiare e oscure, che manifestano il fenomeno dell’interferenza fra le onde diffratte dalle due fenditure. Ma che succede se chiudiamo una delle due fessure? L’immagine che si forma in tal caso rappresenta la corrispondente figura di diffrazione, costituita da una banda centrale luminosa accompagnata da deboli contributi ai suoi lati. Il punto interessante è che questa volta i fotoni, passando attraverso una sola fenditura, colpiscono la pellicola in punti diversi da quelli raggiunti passando attraverso l’una o l’altra! Come se gli elettroni che passano attraverso una fenditura “sapessero” se l’altra è aperta oppure chiusa. Ciò si spiega ammettendo che i fotoni si comportino come particelle quando vengono emessi oppure assorbiti, ma come onde quando viaggiano, in tale condizione manifestando la loro natura ondulatoria e quindi dando luogo ai fenomeni di diffrazione e interferenza. Figura 1. Formazione di un’immagine fotografica “fotone dopo fotone”, cioè a diversi stadi di una lunga esposizione a luce molto debole. Il numero approssimativo dei fotoni a ciascuno stadio è, nell’ordine: 3∙10 3, 1,2∙104, 9,3∙104, 7,6∙105, 3,6∙106, 2,8∙107 . (Hevitt, Conceptual Physics, pag. 565, o simile) Figura 2. Formazione “fotone dopo fotone” della figura d’interferenza della luce attraverso le due fenditure dell’esperimento di Young. Il numero approssimativo dei fotoni a ciascuno stadio è, nell’ordine: 21, 10 3, 104, 9,3∙104, (Hevitt, Conceptual Physics, pag. 566, o simile) 2.2 De Broglie e le “onde di materia”. Se un fotone possiede al tempo stesso proprietà corpuscolari e ondulatorie, perché non dovrebbe possederle anche una particella materiale? La risposta affermativa al quesito, e le conclusioni che ne seguono, rappresentano l’essenza della tesi di dottorato scritta nel 1924 dal francese Louis de Broglie (1892-1987), che nel 1931 gli valse il premio Nobel. L’idea alla base è che la dualità ondacorpuscolo costituisce una proprietà generale della natura. Il punto di partenza di de Broglie fu la relazione p = h/ fra la quantità di moto e la lunghezza d’onda di un fotone, che egli pensò di poter applicare anche alle particelle materiali, per esempio gli elettroni, sebbene dotate, a differenza dei fotoni, di massa a riposo non nulla. Così procedendo si ottiene la formula di de Broglie, che attribuisce la lunghezza d’onda (1) = h/p a qualsiasi particella materiale dotata della quantità di moto p, conferendole quindi proprietà ondulatorie. Ciò riguarda, va precisato, soltanto la materia in moto, non importa se si tratti di particelle microscopiche o di corpi di maggiori dimensioni: atomi, voi stessi, un treno, la Luna, … L’Esempio che segue mostra come le lunghezze d’onda dei corpi macroscopici siano veramente piccolissime e quindi, per esempio, i corrispondenti effetti di diffrazione siano del tutto trascurabili; non così, invece, per un elettrone in moto, a cui compete una lunghezza d’onda significativa in quanto dell’ordine delle dimensioni atomiche. Esempio 1. Calcoliamo la lunghezza d’onda di un elettrone in moto e quella di un proiettile. Vogliamo calcolare la lunghezza d’onda di un elettrone che possiede l’energia cinetica T = 5 eV, un tipico valore a livello atomico. La sua quantità di moto è: 2 p 2meT 2 9,111031 5 1,6 1019 1, 211024 kg m / s . La corrispondente lunghezza d’onda, data dalla formula (1), è: = h/p = 6,63∙10-34/1,21∙10-24 = 5,48∙10-10 m, cioè dell’ordine delle dimensioni di un atomo. La lunghezza d’onda di un proiettile con massa di 20 grammi, sparato alla velocità di 300 m/s è: = h/(mv) = 6,63∙10-34/(0,02300) = 1,11∙10-34 m, cioè straordinariamente minore delle dimensioni di qualsiasi cosa immaginabile. Qual è il significato delle onde associate alle particelle in moto? L’interpretazione iniziale di de Broglie fu che si trattasse di “onde di materia”, cioè che l’onda associata a una particella rappresenti la distribuzione nello spazio della sua materia costituente. Solo in seguito si arrivò all’interpretazione accettata oggi, cioè che l’onda associata a una particella sia collegata alla probabilità di trovarla nei diversi punti dello spazio; e su questo punto essenziale torneremo nel §3. L’ipotesi di de Broglie, d’altra parte, non era affatto campata in aria, perchè trovò presto una verifica sperimentale che evidenziava il comportamento ondulatorio degli elettroni, a cui se ne aggiunsero in seguito altre riguardanti particelle con masse e dimensioni sempre maggiori, fino ai recenti risultati (1999) sulla diffrazione delle molecole giganti di carbonio chiamate fullerene (C 60) con massa atomica di 720 u. L’esperimento cruciale, svolto nel 1927, si deve al fisico americano Clinton J. Davisson. Questi utilizzò come reticolo di diffrazione un cristallo, sfruttandone la disposizione regolare degli atomi, disposti su piani regolarmente spaziati, prima illuminandolo con raggi X, come si sapeva fare già da vari anni ( Approfondimento 2, Tomo III, pag. xxx), e poi con fasci di elettroni. L’energia degli elettroni fu scelta in modo che la loro lunghezza d’onda di de Broglie fosse dello stesso ordine di grandezza del passo reticolare del cristallo, cioè della distanza caratteristica fra gli atomi che lo costituiscono. Le figure di diffrazione ottenute con gli elettroni risultarono del tutto analoghe a quelle dei raggi X aventi la stessa lunghezza d’onda, dimostrando così che gli elettroni manifestavano il fenomeno della diffrazione, cioè si comportavano effettivamente come onde. Le onde di de Broglie, inoltre, non rimasero a lungo confinate nell’ambiente accademico perché trovarono presto un impiego importantissimo nel microscopio elettronico. Ricorderete ( Tomo 3, pag. xxx) che l’ingrandimento ottenibile con un microscopo ottico trova un limite nel fatto che non si possono osservare dettagli con dimensioni inferiori alla lunghezza d’onda della luce con cui esploriamo gli oggetti. Il microscopio elettronico, invece, utilizza come “luce” fasci di elettroni accelerati a velocità cui corrispondono lunghezze d’onda assai minori di quelle della luce, fornendo così immagini di straordinario dettaglio con ingrandimenti elevatissimi, fra 10 4 e 105. Per fissare le idee, diciamo che un elettrone accelerato a 50 kV ha una lunghezza d’onda di de Broglie di circa 5 pm, cioè circa 105 volte minore di quella della luce. Un ruolo essenziale, nel funzionamento di questi apparecchi, è costituito dalle particolari “lenti” che operano sugli elettroni in modo analogo alle lenti usuali. L’introduzione di queste lenti, costituite da bobine percorse da corrente (lenti a deflessione magnetica) il cui campo magnetico altera opportunamente le traiettorie degli elettroni, si deve all’ingegnere tedesco Ernst Ruska, che le realizzò nel 1931 e per questo nel 1986 (oltre 50 anni dopo!) ricevette il premio Nobel. L’impiego del microscopio elettronico consente l’esplorazione visiva di microstrutture biologiche e tecnologiche, con un salto di qualità decisivo rispetto al microscopio ottico. In biologia per esempio, è possibile osservare i virus (organismi viventi con dimensioni da 10 a 300 nm), le molecole biologiche e in particolare il DNA. La fisica della tecnologia 1. Il microscopio elettronico. La struttura essenziale di un microscopio elettronico del tipo chiamato a trasmissione, rappresentata schematicamente nella figura A, è concettualmente simile a quella di un proiettore per diapositive, ma le parti che lo costituiscono sono naturalmente assai diverse. In particolare, la sorgente di “luce” è costituita da un filamento riscaldato che emette elettroni per effetto termoelettronico ( Tomo IV, pag. xxx) e da un dispositivo ad alta tensione che accelera 3 opportunamente queste particelle; le lenti sono costituite da bobine magnetiche. Il campione viene attraversato dal fascio modulandolo, punto per punto, in base alla sua “trasparenza” per gli elettroni. Dopo aver attraversato ulteriori lenti, il fascio modulato raggiunge infine uno schermo fluorescente, o una lastra fotografica, su cui si forma l’immagine. Il primo microscopio elettronico, costruito da Ruska nel 1933, era del tipo a trasmissione. In seguito si sono diffusi vari altri schemi, fra cui il microscopio a scansione, nel quale l’oggetto viene colpito da un fascio di elettroni: ogni suo punto emette allora elettroni secondari in numero corrispondente alle sue caratteristiche. Un dispositivo rivelatore di elettroni esegue poi una scansione dell’oggetto, punto per punto, raccogliendo questa informazione, che viene infine rappresentata nella forma di una immagine su uno schermo in modo simile a quella fornita da un televisore. Figura A. Schema semplificato di un microscopio elettronico a trasmissione, nel quale il campione in osservazione viene attraversato dal fascio di elettroni in modo simile a una diapositiva in un proiettore. Le “lenti” che agiscono sugli elettroni sono costituite da bobine percorse da corrente, il cui campo magnetico ne altera opportunamente le traiettorie, in modo analogo a come le lenti usuali operano su un fascio di luce. Figura 3. Le due figure di diffrazione sono assai simili, sebbene ottenute dopo il passaggio di un fascio di raggi X (a sinistra) e di uno di elettroni (a destra) della stessa lunghezza d’onda attraverso un sottile foglio di alluminio. (adattare da Hecht, vol. 2, pag. 1054) Figura 4. Il piede di una mosca osservato al microscopio elettronico (una bella e stimolante immagine ottenuta al microscopio elettronico, con dida appropriata, incluso qualche eventuale dettaglio tecnico: cromosomi umani, dettagli di insetto, microstrutture tecnologiche, o altro) Figura 4 bis. La fotografia mostra un microscopio elettronico (immagine da trovare) 2.3 Le “onde di materia” sono onde di probabilità L’ipotesi di de Broglie suscitò un grandissimo interesse da parte dei più vivaci fisici teorici del tempo, fra cui Erwin Schrödinger, Werner Heisenberg, Niels Bohr e Max Born. Questi si posero al lavoro nella ricerca sia dell’inquadramento matematico formale della nuova teoria sia di una efficace interpretazione del significato fisico delle onde associate alle particelle materiali. Le onde che rappresentano, per esempio, un elettrone in moto apparivano come una moltitudine di onde che interferiscono fra loro, creando quello che si chiama un pacchetto d’onda ( figura 5). Ma l’analisi mostrava che questo pacchetto, per un certo tempo ben localizzato in una determinata porzione di spazio, si estendeva poi su una regione assai più vasta, molto più grande di quella che poteva essere effettivamente occupata dalla particella. E quindi l’onda non poteva in alcun modo rappresentare come la materia della particella fosse La luce e la materia esistono come particelle. distribuita nella spazio. Ciò che si comporta come un’onda è la La conclusione a cui arrivarono gli scienziati probabilità di dove queste particelle si trovino. fu che l’onda di de Broglie di una particella ne La ragione per cui la luce spesso si comporta come un’onda è dovuta alla presenza di un gran rappresenta in realtà una misura della probabilità di numero di fotoni, che si distribuiscono nello localizzazione, indicando cioè, per ciascun punto spazio in base alla probabilità che ciascuno di dello spazio, la probabilità che essa vi si trovi. essi ha di trovarsi in un punto o in un altro. Conclusione assai difficile da digerire perché implicava l’abbandono del principio di causalità ( Approfondimento 3) secondo cui se noi conosciamo esattamente il presente possiamo predire esattamente il futuro, essendo addirittura 4 falsa la premessa, cioè la conoscenza esatta dello stato del presente, che non è più possibile con certezza, come nella meccanica classica, ma soltanto in termini probabilistici. E qui va detto chiaramente che la comparsa della probabilità non rappresenta in alcun modo un’incertezza dovuta a errori sperimentali o comunque alla nostra incapacità di appurare il reale stato del sistema fisico, ma una incertezza ineludibile in linea di principio in quanto intrinseca alla natura dei fenomeni naturali e perciò invalicabile (almeno per quanto ne sappiamo ora, a quasi un secolo da queste vicende). Si trova, in sostanza, che non è lecito estendere al mondo microscopico le leggi stabilite in base a osservazioni sul mondo macroscopico. Così le leggi della meccanica newtoniana devono essere sostituite da quelle della meccanica quantistica e Come nasce l’equazione di Schrödinger? Non in particolare dall’equazione di Schrödinger, formulata è possibile ricavarla da nulla che si conosca. Proviene dalla mente di Schrödinger. nel 1924 dal fisico viennese Erwin Schrödinger Richard Feynman sviluppando l’ipotesi di de Broglie. La soluzione di questa equazione, per un dato sistema fisico costituito da una particella o da più particelle fra loro interagenti, ne costituisce la cosidetta funzione d’onda, che si indica usualmente con la notazione Ψ(x,y,z,t), rappresentando lo stato del sistema attraverso una descrizione puramente probabilistica. Dalla funzione d’onda di una particella si ricava infatti la densità di probabilità f(x,y,z,t), cioè la funzione matematica che descrive come è distribuita la probabilità che la particella si trovi in un dato punto a un dato istante di tempo. Vediamo come si procede considerando una particella, con funzione d’onda Ψ(x,y,z,t). La densità di probabilità della particella è data dal quadrato del modulo della sua funzione d’onda, cioè (2) f(x,y,z,t) = |Ψ(x,y,z,t)|2 E allora la probabilità PV,t(x,y,z,t) che durante l’intervallino di tempo t centrato all’istante t la particella si trovi nel volumetto V centrato nel punto di coordinate x,y,z si calcola moltiplicando la densità di probabilità per la durata dell’intervallino di tempo e il volume del volumetto (supposti entrambe sufficientemente piccoli): (3) PV,t(x,y,z,t) = f(x,y,z,t) Vt = |Ψ(x,y,z,t)|2Vt Naturalmente questo tipo di descrizione, come del resto tutta la meccanica quantistica, non riguarda soltanto le particelle microscopiche, ma qualsiasi sistema fisico. La funzione d’onda dei corpi macroscopici, tuttavia, risulta estremamente ben localizzata, sicchè la loro descrizione probabilistica perde senso. In altre parole, nel mondo ordinario, cioè nei sistemi in cui l’energia corrisponde a un gran numero di quanti, la meccanica quantistica conduce agli stessi risultati della meccanica newtoniana. Come stabilisce il principio di corrispondenza formulato da Bohr nel 1923, che garantisce il necessario raccordo fra le due meccaniche. Figura 5. Il pacchetto d’onda costituisce la rappresentazione ondulatoria di una particella materiale in moto, localizzandola in una regione di spazio più o meno estesa. Il pacchetto d’onda, come stabilisce il teorema di Fourier (Tomo 3, pag. xxx), è costituito dalla sovrapposizione di più onde armoniche di opportuna lunghezza d’onda. Figura 6. Molti programmi per calcolatore, fra cui Excel, permettono di generare numeri casuali che possono x | assumere qualsiasi valore a caso fra 0 e 1 con distribuzione uniforme in questo intervallo (in altre parole, supponendo che i numeri abbiano tre cifre, la probabilità di ottenere, poniamo, 0,384 è esattamente la stessa di ottenere 0,829 o qualsiasi altro numero). E allora la probabilità Px, x+x di ottenere un numero reale compreso fra x e x + x è data dal prodotto della lunghezza dell’intervallino x per la densità di probabilità f(x) dei numeri casuali, rappresentata dalla curva rossa in figura. Questa funzione ha valore costante dell’intervallo 0,1 (con valore unitario per soddisfare il requisito che la probabilità dell’evento certo valga 1) e valore nullo altrove. 5 2.4 L’elettrone in una “scatola”, l’elettrone nell’atomo di Bohr e l’effetto tunnel L’elettrone in una “scatola”. Consideriamo un elettrone vincolato a muoversi orizzontalmente all’interno di una “scatola”, cioè in una regione unidimensionale di lunghezza L limitata da pareti di altezza infinita. Questa situazione è analoga a quella delle onde sonore in un tubo di lunghezza L chiuso ai suoi estremi, nel quale possono esistere soltanto onde stazionarie con lunghezza d’onda data dalla relazione (4) n = 2L/n con n =1, 2, 3, … perchè nella lunghezza L può trovarsi solo un numero intero di semilunghezze d’onda (L = n/2). Le funzioni d’onda ammissibili per l’elettrone ( Approfondimento 1) sono in questo caso: (5) n x 2 n sin x L L con n = 1, 2, 3, … dove l’intero n, che caratterizza lo stato della particella, assume il significato di numero quantico. Uguagliando la (4) alla lunghezza d’onda di de Broglie= h/p, si ricavano le quantità di moto che può assumere l’elettrone, corrispondenti alle lunghezze d’onda n: pn = hn/2L. Utilizzando la relazione E = p2/2m, si conclude che l’energia cinetica dell’elettrone nella scatola è quantizzata perché può assumere soltanto i valori (6) n2 h2 En 8me L2 Per ciascuno stato quantico dell’elettrone, la probabilità che esso si trovi in una data posizione lungo la scatola è determinata dalla corrispondente densità di probabilità, data dal quadrato del modulo della funzione d’onda (5). Si ha pertanto: (7) f n x | n x |2 2 2 n sin L L x come rappresentato nei grafici a destra della figura 7 per n = 1, 2, 3. Esaminiamo la curva in alto, che rappresenta la funzione f1(x): cosa ci dice il grafico? Che l’elettrone si trova più di frequente nella regione centrale della “scatola”, solo di rado in prossimità dei suoi estremi. Approfondimento 1. Le funzioni d’onda di un elettrone in una “scatola”. In questo caso si trova che l’equazione di Schrödinger assume la forma semplificata, indipendente d 2 ( x) 8 2 me E ( x) 0 , dove E è l’energia cinetica dell’elettrone e m e la sua dal tempo, dx 2 h2 massa. Le soluzioni di questo tipo di equazione sono in generale della forma: Ψn(x) = A sen(Cx) + B cos(Cx), dove le costanti A, B e C sono da determinare. Trattandosi di onde stazionarie nell’equivalente di un tubo chiuso agli estremi, le funzioni d’onda debbono avere dei nodi agli estremi della scatola, cioè deve essere Ψ n(0) = 0, da cui si ricava B = 0, e Ψn(L) = 0, da cui si ricava CL = n, in modo che nella lunghezza L rientri un numero intero di semilunghezze d’onda. E quindi le soluzioni hanno la forma generale: (A) Ψn(x) = A sen(nx/L) con n =1, 2, 3, … La costante A si determina infine imponendo che la somma delle probabilità che l’elettrone si trovi in qualsiasi punto della scatola sia uguale all’unità, cioè che l’integrale fra 0 ed L della densità di 6 L 2 n . | n x |2 dx A2 sin 2 x dx 1 , da cui si ricava: A 0 0 L L Le funzioni d’onda ammissibili per l’elettrone nella scatola sono pertanto le seguenti: probabilità valga 1: (B) L n x 2 n sin L L x L’elettrone nell’atomo di Bohr Secondo il modello di Bohr ( Tomo IV, pag. xxx), l’unico elettrone dell’atomo di idrogeno è vincolato a percorrere attorno al nucleo orbite circolari ben determinate, senza irraggiare, in tal modo garantendo la stabilità dell’atomo.Queste furono determinate da Bohr in base all’ipotesi della quantizzazione del momento angolare della quantità di moto dell’elettrone, espressa dalla