Il corso descrive le metodologie di base della Fisica, richiamando le regole elementari dellAnalisi dei Dati, della Meccanica, dellElettromagnetismo e dellOttica. Per superare lesame si devono superare in modo sufficiente le due prove (Analisi dati e Meccanica, Elettromagnetismo e Ottica) durante il corso o la prova globale alle sessioni di esame successive. Istruzioni dettagliate sono disponibili sul sito. Le prove consistono di esercizi numerici per i quali va data la risposta. Ogni esercizio ha un peso e la sua valutazione è pari al peso se la risposta è corretta, altrimenti zero. Le risposte errate non vengono valutate. Per spiegazioni si riceve al Dipartimento di Fisica (IV piano la mattina dalle 10:00 alle 13:00 circa. I prerequisiti sono: Nozioni di base di algebra, manipolazione delle espressioni numeriche e letterali. Nozioni base di Analisi Matematica: funzioni elementari, loro derivate, concetto di integrale Possibili libri di testo Fisica per le Scienze della Vita, Bellini, Manuzio, Piccin Elementi di Fisica, Bersani et al., Piccin Elementi di Fisica, Mazzoldi, Nigro, Voci, EdiSES Fondamenti di Fisica, Halliday, Resnick, Walker, Ambrosiana Fisica per Moduli, Ruffo, Zanichelli Importanza del tempo nel comportamento degli organismi viventi. La cellula Tempi 10 -15 10 -12 10 -9 fs ps ns moto di e- moti termici 10 -6 10 -3 10 0 µs ms s catalisi enzimi ... confor. proteine 10 16 s GY evoluzione Il metodo sperimentale Tutte le scienze naturali si basano sullosservazione di come procedano i fenomeni che avvengono in natura assumendo a priori il numero minimo di ipotesi Losservazione della natura si effettua su differenti scale di tempo e di spazio. Queste differenze, oltre ad altri fattori convenzionali, definiscono i limiti delle varie aree scientifiche. Ad esempio la Biologia si occupa di vari aspetti relativi agli esseri viventi e di varie molecole rilevanti per gli organismi viventi e virus. I limiti delle Scienze Convenzionali cambiano continuamente. Letteralmente: la fisica è lunica scienza naturale. Ipotesi minime necessarie in fisica e nelle altre scienze naturali convenzionali: 1) Causalità temporale (ogni evento dipende solo da quelli che lo precedono). 2) Lo spazio in cui si fanno le osservazioni è omogeneo ed isotropo (non ci sono a priori posizioni o direzioni speciali nello spazio). 3) Omogeneità del tempo (dal punto di vista di unosservazione ogni istante di tempo è equivalente) Concetto di osservazione 1) Osservazione qualitativa: gli oggetti sulla superficie della Terra, se lasciati liberi, cadono. 2) Osservazione quantitativa: gli oggetti sulla superficie della Terra, se lasciati liberi, cadono con unaccelerazione costante verso il basso di 9,80665 m/s2. Losservazione quantitativa è estremamente importante. Grandezze fisiche e loro misura sperimentale Non esiste a priori un insieme predefinito di grandezze fisiche. Esse vengono introdotte man mano che vengono scoperti nuovi fenomeni. Esistono molte grandezze fisiche immediate che fanno parte della normale esperienza. Esempi: velocità, distanza fra due punti dello spazio. Misura di una grandezza fisica. La misura (valore) di una grandezza (fisica) è sempre relativa: 1) Si definisce lunità di misura in modo arbitrario (che poi rimane fisso) 2) Si determina il rapporto fra la grandezza fisica che si vuole misurare e lunità di misura scelta. Il processo è sempre soggetto ad errori detti sperimentali. Le unità di misura devono essere scelte in modo convenzionale valido per tutti. La loro definizione universale è unoperazione complessa che viene raffinata continuamente. Ad esempio il metro (unità di misura per le distanze) era definito, fino al 1960 con una barra di platino tenuta sempre a zero gradi centigradi (la sua lunghezza era stata scelta circa uguale ad 1/40.000.000 della circonferenza della Terra). Dal 1960 al 1983 era definito come 1.650.763,73 volte la lunghezza donda della luce gialla dellisotopo 86 del kripton. Dal 1983 ad oggi esso è 1/299.792.458 lo spazio percorso dalla luce in 1 secondo (attenzione si deve definire prima il secondo). Le unità di misura che vengono attualmente impiegate sono quelle del Sistema Internazionale (SI, protetto dalla Legge, http://physics.nist.gov/cuu/Units/). Le unità di misura di base di questo sistema sono: Grandezza Nome Simbolo lunghezza metro m massa chilogrammo kg tempo secondo s corrente elet. Ampere A temperatura kelvin K quantità di mat. Mole mol intensità luminosa candela cd Definizioni delle unità di base 1 m = 1/299.792.458 co * 1 s 1 kg = massa di un apposito campione di Pt-Ir conservato presso il BIPM (Bureau International des Poids et Mesures ) 1 s = 9 192 631 770 periodi della radiazione prodotta dal 133Cs (riga opportuna) 1 A = corrente che produce la forza di 2 10-7 Newton per m, fra due fili infiniti ad 1 m di distanza 1 K = 1/273,16 della temperatura del punto triplo dellacqua 1 mol = quantità di sostanza che contiene tante molecole quante ve ne sono in 0,012 kg di 12C Nel SI si definiscono, oltre alle grandezze di base, le grandezze derivate con le relative unità di misura. Ad esempio la velocità: v = [s/t] = [m/s] La relazione fra parentesi quadre indica che essa è una relazione di tipo dimensionale. Esempio di grandezze derivate con nomi specifici Grandezza Simbolo Nome Angolo piano rad [m/ m] = 1 radiante steradiante Angolo solido sr [m2/m2] = 1 hertz Frequenza Hz [s-1] Forza N [m kg/s2] newton Pressione o sforzo Pa [N/m2] pascal Energia o lavoro J [N m] joule Potenza W [J/s] watt Carica elettrica C [s A] coulomb Differenza di potenziale V [W/A] volt Di tutte le unità si definiscono multipli e sottomultipli. Tra quelli previsti nel SI ci sono: f p n µ m Sottomultipli femto 10-15 pico 10-12 nano 10-9 micro 10-6 milli 10-3 k M G T P Multipli kilo mega giga tera peta http://www.digitaldutch.com/unitconverter/ 103 106 109 1012 1015 Ad esempio: 1 Pm = 1015 m (~ 0.1 anni luce) 1 km = 103 m (~ passeggiata) 1 µm = 10-6 m (~ microrganismo) 0.1 nm = 10-10 m (~ atomo) 1 fm = 10-15 m (~ diametro del protone) Nella pratica si effettuano osservazioni quantitative o Misure Gli strumenti di misura possono essere molto semplici ma anche molto complessi e composti di numerose parti. Ripetibilità delle misure. Ogni osservazione sia qualitativa che quantitativa deve dare lo stesso risultato se ripetuta nelle stesse condizioni in luoghi diversi ed in tempi diversi Ogni strumento di misura è caratterizzato da: 1) Sensibilità 2) Precisione 3) Intervallo di misura (o portata) 4) Ripetibilità La sensibilità è il rapporto fra la risposta dello strumento ed il valore della grandezza La precisione è leffettiva corrispondenza fra il valore fornito dallo strumento e leffettivo valore della grandezza che si sta misurando Lintervallo di misura si riferisce al minimo ed al massimo valore misurabile della grandezza che si vuole misurare Calibro digitale (centesimale) Gli errori sperimentali Ogni misura è soggetta ad errori sperimentali. Essi sono di due tipi, sistematici e casuali: 1) Imperfezioni dellunità di misura intrinseche allo strumento impiegato (sistematico) 2) Errori dovuti al processo di confronto fra grandezza ed unità di misura (sistematico) 3) Processi casuali che fanno variare il risultato in modo imprevedibile (casuale) Gli errori sistematici non sono controllabili, essendo strettamente connessi allo strumento impiegato. Il solo modo di controllo è limpiego di un secondo strumento. Ad esempio: un calibro può essere tarato controllando che dia il risultato corretto nella misura di uno spessore di 50 mm noto a priori. Gli errori sistematici possono essere legati ad una cattiva taratura, ma, più comunemente, alle caratteristiche costruttive. Ad esempio le punte del calibro possono essere troppo flessibili. La taratura può essere effettuata su tutto lintervallo accessibile allo strumento, in questo modo si minimizzano gli errori sistematici. Gli errori casuali si presentano in vari modi. ad esempio in una misura con il calibro si possono ottenere diversi risultati: 1) Lo spessore che si deve misurare non è completamente regolare. 