relazione: (8) pnrn = nh/2 con n = 1, 2, 3, … dove rn è il raggio dell’orbita corrispondente all’intero n, che assume il ruolo di numero quantico. Vediamo subito che questa ipotesi, assunta da Bohr come postulato non dimostrabile, trova ora invece piena giustificazione. Essa è infatti in accordo con la teoria quantistica ondulatoria, secondo cui il moto dell’elettrone attorno al nucleo va descritto come onde stazionarie chiuse su sè stesse, lungo circonferenze con il centro nel nucleo. Per l’onda stazionaria corrisponente al numero quantico n, chiusa lungo la circonferenza orbitale, deve essere verificata la condizione (9) 2rn = n con n = 1, 2, 3, … in modo cioè che in ogni orbita, di lunghezza 2rn, rientri un numero intero di lunghezze d’onda. E allora, sostituendo nella (9) la lunghezza d’onda di de Broglie, = h/p, si trova che le quantità di moto che può assumere l’elettrone sono date proprio dalla (8). Ma una descrizione quantistica completa del comportamento degli elettroni di un atomo richiede ben maggiori approfondimenti, come vedremo nel seguito di questa Unità. L’effetto tunnel Una delle più sconcertanti sorprese della teoria quantistica è l’effetto tunnel. Vediamo di cosa si tratta, tornando a considerare l’elettrone nella “scatola”, quando però l’altezza delle pareti non è infinita, e allora è finita l’energia necessaria a uscire dalla scatola. L’effetto tunnel consiste nel fatto che vi è una probabilità piccola, ma non nulla, che l’elettrone possa superare la barriera e quindi uscire dalla “scatola”, anche se non possiede l’energia a ciò necessaria. In questo caso, infatti, le funzioni d’onda, a differenza di quelle rappresentate nella figura 7, non si annullano al di fuori della scatola, dove quindi vi sono delle “code” di densità di probabilità, come è mostrato nella figura 9. L’effetto tunnel non riguarda soltanto gli elettroni, ma qualsiasi particella, anzi qualsiasi oggetto, solo che la probabilità di attraversamento di una barriera di energia potenziale da parte di un corpo macroscopic dotato di energia inferiore è talmente piccola da potersi considerare trascurabile. E infatti nessuno ha mai visto una palla attraversare un muro, almeno finora. Questo fenomeno ha trovato non soltanto ampie verifiche sperimentali, ma anche numerose applicazioni, fra cui il microscopio a effetto tunnel, illustrato schematicamente nella figura 10, che fornisce immagini con dettagli altrimenti irraggiungibili. Figura 7. Funzioni d’onda (a sinistra) e corrispondenti densità di probabilità (a destra) per i primi tre numeri quantici di un elettrone confinato a muoversi in una “scatola” di lunghezza data. La probabilità che l’elettrone si trovi in un intervallo compreso fra x1 e x2 è dato dall’area al di sotto delle curve che rappresentano la densità di probabilità fra i punti x1 e x2. 7 Figura 8. Onde stazionarie di de Broglie per due stati (n = 2 e n = 3) dell’elettrone di un atomo di idrogeno. (Adattare da Hecht, vol. 2, solo le prime due parti) n=1 Figura 9. La densità di probabilità di un elettrone (n = 11) in una “scatola” con pareti di altezza non infinita si estende anche oltre le pareti. La probabilità che l’elettrone si trovi all’esterno è rappresentata dalle aree verdi. 1( x) ( 1( x) ) 2 x x n=2 2( x) 2 2( x) x Figura 10. Il microscopio a effetto tunnel funziona grazie a una punta metallica sottilissima che esplora la superficie del campione in osservazione a distanza estremamente ravvicinata. La corrente tunnel che scorre nel vuoto fra la punta e il campione permette di ricostruirne l’immagine con straordinario dettaglio, a livello atomico. (adattare da Walker, Fisica, vol. 3, pag. F25) x n=3 3( x) 2 3( x) x x 2.5 Il principio di indeterminazione di Heisenberg La meccanica classica ammette la possibilità di eseguire la misura di una grandezza senza limiti concettuali di accuratezza, purchè si disponga di uno strumento sufficientemente raffinato. Ma in realtà questo non è rigorosamente esatto dato che, secondo la meccanica quantistica, qualsiasi misura perturba il sistema fisico modificando di conseguenza il valore della grandezza misurata. Nel mondo macroscopico, tuttavia, l’effetto di perturbazione può essere reso irrilevante. Per misurare l’intensità della corrente in un circuito, per esempio, si usa un amperometro disposto in serie, la cui resistenza modifica sempre il valore della corrente, ma noi possiamo utilizzare un strumento con resistenza interna abbastanza piccola da rendere trascurabile l’errore ai fini pratici. Per misurare la velocità e la posizione di una macchina in corsa sull’autostrada, il radar della polizia la “illumina” con un impulso di microonde, cioè un fascio di fotoni, la cui quantità di moto ne altera certamente la velocità, ma sicuramente l’effetto è del tutto trascurabile. La teoria quantistica, invece, stabilisce che vi sono sempre dei limiti, non pratici ma di principio, per l’accuratezza della determinazione delle grandezze fisiche, i quali si manifestano vistosamente quando si considerano i fenomeni a livello microscopico. Questi limiti furono stabiliti nel 1927 dal fisico tedesco Werner Heisenberg Consideriamo una particella descritta dal pacchetto formulando il Principio di indeterminazione. d’onda in figura 5, sovrapposizione di più onde con Possiamo ricavare questo importantissimo diverse lunghezze d’onda, tanto più diverse quanto risultato in forma semplificata, considerando una più corto è il pacchetto, cioè meglio determinata è la posizione della particella. Alla maggior diversità di particella in moto, per esempio un elettrone. Per lunghezza d’onda corrisponde però una maggiore stabilirne la posizione dobbiamo illuminarlo, indeterminazione della quantità di moto. usando almeno un fotone, la cui lunghezza d’onda determinerà l’incertezza della misura, che valutiamo dunque come x ≈ . Tuttavia il fotone, come avviene nell’effetto Compton, non si limiterà a venir riflesso per fornirci poi l’informazione sulla posizione dell’elettrone, ma interagirà con esso, scambiando quantità di moto e perturbando quindi la sua velocità. 8 Il modulo della variazione della quantità di moto dell’elettrone è evidentemente compreso fra zero e la quantità di moto del fotone p = h/, che assumiamo quindi come incertezza massima per la quantità di moto: p ≈ h/. E quindi il prodotto delle due incertezze è: xp ≈ h. In ciò consiste dunque l’essenza del principio di indeterminazione, che il calcolo esatto svolto da Heisenberg pone nella forma: (10) xp ≥ h/4 Il significato di questa espressione è assolutamente generale: qualsiasi misura si esegua per determinare la posizione di una particella, anzi di qualsiasi corpo, ne perturberà la quantità di modo in modo che il prodotto delle due incertezze non potrà mai essere inferiore ad h/4. Allo stesso modo, qualsiasi misura si esegua per determinare la quantità di moto perturberà la posizione della particella in modo che valga ancora la (10). Supponiamo ora di voler migliorare l’accuratezza della misura della posizione della particella, “illuminandola” con un fotone di lunghezza d’onda più piccola. Così ridurremo certamente l’incertezza x, ma al tempo stesso aumenteremo corrispondentemente l’incertezza p dato che un fotone di lunghezza d’onda più piccola possiede una maggiore quantità di moto. Ma come mai siamo abituati a considerare misurabile esattamente, senza limiti di accuratezza, la posizione e la velocità di qualsiasi oggetto con cui abbiamo a che fare? Questo si capisce immediatamente ricordando che p = mv e riscrivendo quindi la (10) nella forma (11) xv ≥ h/4m Tale espressione mostra infatti che il prodotto delle incertezze relative alla posizione e alla velocità di qualsiasi oggetto è inversamente proporzionale alla sua massa m; e quindi assume valori piccolissimi, del tutto trascurabili in pratica, quando si tratti di corpi macroscopici, in accordo con il principio di corrispondenza. Ma non così per le particelle microscopiche. Esempio 2. Valutiamo i limiti fondamentali di incertezza per una biglia di vetro e per un elettrone. Per una biglia di vetro con massa m = 5 g, il prodotto delle incertezze dato dalla (11) è: xv ≥ h/2m = 6,63∙10-34/(43,140,005) = 1,06∙10-32 m2/s. Assumendo, per esempio, che le due incertezze abbiano lo stesso valore numerico si ha: x = √(1,06∙10-32) ≃ 10-16 m, v ≃ 10-16 m/s, cioè si ottengono valori che sono entrambi piccolissimi, assolutamente trascurabili in pratica. Procedendo allo stesso modo per un elettrone si ha invece: xv ≥ h/2me = 6,63∙10-34/(43,149,11∙10-31) = 5,79∙10-5 m2/s. Volendone determinare la posizione entro una lunghezza d’onda ultravioletta ( = 100 nm), cioè con incertezza x = 100 nm, si avrà di conseguenza v = 5,79∙10-5/x = 5,79∙10-5/10-7 ≃ 600 m/s, cioè un’incertezza di entità assai rilevante, tutt’altro che trascurabile. E se d’altra parte volessimo determinare molto accuratamente la velocità dell’elettrone, per esempio al livello di 1 m/s, allora l’incertezza sulla posizione della particella sarebbe x = 5,79∙10-5/v = 5,79∙10-5/10-6 ≃ 60 m, cioè assai grande, e davvero gigantesca a confronto delle dimensioni della particella, con raggio dell’ordine di 10-15 m. Approfondimento 2. L’abbandono del determinismo. Causalità forte e causalità debole. Il principio di causalità, per cui a una data causa segue un effetto ben determinato, ha costituito per secoli un postulato essenziale della scienza, i cui progressi sono basati proprio sulla individuazione di relazioni fra cause ed effetti. Un passo successivo, secondo cui ogni evento è necessariamente causato da un altro che lo precede, costituisce la base della dottrina del determinismo, la cui formulazione risale a Democrito, che ritroviamo nei sistemi filosofici materialistici e nel positivismo, e che non lascia spazio alcuno, per esempio, al libero arbitrio. 9 La fiducia nel determinismo scientifico, derivata dalla straordinario potere predittivo dimostrato della meccanica newtoniana, è assai ben rappresentata da quanto scrisse lo scienziato francese Pierre Simon de Laplace nell’opera “Essai philosophique sur les probabilités” del 1814: “ Dobbiamo considerare lo stato presente dell’universo come l’effetto del suo stato precedente e come la causa di quello futuro. Una intelligenza che, a un dato istante, conoscesse tutte le forze di cui è animata la natura e la situazione reciproca degli esseri che la compongono, se inoltre fosse abbastanza profonda per sottoporre questi dati all’analisi, abbraccerebbe in una stessa formula i moti dei più grandi corpi dell’universo e quelli degli atomi più leggeri: nulla sarebbe incerto per essa e l’avvenire, come il passato, sarebbe presente ai suoi occhi.” Ma con l’affermazione della meccanica quantistica, il determinismo deve essere abbandonato. La conoscenza dei fatti del mondo, in particolare di quello microscopico, atomico e subatomico, sfuma infatti dalla individuazione esatta, almeno in linea di principio, delle grandezze che ne caratterizzano gli enti fisici, alla determinazione di queste grandezze in termini di probabilità, con le incertezze fondamentali stabilite da Heisenberg. Al tradizionale principio forte di causalità, per cui a una data causa segue un effetto ben determinato, si deve allora sostituire un principio di causalità debole, per cui a una data causa possono seguire vari effetti, ciascuno dei quali ha una data probabilità di verificarsi. Approfondimento 3. Se il valore della costante di Planck fosse nullo? Tutta la meccanica quantistica è basata sul fatto che la costante di Planck ha un valore finito. Ma che succederebbe, invece, se questo valore fosse nullo? L’energia non sarebbe quantizzata, la determinazione delle grandezze microscopiche non E se il valore della cosstante di Planck fosse avrebbe alcuna incertezza, insomma la meccanica più grande, di parecchi ordini di grandezza? In classica varrebbe anche nel mondo microscopico. Ma tal caso i fenomeni quantistici riguarderebbero allora la materia che conosciamo non potrebbe esistere anche i corpi di dimensioni ordinarie, farebbero parte della nostra esperienza diretta perché gli atomi sarebbero instabili! e allora noi non li troveremmo affatto strani. Posiamo dunque affermare che il fondamento della meccanica quantistica sta nel valore finito h, non nullo, della costante di Planck. Come del resto il fondamento della relatività speciale sta nel fatto che il valore c della velocità della luce è finito, non infinito. Figura 11. Werner Heisenberg (Würzburg, Germania, 1902-1976) si laurea a Monaco nel 1923 e successivamente lavora in due gruppi all’avanguardia nello sviluppo della meccanica quantistica: prima a Gottinga con Max Born e poi a Copenhaghen con Niels Bohr. Nel 1927, a soli 25 anni d’età, pubblica il suo storico lavoro sul principio di indeterminazione, ponendo con esso limiti invalicabili alla nostra conoscenza della realtà e quindi rivoluzionando l’epistemologia della scienza ( Approfondimento 3). Riceve il premio Nobel nel 1933. (Immagine da trovare) 2.6 L’atomo di idrogeno e i numeri quantici Il comportamento quantistico di un atomo di idrogeno si ricava scrivendo l’equazione di Schrödinger per un elettrone soggetto all’attrazione coulombiana da parte di un protone, di massa assai maggiore, che costituisce il nucleo dell’atomo. Le soluzioni che si ottengono, cioè le funzioni d’onda che rappresentano i possibili stati dell’elettrone legato al nucleo, sono infinite. Però è possibile dar loro senso raggruppandole assegnando a ciascuna di esse, cioè a ciascuno stato quantico dell’elettrone, quattro numeri caratteristici: i numeri quantici. Il numero quantico principale è un intero positivo n, che può assumere infiniti valori e che caratterizza l’energia dell’elettrone e ne rappresenta la quantizzazione. Si trova in particolare che le energie possibili sono date dall’espressione già trovata da Bohr ( Tomo IV, pag. xxx): (11) En 1 me e4 n 2 8 02 h 2 La (11) era stata ottenuta da Bohr come risultato della sua ipotesi sulla quantizzazione del momento angolare dell’elettrone. Abbiamo poi visto (§ 2.4) che tale ipotesi è in ottimo accordo con la teoria ondulatoria. dove 0 = 8,85∙10-12 F/m2 è la costante dielettrica del vuoto. Al valore più basso di questo numero (n = 1) corrisponde il caso di un atomo non eccitato, nel quale l’elettrone si trova nel livello di energia 10 più basso, e allora l’energia necessaria a liberarlo è massima e corrisponde all’energia di ionizzazione dell’atomo. A tutti gli altri valori di n corrispondono stati eccitati dell’atomo, dai quali, come sappiamo, l’elettrone può decadere verso un livello inferiore, emettendo la differenza di energia nella forma di un fotone di lunghezza d’onda appropriata. A ciascun valore di n corrispondono in generale più valori, quelli interi compresi fra 0 e n1, del secondo numero caratteristico, il numero quantico orbitale l, il quale rappresenta la quantizzazione del momento angolare dell’elettrone. A ciascun valore di l corrispondono poi più valori del numero quantico magnetico ml, il quale dipende dall’orientazione del momento angolare dell’elettrone rispetto a un asse di riferimento, che anch’essa è quantizzata a differenza di quanto avviene in un sistema classico. Il numero quantico m l è un intero che può assumere qualsiasi valore fra -l e + l. Il termine spin deriva dall’inglese trottola. L’ultimo numero caratteristico, chiamato E per questo lo spin di un elettrone, come numero di spin e indicato con s, rappresenta il momento di altre particelle, viene talvolta interpretato come rotazione della particella attorno a se magnetico intrinseco dell’elettrone (da non confondersi stessa. Ma non è così. Lo spin di una con quello derivante dal moto di un elettrone su particella è una sua caratteristica intrinseca, un’orbita chiusa, che sappiamo equivalente a una come la massa o la carica elettrica. minuscola spira). Questa grandezza ha due orientazioni possibili diverse (su e giù) a cui Tabella 1. Strati, sottostrati, orbitali e stati dell’atomo di idrogeno corrispondono i seguenti valori numero numero numero numero numero di per lo spin: ms = -½ e ms = ½. quantico quantico quantico quantico stati del Come si è detto, a ogni principale orbitale l magnetico di spin sottostrato n (indica (indica il ml ms n, l diverso insieme di numeri quantici lo strato) sottostrato) corrisponde un diverso stato n=1 l=0 0 ┌ ½ 2 quantico dell’atomo. Questi stati └ -½ sono raggruppati in strati o gusci, n=2 l=0 0 ┌ ½ 2 determinati dal numero quantico └ -½ principale n, e in sottostrati, i n=2 l=1 1 ┌ ½ 6 quali sono caratterizzati, oltre che └ -½ da n, dal numero quantico orbitale 0 ┌ ½ └ -½ l, come mostrato nella tabella 1. -1 ┌ ½ Notate che il numero di stati └ -½ possibili in ciascun livello dipende da n. Nello strato fondamentale, cioè per n = 1, dato che l = 0 e quindi anche ml = 0, vi sono soltanto due stati, che corrispondono ai due possibili valori di spin, con numeri quantici rispettivamente (1, 0, 0, ½) e (1, 0, 0, -½). Nello strato n = 2, invece, abbiamo due sottostrati (per l = 0 e l = 1) con un totale di 8 stati. Il numero dei sottostrati e quindi anche quello degli stati aumenta poi ulteriormente al crescere di n. Dove nell’atomo si trovi effettivamente l’elettrone, anche se conosciamo la quaterna che ne definisce lo stato, non ci è dato saperlo. Perchè a ciascuno stato corrisponde una funzione d’onda, e questa, come sappiamo, ci fornisce soltanto la probabilità di trovare l’elettrone in una data posizione. Ma possiamo visualizzarne la densità di probabilità disegnando, come in figura 12, delle “nuvole di probabilità”, che sono più dense laddove è più probabile trovare l’elettrone, meno dense altrove. Le “nuvole” corrispondenti agli stati con l = 0 presentano simmetria sferica attorno al nucleo, quelle corrispondenti agli altri valori di l sono invece fortemente asimmetriche. Nel caso dello stato fondamentale, rappresentato nella parte a) della figura 12, la distanza media dell’elettrone dal nucleo corrisponde esattamente al (primo) raggio di Bohr ( Tomo 4, Unità 3, pag. xxx). Figura 12. Le “nuvole di probabilità” in figura rappresentano, in un piano passante per il nucleo, la densità di probabilità dell’elettrone: alle regioni più dense corrisponde una maggiore probabilità di trovarvi l’elettrone. La parte a) rappresenta lo stato fondamentale (n = 1, l = 0), la parte b), uno stato eccitato simmetrico (n = 2, l = 0), la parte c) uno 11 stato eccitato asimmetrico (n = 2, l = 1). A ciascuna “nuvola” corrispondono in realtà due diversi stati elettronici, con ms = -½ e ms = ½, che differiscono cioè soltanto per lo spin. (adattare da Walker, Fisica, vol. 3, pag. F54 e F55) Figura 13. Il grafico rappresenta la densità di probabilità della distanza dell’elettrone dal nucleo quando l’atomo di idrogeno si trova nello stato fondamentale (n = 1). Al massimo della curva corrisponde la distanza più probabile, che è esattamente pari al raggio di Bohr, r 1 = 52,9 pm. (adattare da Hecht, vol. 2, pag. 1059, con le scritte densità di probabilità dell’elettrone e distanza dal