2) Lallineamento tra il calibro e lo spessore non è mai esattamente lo stesso. In condizioni ottimali uno strumento come il calibro fornisce una misura che ha solo un errore di lettura. Il risultato si indica nella forma: g = gletta ± ∆g La forma: g = gletta ± ∆g Indica che la grandezza g ha valore che è compreso fra: gletta ∆g e gletta + ∆g ∆g è detto errore di lettura. Le condizioni ottimali si ottengono quando la grandezza da misurare è costante meglio del limite di lettura dello strumento (di fatto ∆g). Ad esempio, nel caso del calibro ventesimale ∆g = 1/20 mm, ovvero ∆g = 0,05 mm Il calibro digitale ha invece ∆g = 0,01 mm, cioè 10 µm. Un normale metro a striscia metallica ha divisioni di 1 mm. In questo caso si assume di poter apprezzare ½ divisione, cioè ∆g = 0,5 mm Spesso, ripetendo la misura, nelle stesse condizioni e con lo stesso strumento non si ottiene lo stesso risultato a causa di varie fattori che fanno fluttuare la determinazione. In questo caso si ottiene solo una determinazione statistica del valore della grandezza. A volte la fluttuazione statistica è un fatto intrinseco. Esempio 1: se si misura con il calibro molto sensibile è impossibile ottenere sempre lo stesso risultato. In questo caso la grandezza potrebbe (forse) essere ben definita, ma il metodo di misura introduce fluttuazioni. Esempio 2: si vuole misurare il numero di globuli rossi nel sangue. Ovviamente non si misurano tutti, ma solo il numero per unità di volume, in un volume piccolo, adatto al microscopio. In ogni piccolo volume non si trova sempre lo stesso numero di globuli rossi. Per dare senso a questo tipo di misure si fa ricorso al concetto di probabilità. Limitandosi al caso finito La probabilità del verificarsi di un evento è definita come il rapporto fra il numero di casi favorevoli Nf (al fatto che levento accada) ed il numero di casi possibili Np: P = N f / Np 0 ≤ P ≤ 1 Il concetto di probabilità è astratto, tuttavia si enuncia il seguente principio. Se si ripete una prova un numero arbitrariamente grande di volte N (ad esempio il lancio di una moneta), il rapporto fra il numero di volte in cui si verifica un evento Nf (ad esempio il fatto che la moneta cada con testa verso lalto) ed N, verifica: Nf lim =p N →∞ N Esempio 1: la probabilità che esca il 32 in unestrazione singola al lotto è il rapporto fra 1 (un solo caso di uscita del numero scelto) e 90 (il numero di possibili estrazioni): P32 = 1/90 Esempio 2: La probabilità che, lanciando un dado, esca 3 è: P3 = 1/6 La probabilità che esca 3 in due lanci è: P3-3 = 1/36 Infatti su due lanci c è 1 evento favorevole su 6x6 = 36 eventi totali possibili. Si ha la seguente regola: la probabilità che due eventi (lestrazione di due volte 3) o più eventi di probabilità p1, ,pn si verifichino è: p1-n = p1 pn Esempio 3: La probabilità che, lanciando un dado, escano o 2 o 3 è: P3 = 2/6 Infatti si hanno due eventi favorevoli su 6 eventi totali possibili. Si ha la seguente regola: la probabilità che due eventi (lestrazione di 2 o 3) o più eventi di probabilità p1, ,pn si verifichino in alternativa è: p1-n = p1 + + pn Esistono casi finiti ma di complessità crescente. Ad esempio, la probabilità che, lanciando un dado 10 volte, 3 volte esca 6. Per trattare questi casi si introduce la distribuzione di probabilità: pN (k). Vale sempre la proprietá: PN k=0 pN (k) = 1. Essa è la probabilità che si verifichi k (3 nellesempio) volte un certo evento (uscita del 6 nellesempio) su N (10 nellesempio) prove. Il caso considerato è detto della distribuzione binomiale. La probabilità del singolo evento è p, la probabilità di k eventi su N è: à ! N k N −k pN (k) = p (1 − p) k à N k ! N! = k!