nucleo) 2.7 Gli atomi con più elettroni. Il comportamento degli atomi con più elettroni è assai più complesso di quello dell’idrogeno, perché ciascun elettrone, oltre che all’attrazione da parte del nucleo, è soggetto a interazioni repulsive con gli altri elettroni. Sicchè l’equazione di Scrodinger non può essere risolta analiticamente ma soltanto numericamente, grazie all’impiego del calcolatore. Così procedendo, si trova che gli stati dei singoli elettroni sono descritti dagli stessi numeri quantici dell’atomo di idrogeno. Ora però al numero quantico principale n non corrisponde più una energia ben determinata, e quindi in uno stesso strato possono trovarsi elettroni con energie diverse. Più precisamente, come mostra il grafico in figura 14, per un dato valore di n l’energia aumenta al crescere del numero quantico orbitale l, per un dato valore di l l’energia aumenta al crescere di n. La disposizione degli elettroni negli stati possibili di un atomo a più elettroni che si trova nello stato fondamentale segue due criteri. Il primo è ovvio: gli elettroni si distribuiscono negli stati di minore energia. Il secondo, invece, è tutt’altro che ovvio. Si tratta infatti del principio di esclusione di Pauli, enunciato nel 1925 dal fisico austriaco Wolfgang Pauli, per cui ogni stato quantico, caratterizzato da un determinato insieme di valori dei quattro numeri quantici (n, l, ml, ms), può essere occupato da un solo elettrone. Sicchè quando uno stato è occupato, gli altri elettroni ne sono esclusi. Così i due elettroni dell’atomo di elio si dispongono nei due stati rappresentati dai numeri quantici n = 1, l = 0, ml = 0 e ms = ½ e –½. Dei tre elettroni del litio, due si dispongono come nell’elio, il terzo nello stato a più bassa energia del secondo strato (n = 2). E così via per gli altri elementi. Facendo però attenzione al fatto, già menzionato, che l’energia di uno stato dipende sia da n che da l. E allora gli elettroni possono andare a occupare uno strato anche quando quando quelli inferiori non sono occupati completamente. I 92 elettroni dell’atomo di uranio, per esempio, sono distribuiti negli strati con n fra 1 e 7, senza però riempire completamente tutti gli strati con n inferiore a 7, i quali potrebbero contenere fino a 182 elettroni. Osserviamo infine che dalla configurazione elettronica degli atomi dipendono tutte le caratteristiche chimiche e gran parte di quelle fisiche di un elemento. Le proprietà chimiche, in particolare, dipendono dalla configurazione dello strato più esterno, che varia con regolarità all’aumentare del numero atomico, dando luogo alla caratteristica struttura della tavola periodica degli elementi. Quando questo strato è riempito completamente l’elemento è un gas nobile, dotato di scarsissima reattività chimica. La reattività chimica è invece elevata negli elementi che hanno pochi elettroni nello strato esterno o a cui ne mancano pochi per competarlo, perché ciò facilita lo stabilirsi di legami chimici con gli atomi di altri elementi. Nota storica 1. Le tappe essenziali della meccanica quantistica Il grafico in basso riporta le tappe essenziali dello sviluppo della meccanica quantistica nei primi decenni del secolo scorso. I risultati iniziali di Planck, Einstein e Bohr, dopo il rallentamento degli studi dovuto alla Prima guerra mondiale (1914-1918), trovano inquadramento formale nel corso degli anni ’20, sostituendo così la meccanica newtoniana. In quegli anni viene infatti sviluppato un rigoroso apparato teorico, basato essenzialmente sull’intuizione di de Broglie e costruito sopratutto per opera di Schrödinger, di Heisenberg e del fisico inglese Paul Adrien Maurice Dirac, il quale formula una equazione che prevede l’esistenza di stati energetici negativi, ipotizzando l’esistenza dell’antimateria. Un fattore essenziale fu una intensa collaborazione, di visite e scambi, fra gli 12 scienziati dei diversi Paesi. Notate come la maggior parte dei contributi provengano da fisici giovanissimi, indicando come le idee più innovative sorgano principalmente in giovane età. (riportare le date e i testi che seguono in un grafico lineare orizzontale o verticale) 1900 Max Planck (tedesco, 1858-1947, premio Nobel nel 1918) formula l’ipotesi della quantizzazione dell’energia e introduce la costante h 1905 Albert Einstein (tedesco, 1879-1955, premio Nobel nel 1921) interpreta l’effetto fotoelettrico e dà senso fisico ai quanti di energia 1913 Niels Bohr (danese, 1885-1962, premio Nobel nel 1922) formula un modello atomico nel quale l’energia degli elettroni è quantizzata 1916 Albert Einstein introduce la nozione di emissione stimolata di radiazione, all’origine del laser 1923 Arthur H. Compton (americano, 1892-1962, premio Nobel nel 1927) osserva l’effetto che porta il suo nome nell’interazione fotoni-materia 1924 Louis Victor de Broglie (francese,1892-1987, premio Nobel nel 1929) estende alla materia la dualità ondaparticella, assegnando una lunghezza d’onda alle particelle in moto 1924 Wolfgang Pauli (austriaco, 1900-1978, premio Nobel nel 1945) formula il principio di esclusione 1924 Max Born (tedesco, 1882-1970, premio Nobel nel 1954) conia il termine meccanica quantistica. 1926 Erwin Schrödinger (austriaco, 1887-1961, premio Nobel nel 1933) ricava l’equazione fondamentale della meccanica quantistica (ma poi non ne accetta l’interpretazione probabilistica) 1926 Max Born introduce l’interpretazione probabilistica della meccanica quantistica 1927 Werner Heisenberg (tedesco, 1901-1976, premio Nobel nel 1933) pubblica il principio di indeterminazione 1927 Niels Bohr formula il principio di complementarità 1927 Clinton J. Davisson (americano, 1881-1954, premio Nobel nel 1937) scopre che gli elettroni vengono diffratti da un cristallo, come i raggi X. 1928 Paul A.M. Dirac (inglese, 1902-1984, premio Nobel nel 1933) Approfondimento 3. La terminologia delle configurazioni elettroniche degli atomi. Rappresentare la configurazione elettronica di un atomo enumerando gli strati e i sottostrati, e indicando quanti elettroni vi sono contenuti, risulta piuttosto complicato e quindi scomodo. Per questo si preferisce usare a tale scopo una formuletta Tabella 2. Le configurazioni elettroniche molto efficace, nella quale sono indicati gli strati e i dei primi 12 elementi della tavola periodica. sottostrati nei quali si trovano degli elettroni e il numero Numero Elemento Configurazione di questi ultimi per ciascun sottostrato. La formula è atomico elettronica costituita da sequenze di tre simboli, ciascuna delle quali 1 H (idrogeno) 1s1 rappresenta un sottostrato: il primo simbolo indica lo 2 He (elio) 1s2 strato, rappresentato dal numero quantico principale n, il 3 Li (litio) 1s2 2s1 secondo il sottostrato, rappresentato con una delle lettere 4 Be (berillio) 1s2 2s2 s, p, d, f, …, corrispondentemente ai valori 0, 1, 2, 3, … 5 B (boro) 1s2 2s2 2p1 6 C (carbonio) 1s2 2s2 2p2 del numero quantico orbitale l che lo caratterizza, 7 N (azoto) 1s2 2s2 2p3 ponendo poi all’esponente il numero di elettroni 8 O (ossigeno) 1s2 2s2 2p4 contenuti nel sottostrato. 9 F (fluoro) 1s2 2s2 2p5 L’atomo di elio, per esempio è rappresentato 10 Ne (neon) 1s2 2s2 2p6 dall’espressione 1s2, dove 1 indica lo strato, s il 11 Na (sodio) 1s2 2s2 2p6 3s1 sottostrato (l = 0) e 2 il numero di elettroni che esso 12 Mg (magnesio) 1s2 2s2 2p6 3s2 contiene. 13 Al (alluminio) 1s2 2s2 2p6 3s2 3p1 14 Si (silicio) 1s2 2s2 2p6 3s2 3p2 La tabella 2 rappresenta le configurazioni elettroniche dei primi 14 elementi della tavola periodica. Figura 14. Negli atomi con più elettroni i livelli di energia degli elettroni dipendono dai due numeri quantici n e l. Sicchè può verificarsi un incrocio di livelli energetici. E infatti l’energia per n=3 e l = 2 è maggiore che per n=4 e l = 0. (adattare da Caforio, Fisica 3, pag. 489) Figura 15. Disposizione degli elettroni dei primi 14 elementi della tavola periodica. (adattare da Walker, Fisica, vol. 3, pag. 58, con la stessa struttura della figura 14 ma senza il livello n=5, e annerendo altre palline, da sinistra verso destra e dal basso verso l’alto, indicandole rispettivamente con i simboli: F, Ne, Na, Mg, Al, Si) 13 2.8 Il laser Nelle lampade a scarica, la luce proviene da parte di atomi che, dopo essere stati eccitati dal passaggio di una corrente elettrica, decadono a un livello inferiore, emettendo così fotoni di energia corrispondente al salto fra i due livelli di energia. In questo processo, come in altri simili, a cui si dà il nome di emissione spontanea, ciascun fotone viene emesso indipendentemente, cioè con direzione e fase indipendente da quella dei fotoni emessi degli altri atomi. Ma può anche accadere che il decadimento di un atomo eccitato venga stimolato dalla presenza di un fotone avente energia pari a quella del salto fra i due livelli. In tal caso il fotone che viene emesso nel decadimento ha non solo la stessa energia e quindi la stessa lunghezza d’onda del fotone incidente, ma anche la stessa direzione e la stessa fase. In questo processo di emissione stimolata, inoltre, ciascun fotone emesso può stimolare a sua volta l’emissione di altri fotoni da parte di altri atomi eccitati, con un processo a catena nel quale si ha Un fascio laser è straordinariamente il suo allargamento è sostanzialmente una “amplificazione” della luce. Si ottengono direzionale: determinato esclusivamente dal così fasci luminosi, più in generale fasci di radiazione fenomeno della diffrazione dovuta al elettromagnetica, che sono monocromatici e coerenti, foro di uscita dall’apparato viaggiando in una direzione ben determinata senza disperdersi attorno, in quanto costituiti da fotoni tutti identici. E si possono ottenere potenze anche elevatissime. A fronte di quanto sopra dovrebbe essere chiaro il significato del termine laser, che deriva dalle iniziali di light amplification by stimulated emission of radiation, cioè amplificazione di luce mediante emissione stimolata di radiazione. Ma come si ottiene effettivamente il funzionamento di un laser? Occorre che siano verificate due condizioni essenziali. La prima è che gran parte degli atomi del mezzo attivo si trovino in un determinato stato eccitato anziché in quello fondamentale, nel quale gli atomi si trovano normalmente, cioè si abbia la cosidetta inversione di popolazione fra questi due stati. Ma per ottenere ciò si deve preliminarmente fornire energia agli atomi, con un processo che nella terminologia laser prende il nome di pompaggio (passaggio di una corrente elettrica, invio di fiotti di radiazione di energia opportuna, sviluppo di reazioni chimiche, …). Condizione altrettanto essenziale è poi che l’inversione di popolazione si mantenga per un tempo sufficientemente lungo, cioè che gli atomi eccitati non decadano spontaneamente per fatti loro prima che si avvii il processo laser. Di solito l’emissione spontanea da parte di un atomo avviene in tempi molto brevi, dell’ordine dei nanosecondi, appena dopo l’eccitazione. Ma vi sono dei particolari stati eccitati, chiamati metastabili cioè quasi stabili, nei quali un atomo si mantiene eccitato, senza decadere, per tempi più lunghi di parecchi ordini di grandezza. Ed è proprio in uno di questi stati metastabili che gli atomi vanno portati attraverso il pompaggio, raggiungendolo sia direttamente che attraverso decadimenti intermedi. La figura 17 illustra schematicamente la struttura del laser a elio-neon, uno dei più diffusi. Una miscela a bassa pressione dei due gas, disposta fra due specchi, viene sottoposta a una scarica elettrica ad alta tensione, che eccita gli atomi di elio. Questi collidono con gli atomi di neon portandone la maggior parte in uno stato eccitato metastabile, realizzando così l’inversione di popolazione. Il ritorno allo stato fondamentale degli atomi di elio avviene, come mostra la figura 18, passando attraverso livelli di energia via via inferiore. In una di queste transizioni si ha l’emissione di fotoni di energia 1,96 eV, con lunghezza d’onda di 633 nm, cioè di luce rossa. Il processo di amplificazione della luce è favorito grandemente dalle riflessioni sui due specchi, uno dei quali è però solo parzialmente riflettente, in modo da consentire l’uscita del fascio laser. Il laser appena descritto emette il fascio con continuità, e perciò è detto a onda continua, dato che la scarica elettrica ha luogo continuamente e il pompaggio rifornisce continuamente di atomi eccitati lo stato metastabile. Nei laser a impulsi, invece, il rifornimento è discontinuo: il fenomeno si innesca non appena si ha l’inversione di popolazione, ma ha una breve durata perché 14 termina non appena lo stato metastabile si svuota. E quindi i laser a onda continua sono caratterizzati dalla potenza del fascio, quelli a impulsi dall’energia degli impulsi che emettono. Oltre ai laser che operano nel visibile, sono molto usati i laser che emettono radiazione infrarossa, in particolare alla lunghezza d’onda di 10 m, come i laser di grande potenza impiegati nelle lavorazioni meccaniche. Esistono anche laser funzionanti nella banda dell’ultravioletto e dei raggi X. Nota storica 2. Da Einstein al laser a semiconduttore La teoria essenziale del laser si deve ad Einstein, che nel 1916 stabilì che un atomo eccitato, in presenza di un fotone di opportuna energia poteva emettere un altro fotone, corente con il primo (emissione stimolata). Ma fu solo nel 1953 che il fisico americano Charles Townes attuò l’emissione stimolata in laboratorio utilizzando radiazione a microonde, con un apparato e un processo che egli chiamò maser (microwave amplification by stimulated emission of radiation). La nascita del laser, cioè l’estensione del processo alle onde luminose, avvenne nel 1960 grazie al fisico americano Theodore H. Maiman e allo stesso Townes, il quale poi ricevette il Nobel nel 1964, assieme ai fisici russi Nikolay Basov e Aleksandr Prokhorov, che avevano contribuito indipendentemente a questi studi. Gli anni successivi vedono lo sviluppo di una estesa varietà di tipi di laser, nei quali il mezzo attivo, dove si sviluppa il processo, è costituito dalle sostanze più varie, e un loro crescente impiego come mezzo d’indagine scientifica e negli impieghi più diversi. Il primo laser a semiconduttore risale al 1962, ma solo in seguito questi dispositivi sono stati realizzati con caratteristiche adatte al funzionamento a temperatura normale. Si tratta di diodi a semiconduttore ( Unità 3, pag. xxx), nei quali il processo laser si svolge quando sono attraversati da una corrente elettrica a tensione molto più bassa dei laser tradizionali. La fisica della tecnologia 2. Le innumerevoli applicazioni dei laser. Quando il primo laser venne realizzato, nel 1960, venne considerato una bellissima dimostrazione di un interessante fenomeno fisico, ma nulla più che una sorta di curiosità di laboratorio, che si riteneva priva di qualsiasi impiego pratico. Tanto che venne detto trattarsi di “una soluzione in cerca di un problema”. Mai previsione fu più sbagliata: si può dire infatti che il laser è uno dei prodotti della scienza che hanno trovato il maggior numero di applicazioni nei settori più diversi. - La direzionalità e la coerenza dei fasci laser sono sfruttate sia nelle misure di distanza, da quelle negli ambienti a quelle di oggetti lontani e lontanissimi, fino alla Luna, sia nelle misure geofisiche per il sondaggio dell’atmosfera, sia, soprattutto, nelle comunicazioni a distanza. Un fascetto laser può essere infatti modulato da un segnale e trasmesso a distanza usando fibre ottiche, offrendo una “capacità” di trasmissione estremamente maggiore di quella dei tradizionali cavi elettrici. - L’energia della radiazione laser trova impiego in molti tipi di lavorazioni meccaniche, perchè un fascio laser può forare, tagliare o saldare i materiali più vari. Fra queste lavorazioni, in senso lato, rientrano anche gli impieghi nella chirurgia. In particolare, l’estrema precisione con cui si può posizionare un fascetto laser e l’altrettanto precisa determinazione della sua potenza lo rendono prezioso nella microchirurgia dell’occhio ( Tomo III, pag. xxx). - Altri impieghi ancora, fra cui la lettura dei codici a barre nei supermercati, la lettura e la registrazione dei CD e dei DVD, le stampanti laser, i puntatori usati nelle presentazioni, si sono diffusi grandemente soprattutto grazie alla disponibilità di laser a semiconduttore, relativamente economici, di piccole dimensioni e di impiego assai agevole, dei quali se ne producono ogni anno quasi un miliardo, assai più degli altri tipi di laser. Figura A. Immagine da trovare di chirurgia laser o di altra applicazione con dida appropriata (vedi Walker,3, F66) Figura 16. a) Emissione spontanea: l’atomo eccitato decade in uno stato di energia inferiore emettendo 15 spontaneamente un fotone; b) Emissione stimolata: l’atomo eccitato, in presenza di un fotone di opportuna energia, ne emette un altro assolutamente identico al primo. Figura 17. Schema semplificato di un laser a elioneon. La scarica elettrica attraversa la miscela dei due gas nel tubo, eccitando gli atomi di elio che a loro volta eccitano quelli di neon Questi ultimi danno luogo all’emissione stimolata, generando fotoni che sono diretti secondo l’asse del tubo e vengono riflessi ai suoi estremi. Il fascio laser viene emesso con continuità attraverso lo specchio semiriflettente. Figura 18. Nel dispositivo di figura 17 gli atomi di neon vengono portati dallo stato fondamentale a quello metastabile dalle collisioni con gli atomi di elio eccitati dalla scarica elettrica. L’emissione stimolata avviene nella transizione degli atomi di neon al livello immediatamente inferiore, dal quale poi essi tornano nello stato fondamentale. La luce emessa è di colore rosso vivo, con lunghezza d’onda di 633 nm. 16 Test di verifica 1) Ο Ο Ο La luce è costituita da onde da particelle da entità fisiche diverse sia dalle onde che dalle particelle 2) Le proprietà corpuscolari e ondulatorie della luce sono fra loro O complementari O antitetiche O non conciliabili 3) De Broglie attribuì una lunghezza d’onda O soltanto alle particelle atomiche e subatomiche O soltanto ai corpi in moto O a qualsiasi particella o corpo materiale 4) La lunghezza d’onda attribuita da de Broglie alle particelle materiali dipende dalla loro quantità di moto p secondo la formula Ο = h/p Ο = h/p Ο =hp 5) Sottolineate gli errori che individuate nella frase seguente. Il principio di corrispondenza, formulato da Schrödinger, stabilisce che le proprietà corpuscolari e quelle probabilistiche della luce sono fra loro complementari nel senso che a volte si manifestano le une, altre volte le altre, ma sono tutte essenziali per la sua descrizione. 