(N − k)! Unaltra distribuzione di probabilità molto importante si riferisce ad un evento di probabilità molto bassa (al limite tendente a 0) per il quale si effettuano moltissime prove (al limite N → ∞, ma N p = m, finito). Questa è detta distribuzione di Poisson: k m −m p(k) = e k! Si misuri la velocità di un oggetto determinando la distanza tra due punti ed il tempo necessario a percorrere questa distanza. d = 5.000 ± 0.002 m t = 150 ± 2 ms La velocità è quindi: v = 33.33 m/s vmin = 4.998/0.152 = 32.881 m/s vmax = 5.002/0.148 = 33.797 m/s Lerrore viene quindi determinato sulla velocità a partire dal valore minimo e quello massimo. v vmin = 0.452 m/s vmax v = 0.463 m/s Le due differenze sono praticamente uguali e possono rappresentare lerrore sulla grandezza derivata v. v = 33.3 ± 0.5 m/s Questa procedura si potrebbe applicare in ogni caso. Nel caso delle distribuzione di probabilità è utile introdurre i seguenti concetti: Media e Varianza hki = ∞ X k p(k) = m k=0 σ 2 = hk 2i − hki2 = ∞ X k=0 k 2 p(k) − m2 = m Calcolo della media della distribuzione di Poisson ∞ X k −m m e hki = k k! k=1 −m me ∞ h X m h=0 h! ∞ X mk −m = e = − (k 1)! k=1 = me −m m e =m Calcolo della varianza della distribuzione di Poisson ∞ X ∞ k −m X m e kmk 2 2 −m hk i = k =e − 1)! k! k=0 k=1 (k e−m ∞ X (h + 1)mh+1 h! h=0 m ∞ X hp(h) h=0 h! = e−m m ·X ∞ hmh h=0 h! + ∞ h¸ X m h=0 + me−m em = m2 + m σ2 = hk 2 i − hki2 = m2 + m − m2 = m h! = Esempio. Nel conteggio dei globuli rossi nel sangue si parte dal fatto che siamo di fronte a numeri totali molto alti. Se si considera un volume di sangue dove ce ne siano solo una decina, la distribuzione del numero di globuli rossi per ogni volume uguale è una distribuzione di Poisson. Tipiche distribuzioni di Poisson. 0.16 0.2 0.16 0.12 0.12 p(k) p(k) m = 10 m=5 0.08 0.08 0.04 0.04 0 0 0 4 k 8 12 0 5 10 k 15 20 25 Come si vede, facendo conteggi piccoli, cè unelevata probabilità che il numero misurato sia abbastanza lontano da quello che ci si aspetta. Nelle misure intrinsecamente statistiche la varianza ha il ruolo di quadrato dellerrore. Convenzionalmente, nel caso di distribuzioni di Poisson, dopo una singola misura, si scrive g = g0 ± √ σ2 Confronto fra la distribuzione di Poisson e un processo che deve seguire questa distribuzione. 0.2 m=5 p(k) 0.16 N = 5000 0.12 0.08 0.04 0 0 4 8 k 12 16 Nel limite in cui m sia molto grande (superiore a circa 20), allora la distribuzione di Poisson si trasforma nella distribuzione di Gauss o Gaussiana. Essa è detta anche distribuzione normale. µ 2¶ −(k − m) 1 exp p(k) = √ 2σ 2 2πσ √ σ= m Esempio. Si supponga di dover determinare il valore di una grandezza con distribuzione di Poisson a media bassa (ad esempio circa 5). Effettuando una singola determinazione si ottiene una stima del tipo: k = kmis ± q kmis se kmis = 4, allora la radice della varianza é 2 È evidente che lindeterminazione è eccessiva. Per ridurla si studia prima la Propagazione degli errori Si hanno due casi: 1) Lettura di uno strumento (ad esempio il calibro) 2) Misura di una grandezza soggetta a fluttuazioni casuali (variabile aleatoria) Caso 1). Si abbiano due grandezze, A e B che vengono misurate con relativo errore ∆A e ∆B. Si abbia una terza grandezza G che sia funzione delle altre due e quindi sia una grandezza derivata. Lerrore su G è: G = F (A, B) ¯ ¯ ¯ ¯ ¯ ∂F (A, B) ¯ ¯ ∂F (A, B) ¯ ¯∆A + ¯ ¯∆B ∆G = ¯¯ ¯ ¯ ¯ ∂A ∂B Esempio: G=A+B ∆G = ∆A + ∆B G=kA ∆G = k ∆A G = k A2 ∆G = k 2 A ∆A Caso 2). Si abbiano due grandezze (aleatorie), A e B che vengono misurate con varianze ∆A2 e ∆B2. Si abbia una terza grandezza G che sia funzione delle altre due e quindi sia una grandezza derivata. La varianza ∆G2 di G è: G = F (A, B) ∆G = s µ ∂F (A, B) ∆A ∂A ¶2 µ ∂F (A, B) ∆B + ∂B ¶2 Un caso particolare