6) O O O La lunghezza d’onda di de Broglie di una particella è molto più piccola delle sue dimensioni lineari è dell’ordine di grandezza delle sue dimensioni lineari non dipende dalle sue dimensioni 7) Vero o falso? V Un corpo di dimensioni ordinarie possiede una lunghezza d’onda enormemente grande O La dualità onda-particella riguarda soltanto le particelle atomiche e subatomiche O Un cristallo può essere usato come reticolo per osservare la diffrazione degli elettroni O Il microscopio elettronico sfrutta le proprietà ondulatorie degli elettroni O F O O O O 8) Se la costante di Planck fosse 1000 volte maggiore, la lunghezza d’onda di una particella in moto sarebbe O 1000 volte maggiore O 1000 volte minore O 106 volte minore 9) O O O L’onda di de Broglie di una particella rappresenta come la materia che la costituisce è distribuita nello spazio ne rappresenta le proprietà di propagazione nello spazio consente di determinare la probabilità che essa si trovi nei diversi punti dello spazio 10) Le onde di de Broglie trovano impiego pratico O nel laser O nel microscopio elettronico O nell’effetto tunnel 11) La probabilità che una particella si trovi in un determinato punto a un dato istante è direttamente proporzionale O al O alla radice quadrata del O al modulo del quadrato del valore della funzione d’onda della particella in quel punto e in quell’istante. 17 12) Del mondo microscopico si può dare soltanto una descrizione probabilistica a causa O degli errori sperimentali O di motivi di principio O dell’insufficienza dei nostri strumenti 13) La probabilità che una particella si trovi nel volumetto A è 4 volte maggiore di quella che essa si trovi nel volumetto B, della stessa estensione del primo. Sapendo che |Ψ(B)| = 0,001, concludiamo che |Ψ(B)| vale O 0,002 O 0,004 O 0,005 14) Nell’estrazione di numeri casuali che hanno la stessa probabilità di assumere qualsiasi valore nell’intervallo fra –1 e 1, la probabilità di ottenere un numero maggiore o uguale a 0,5 è O ½ O¼ O 1/8 15) Chiamando Ψ(x,y,z) la funzione d’onda di una particella elettricamente carica, la funzione |Ψ(x,y,z) |2 rappresenta la distribuzione nello spazio della O sua carica elettrica O probabilità che vi si trovi O sua massa 16) La funzione d’onda di un elettrone vincolato a muoversi in una “scatola” di lunghezza L ha lunghezza d’onda data dalla relazione Ο = L/n Ο = 2L/n Ο = nL/2 17) La funzione d’onda Ψ(x) di un elettrone vincolato a muoversi in una “scatola” di lunghezza fissa quando il suo numero quantico assume il valore n = 2 è data dal grafico O a) O b) O c) 18) Vero o falso? Il modello atomico di Bohr è in accordo con la teoria quantistica ondulatoria rappresenta esattamente il comportamento dell’elettrone dell’atomo di idrogeno rappresenta il comportamento degli elettroni di qualsiasi atomo spiega perché gli elettroni in moto circolare non irraggino energia prevede che le possibili orbite dell’elettrone siano quantizzate V O O O O O F O O O O O 19) Se la circonferenza della prima orbita di un elettrone nel modello atomico di Bohr è di 330 pm, la lunghezza d’onda dell’elettrone è O 330 pm O 330/(2) pm O 2330 pm 20) Una palla da tennis di massa m dotata di energia cinetica T O non può mai O ha una bassissima probabilità, ma non nulla, di O grazie all’effetto tunnel, può agevolmente superare una barriera di altezza h > T/mg. 21) Correggete gli errori che individuate nella frase seguente. L’esperimento di Davisson dimostrò nel 1927 che gli elettroni vengono rifratti da un cristallo, cioè che queste particelle possiedono proprietà corpuscolari. 22) Il principio di indeterminazione di Heisenberg Ο riguarda soltanto il mondo microscopico Ο pone un limite per il prodotto fra la quantità di moto e la posizione di un corpo qualsiasi Ο presenta validità assolutamente generale 18 23) Misure assai accurate stabiliscono che la velocità di un elettrone è di 100 m/s con incertezza di 1 m/s. Si conclude che quando si determina la posizione dell’elettrone si avrà inevitabilmente una incertezza maggiore di circa Ο 1m Ο 0,01 m Ο 10-4 m 24) Secondo il principio di indeterminazione, se si conoscesse entro 2 m la posizione di un TIR, schematizzato come un punto materiale di massa m = 2∙10 4 kg, la sua velocità resterebbe indeterminata al livello di Ο 10-33 m/s Ο 0,01 pm/s O 10 cm/s 25) Vero o falso? Lo spin di un elettrone rappresenta la rotazione della particella attorno a se stessa Il numero quantico principale può assumere soltanto un numero finito di valori Lo stato quantico di un elettrone in un atomo è determinato dal valore di 4 numeri Il momento angolare di un elettrone di un atomo è quantizzato L’energia degli elettroni di un atomo è determinata dal numero quantico principale n V O O O O O F O O O O O 26) Lo stato fondamentale dell’atomo di idrogeno è caratterizzato dai numeri quantici O (1, 0, 1, ½) , (1, 1, 0, -½) O (1, 0, 0, ½), (1, 0, 0, -½) O (1, 0, 1, ½), (1, 0, -1, -½) 27) Un atomo di idrogeno si trova nello stato eccitato con n = 4. Il numero di fotoni di diversa lunghezza d’onda che esso può emettere nel corso del decadimento allo stato fondamentale è O 3 O 5 O 6 28) Correggete gli errori che individuate nelle frasi seguenti. In un atomo a più elettroni, che si trova nel suo stato fondamentale, questi si distribuiscono negli stati quantici di maggiore energia. Le caratteristiche fisiche e chimiche di un elemento dipendono dalla distribuzione degli elettroni nel suo strato più interno. Gli elementi in cui questo strato è riempito completamente presentano la massima reattività chimica. 29) I laser funzionano O soltanto nel visibile O nel visibile e nell’infrarosso O nel visibile, nell’infrarosso e nell’ultravioletto 30) Per inversione di popolazione in un laser elio-neon s’intende O che nell’apparato vi sono più atomi di un gas che dell’altro O che uno stato atomico eccitato è più popolato di atomi che un altro di energia inferiore O che vi sono più stati popolati, cioè con molti elettroni, che stati non popolati 31) Un laser di potenza a CO2 emette radiazione a 10,6 m con potenza da qualche watt fino a parecchi kilowatt. Il salto di energia fra i due livelli del processo laser è dell’ordine di Ο 10 eV O 1 eV O 0,1 eV 32) Vero o falso? L’emissione stimolata può produrre un fenomeno di amplificazione della luce I fasci laser sono costituiti da elettroni che hanno tutti la stessa lunghezza d’onda L’emissione spontanea avviene in tempi dell’ordine dei millisecondi Si chiama pompaggio il processo con cui si fornisce energia agli atomi in un laser V O O O O F O O O O 19 Problemi e quesiti 1. Spiegate molto brevemente perché ha poco senso chiedersi se la luce consista di onde oppure di corpuscoli. Risoluzione. Perché parlare di onde oppure di corpuscoli significa fare riferimento a due modelli che sono basati sulla nostra esperienza, alla quale sfugge totalmente la realtà del mondo microscopico, che è al di fuori dei nostri sensi. 2. Spiegate brevemente in cosa consiste il principio di complementarità. Risoluzione. Sia la luce che la materia manifestano in alcuni casi le proprietà tipiche delle onde, in altri casi le proprietà tipiche dei corpuscoli, ma mai contemporaneamente. Queste proprietà sono complementari nel senso che o si manifestano le une oppure le altre, ma sono tutte essenziali per una descrizione completa di questi enti fisici. 3. Calcolate la lunghezza d’onda di de Broglie di un treno con massa di 200 tonnellate in moto alla velocità di 216 km/h. Confrontate l’energia cinetica del treno con l’energia di un fotone che avesse la stessa lunghezza d’onda del treno. Risoluzione. La quantità di moto del treno è p = mv = 2∙105216(1000/3600) = 1,2∙107 kg. La lunghezza d’onda di de Broglie del treno, data dalla formula (1), è: = h/p = 6,63∙10-34/1,2∙107 = 5,53∙10-41 m. L’energia cinetica del treno è T = ½ mv2 = 2∙105602/2 = 3,6∙108 J. L’energia di un fotone avente la stessa lunghezza d’onda sarebbe: E = hf = hc/= 6,63∙10-343∙108/5,53∙10-41 = 3,60∙1015 J, cioè assai maggiore di quella del treno. Calcolate la lunghezza d’onda di de Broglie di un protone (m p = 1,673∙10-27 kg) che è stato accelerato da una tensione V = 10 kV, indicando a quale banda (radio, infrarosso, visibile, …) appartiene un fotone avente la stessa lunghezza d’onda. Risoluzione. L’energia acquistata dal protone è: T = ½ mpv2 = eV, da cui si ricava la sua velocità v = √(2eV/mp) e la sua quantità di moto p = mpv = √(2mpeV) = √(21,673∙10-271,6∙10-19104) = 2,31∙10-21 kg m/s. Pertanto la lunghezza d’onda di de Broglie della particella, applicando la formula (1), è: = h/p = 6,63∙10-34/2,31∙10-21 = 0,278 pm. I fotoni con questa lunghezza d’onda appartengono alla banda dei raggi gamma. Calcolate la lunghezza d’onda di de Broglie della Terra nel suo moto attorno al Sole, sapendo che il raggio dell’orbita terrestre è approssimativamente di 150 milioni di km e che la massa del nostro pianeta è di circa 6∙1024 kg. Risoluzione. Dato che la Terra impiega 1 anno per compiere una rivoluzione completa attorno al Sole, il modulo della sua velocità è: v = 23,14150∙109/(360024365) ≈ 3∙104 m/s. Pertanto la sua lunghezza d’onda di de Broglie, applicando la formula (1), è: = h/(mv) ≈ 6,63∙10-34/(6∙10243∙104) = 3,7∙10-63 m. Calcolate la lunghezza d’onda di de Broglie di un neutrone (m n = 1,675∙10-27 kg) che, inizialmente in moto alla velocità di 100 m/s, è stato poi sottoposto a un campo elettrico diretto parallelamente al suo moto, attraversando una differenza di potenziale di 1000 V. Indicate a quale banda (radio, infrarosso, visibile, …) appartiene un fotone avente la stessa lunghezza d’onda. Risoluzione. Il neutrone, essendo privo di carica elettrica, non viene affatto accelerato sicchè la sua velocità si mantiene costante. Pertanto la sua lunghezza d’onda di de Broglie, applicando la formula (1), è: = h/(mpv) = 6,63∙10-34/(1,675∙10-27100) = 396 nm. I fotoni con questa lunghezza d’onda appartengono alla banda del visibile, in particolare alla regione del violetto. 