di applicazione della propagazione degli errori è la media di più misure. Si abbia la grandezza fluttuante dellesempio precedente: k = kmis ± q kmis se kmis = 4, allora la radice della varianza é 2 Si effettuino N determinazioni di k e si calcoli la media e la varianza delle N determinazioni. hki = N X 1 N ki i=1 La varianza di hki é quindi 2 σhki N X 1 hki = 2 ki = N i=1 N La varianza della media risulta quindi minore della varianza di una singola determinazione. Infatti si ha: q 2 σhki = s k N Nellesempio numerico precedente, se N = 100 si ha: q 2 σhki = 0.2 invece di 2 La procedura di media riduce in modo considerevole la varianza e permette una stima accurata di determinate grandezze. Gli esempi legati a conteggi di oggetti sono i più comuni. Le relazioni che definiscono la propagazione degli errori partono dallassunto che essi siano piccoli e sono ricavate effettuando uno sviluppo in serie della funzione. Gli errori che vengono dedotti, sia dalle misure dirette, che per grandezze derivate, sono sempre delle stime. Spesso conviene anche indicare lerrore relativo. Esso è il rapporto fra lerrore (anche statistico) ed il valore della grandezza: ∆grel = ∆G/G Per presentare il risultato è importante anche luso corretto delle cifre significative. Ad esempio: 10.25 ± 0.15 1.03 ± 0.02 3289 ± 5 Esempio pratico. Si vuole determinare, per mezzo di un microscopio, il numero medio per unità volume, di microrganismi presenti in un campione disposto su di un vetrino. Essendo il numero troppo elevato NON si possono contare tutti. Si utilizza quindi un sistema di divisione del campo in vari quadrati che contengano un numero piccolo di microrganismi, tipicamente dellordine di 10. Campo di Brooklynella protozoo patogeno dei pesci Nei quattro quadrati vi sono, rispettivamente, 5, 7, 6, 8 microrganismi. La media risulta quindi 6.5. La distribuzione dovrebbe essere di Poisson e quindi la varianza della distribuzione è la radice quadrata di 6.5, cioè 2.5. Tuttavia linformazione cercata è il valor medio del numero di microrganismi per unità di volume, quindi lindeterminazione nella misura viene stimata come la varianza della media, cioè 1.3. Alcune semplici regole di derivazione f (x) = x f (x) = sin(x) n df = cos(x) dx df df(ax) =a dx dx df = nxn−1 dx f(x) = cos(x) df = −sin(x) dx dg df d[f(x)g(x)] = f(x) + g(x) dx dx dx d[1/f(x)] 1 df =− 2 dx f (x) dx ANALISI DIMENSIONALE Come ricavare delle informazioni dal solo confronto delle unità di misura delle grandezze in uso Come essere uno Scienziato o un Ingegnere I passi per comprendere e/o controllare un fenomeno (fisico) 1. Identificare le variabili (fisiche) rilevanti 2. Connettere queste variabili usando le leggi (fisiche) 3. Risolvere le equazioni risultanti A volte la procedura è molto complessa, ma si può ricorrere allanalisi dimensionale Le leggi devono essere indipendenti dalle unità di misura che sono arbitrarie: La natura non si preoccupa del fatto che si misurino le lunghezza in cm o pollici o anni luce! Controllare le unità: tutte le relazioni devono essere dimensionalmente corrette Analisi Dimensionale •La distanza ha dimensione L. •Larea ha dimensione L2. •Il volume ha dimensione L3. •Il tempo ha dimensione T. •La velocità ha dimensione L/T Perché non ci sono piccoli animali nelle regioni polari? Perdita di calore ∝ Superficie (L2) Massa ∝Volume (L3) Perdita di calore/Massa ∝ Superficie/Volume = L2/ L3 = L-1 Perdita di calore/Massa ∝ Area/Volume = L2/ L3 = L-1 Topo (L = 5 cm) 1/L = 1/(0.05 m) = 20 m-1 Orso polare (L = 2 m) 1/L = 1/(2 m) = 0.5 m-1 20 : 0.5 o 40 : 1 Quindi un animale delle dimensioni di un topo perde molto più calore che uno delle dimensioni di un orso Il Teorema di Pitagora Area totale = F(θ) c2 A1 =F(θ) b2 A2=F(θ) a2 Area = A1 +A2 F(θ) c2= F(θ) a2 +F(θ) b2 2 c= a A2 θ c A1 2 2 a +b Il teorema è quindi direttamente ottenibile da unanalisi dimensionale b θ