7. Rappresentate in un grafico la dimensione del minimo dettaglio osservabile con un microscopio elettronico (assunta per semplicità pari a una lunghezza d’onda) in funzione delle tensione di accelerazione degli elettroni nella regione fra 5 kV e 100 kV. Riportate la dimensione del dettaglio in unità di nanometri, la tensione in unità di kV. Risoluzione. La quantità di moto p di un elettrone accelerato alla tensione V è: p = √(2meeV); pertanto la sua lunghezza h 6, 63 1034 1, 23 109 . Esprimendo in nm e V d’onda, in base alla formula (1), è: = 2meeV V 2 9,1110-31 1, 6 1019V 9 9 in kV, si ha: 1, 23 10 10 38,9 nm. E quindi (5 kV) = 17,4 nm, (100 kV) = 3,88 nm. VkV 103V (aggiungere al grafico una scritta verticale dettaglio (nm) e una orizzontale tensione (kV) ) 20 8. La curva in figura rappresenta la densità di probabilità della somma di due numeri casuali, ciascuno dei quali può assumere qualsiasi valore nell’intervallo 0,1. Verificate che tale curva rappresenti effettivamente una funzione densità di probabilità e giustificate il fatto che tale funzione si annulla al di fuori dell’intervallo 0,2. (Suggerimento: rileggete la didascalia della figura 6.) Risoluzione. Perché si tratti di una densità di probabilità occorre che la somma delle probabilità di ottenere un numero qualsiasi fra 0 e 2, cioè la probabilità dell’evento certo, sia pari a 1. Sapendo che probabilità P x, x+x di ottenere un numero compreso fra x e x + x è data dal prodotto della lunghezza dell’intervallino x per la densità di probabilità f(x) dei numeri casuali, rappresentata dalla curva, si conclude che la probabilità di ottenere un qualsiasi numero è data dall’area racchiusa dalla curva e dall’asse delle ascisse. Questa area vale 1, essendo la somma di due triangoli di altezza 1 e base 1. I numeri casuali considerati, infine, sono certamente compresi fra 0 e 2, essendo dati dalla somma di due numeri, ciascuno dei quali è compreso fra 0 e 1. 9. Calcolate in unità di elettronvolt l’energia cinetica di un elettrone vincolato a muoversi in una “scatola” di lunghezza L = 1 nm quando il suo numero quantico vale n = 3. Risoluzione. Il valore dell’energia dell’elettrone è dato dalla formula (6): 32 6, 63 1034 n2 h2 5, 43 1019 19 En 5, 43 10 J eV 3,39 eV . 8me L2 8 9,111031 (109 ) 2 1, 6 1019 2 10. Disegnate nel riquadro a fianco il grafico della funzione d’onda Ψ(x) di un elettrone vincolato a muoversi in una “scatola” di lunghezza fissa quando il numero quantico assume il valore n = 4. Ψ(x) x Risoluzione. La funzione d’onda è data dalla formula (6) specializzata al caso n = 4. Si tratta pertanto di una sinusoide costituita da 2 periodi. Allo stesso risultato si arriva esaminando la figura 7 e ragionando per induzione. (nella Guida, inserire nel grafico due cicli completi di sinusoide) 11. Ricavate l’espressione (8) della quantità di moto quantizzata dell’elettrone di un atomo di idrogeno, nel modello di Bohr, utilizzando la condizione (9) per la lunghezza d’onda dell’elettrone. Risoluzione. Dalla (9) si ricava la lunghezza d’onda n = 2rn/n, dove rn è il raggio dell’orbita corrispondente al numero quantico n. Uguagliando alla lunghezza d’onda di de Broglie dell’elettrone, = h/p, si ottiene: 2rn/n = h/pn, da cui si ricava l’espressione della quantità di moto: pn = nh/(2rn). 12. Dimostrate che una lumaca di massa m = 10 g, la cui posizione è nota entro 1 nm, può muoversi con una incertezza di velocità di appena 1 pm/anno senza perciò violare il principio di indeterminazione. Risoluzione. Ricaviamo dalla formula (11) l’incertezza sulla velocità della formica, conoscendone la massa e l’incertezza sulla posizione. Si ottiene così: v = h/(4mx) = 6,63∙10-34/(43,140,0110-9) = 5,3∙10-24 m/s = 5,3∙10-23360024365 m/anno = 1,7∙10-16 m/anno, cioè un valore di incertezza assai inferiore a 1 pm/anno, che è dunque pienamente consentito dal principio d’indeterminazione. 13. Il principio di indeterminazione, oltre che alla posizione e alla quantità di moto, si applica anche ad altre coppie di grandezza, chiamate per questo grandezze coniugate. Fra queste vi è il tempo a cui si verifica un evento e l’energia in gioco, e in tal caso il principio di indeterminazione assume la forma tE ≥ h/4. Ciò posto, calcolate in elettronvolt l’incertezza sull’energia di uno stato atomico eccitato, che decade spontaneamente con vita media di 5 ns la vita media, assumendo questa durata come incertezza temporale. 21 Risoluzione. Dalla formula data si ricava E ≥ h/4t = 6,63∙10-34/(45∙10-9) = 1,06∙10-26 J = 1,06∙10-26/1,6∙10-19 eV = 6,60∙10-8 eV. 14. Un fascio di elettroni con quantità di moto diretta orizzontalmente (px) attraversa la fenditura di larghezza D in figura subendo diffrazione. Calcolate approssimativamente l’incertezza y sulla posizione verticale e l’incertezza py sulla componente verticale della quantità di moto degli elettroni, appena fuori della fenditura, verificando che il loro prodotto soddisfa il principio di indeterminazione. Risoluzione. Assumiamo lo spessore D della fenditura come incertezza sulla posizione verticale degli elettroni, y ≈ D, i quali hanno lunghezza d’onda data dalla formula di de Broglie (1): = h/px. Il fascetto di elettroni diffratto dalla fenditura è compreso approssimativamente fra gli angoli - e + che sono dati dalla formula (5) a pag. xxx del Tomo III: ≈ /D, da cui si ricava: ≈ h/Dpx. La quantità di moto del fascetto uscente ha quindi acquistato una componente verticale la cui incertezza è compresa approssimativamente fra -px e px, cioè py ≈ 2px ≈ 2h/D. pertanto il prodotto delle due incertezze è: yy ≈ D 2h/Dpx = 2h, in accordo approssimato con il principio di indeterminazione. 15. Un atomo di idrogeno eccitato si trova in uno stato con numero quantico principale n = 3. Calcolate: a) l’energia necessaria per liberare l’elettrone dal nucleo, b) la lunghezza d’onda del fotone che potrebbe venir emesso nel ritorno dell’atomo eccitato nel suo stato fondamentale Risoluzione. a) L’energia necessaria a liberare l’elettrone dal nucleo è data dall’energia dell’elettrone, espressa dalla formula (11), cambiata di segno. Per n = 3 si ha pertanto: 1 m e4 1 9,111031 (1, 6 1019 ) 4 2, 411019 19 E3 2 e2 2 2 2, 41 10 J eV 1,51eV . 3 8 0 h 3 8 (8,85 1012 )2 (6, 63 1034 ) 2 1, 6 1019 b) Nel decadimento dell’atomo nel suo stato fondamentale, con energia E1, l’energia E del fotone che viene emesso è data dalla differenza fra E3 ed E1, cioè: 1 m e4 1 9,111031 (1, 6 1019 ) 4 2,14 1018 E E3 E1 1 2 e2 2 1 2 2,14 1019 J eV 13, 4 eV . 12 2 34 2 1, 6 1019 3 8 0 h 3 8 (8,85 10 ) (6, 63 10 ) 16. Calcolate il numero massimo di elettroni che possono trovarsi nel sottostrato di un atomo che è caratterizzato dai numeri quantici (3, 2). Risoluzione. Il sottostrato in questione ha numero quantico principale n = 3 e numero quantico orbitale l = 2. I corrispondenti valori possibili del numero quantico magnetico ml sono gli interi compresi fra - l e l, cioè sono i seguenti cinque: -2, -1, 0, 1, 2; per ciascuno di essi si possono avere due elettroni (rispettivamente con spin –½ e ½). Pertanto il numero massimo di elettroni che possono trovarsi nel sottostrato (3, 2) è: 52 = 10. 17. Calcolate il numero massimo di elettroni che possono trovarsi negli strati con numero quantico principale n, per n = 1, 2, 3, 4. Riportate i risultati in una tabella. Risoluzione. Se il numero quantico principale vale n, il numero quantico orbitale l può assumere n valori diversi (gli interi fra 0 e n-1), a ciascuno dei quali possono corrispondere 2n-1 diversi valori del numero quantico magnetico ml (gli interi fra – l e l). Per ciascuna terna dei primi tre numeri quantici si possono poi avere due elettroni, rispettivamente con spin –½ e ½.. Quindi, come mostrato nella Tabella 1, per n = 1 si ha un solo sottostrato con 2 elettroni, per n = 2 si hanno due sottostrati con un totale di 8 elettroni. Per n = 3 si hanno tre sottostrati, l’ultimo dei quali (l = 2) aggiunge 10 elettroni ai sottostrati precedenti, per un totale di 18 elettroni. Per n = 4, infine, il quarto sottostrato aggiunge 14 elettroni ai precedenti, per un totale di 32 elettroni. numero quantico principale n 1 2 3 4 numero totale di elettroni 2 8 18 32 22 18. Il sodio (Na) ha numero atomico Z = 11. Stabilite in quali strati e sottostrati dell’atomo sono disposti gli elettroni, quando esso si trova nel suo stato fondamentale, sapendo che in questo atomo non si verificano incroci di livelli energetici ( figura 14). Risoluzione. Sapendo che negli atomi a più elettroni questi si dispongono negli stati di più basso livello di energia e che nel sodio non si verificano incroci di livelli energetici, l’energia è determinata soltanto dal numero quantico principale n. Pertanto 2 elettroni si dispongono nell’unico sottostrato (l = 0) del primo strato (n = 1), 6 elettroni nel secondo strato (n = 2): 2 nel sottostrato l = 0, 6 nel sottostrato l = 1. L’elettrone rimanente si dispone nel terzo strato (n = 3), nel sottostrato di energia più bassa. 19. L’emissione di un particolare laser a gas proviene dalla transizione fra due livelli energetici che sono spaziati fra loro di 3,66∙10-19 J. Calcolate la lunghezza d’onda della radiazione emessa e stabilitene il colore. Risoluzione. Nella transizione fra due stati con E = 3,66∙10-19 J si ha l’emissione di un fotone con energia hc/ = E. La lunghezza d’onda della radiazione è pertanto: = hc/E = 6,63∙10-343∙108/3,66∙10-19 m = 543 nm, corrispondente al verde. 23