PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell’evento = (casi favorevoli) / (casi possibili) p(E) = n(E) / n(S) Nota: n(X) è il numero di elementi dell’insieme X, che viene anche detta: cardinalità di X Per poter applicare questa definizione, occorre una tecnica che ci permetta di calcolare il numero di elementi di un insieme in modo da stabilire quanti sono i casi possibili e quanti i casi favorevoli. Questa tecnica è il calcolo combinatorio. Le sue forme che vedremo sono: prodotto cartesiano, permutazioni, disposizioni, combinazioni, configurazioni. Il prodotto cartesiano Si definisce prodotto cartesiano fra due insiemi, l’insieme formato da tutte le coppie ordinate di elementi, presi rispettivamente dal primo e dal secondo insieme. Es. A = {1, 2, 3}, B = {u, v} C = AxB = { (1, u) (1, v), (2, u) (2, v), (3, u) (3, v) } Per quanto riguarda il numero di elementi, la regola generale è la seguente: n(AxB) = n(A) * n(B) Il prodotto cartesiano è utile quando si tratta di trovare i casi possibili per un esperimento multiplo (es. lancio di due dadi, lancio di tre dadi ecc.) Le permutazioni Le permutazioni degli elementi di un insieme X di cardinalità n sono tutte le possibili sequenze ordinate di lunghezza n che si possono costruire con gli elementi di X. Es X = {a, b, c} Permutazioni: (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a) Idea: devo riempire n caselle; alla prima ho n scelte; per ciascuna di queste scelte me ne rimangono (n-1); al passaggio successivo me ne rimangono (n-2)… Il numero di permutazioni di n elementi è dunque: n! = n*(n-1)*(n-2)… 2*1 Esempi sulle permutazioni Es X = {a, b, c} Permutazioni: (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a) 3! = 3*2*1 Nota: per convenzione, si assume che 0! = 1 Es1: In quanti modi diversi posso tenere cinque carte? Es2: In quanti modi diversi posso mettere in fila dieci alunni? Es3: scrivere e usare una funzione C che calcoli il fattoriale; trovare il valore per cui bisogna passare da int a double. Le disposizioni Le disposizioni degli elementi di un insieme X di cardinalità n su k caselle sono tutte le possibili sequenze ordinate di lunghezza k che si possono costruire con gli n elementi di X. Es X = {a, b, c, d} k=2 Disposizioni: (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c) Idea: devo riempire k caselle; alla prima ho n scelte; per ciascuna di queste scelte me ne rimangono (n-1); al passaggio successivo me ne rimangono (n-2) e mi fermo dopo k passi, quando mi restano (n-k+1) scelte. Il numero di disposizioni di n elementi su k caselle: Dn, k = n*(n-1)*(n-2)…(n-k+1) = (n!) / (n-k)! Esempi sulle disposizioni Es X = {a, b, c, d} k=2 Disposizioni: (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c) D4, 2 = 4*3 = 12 Nota: le permutazioni si possono vedere come disposizioni speciali nelle quali k=n Es1: In quanti modi diversi posso interrogare tre persone in una classe di dieci alunni? Es2: Quante parole di 3 lettere distinte posso formare usando le cinque vocali e le consonanti {r, s} ? Es3: scrivere e usare una funzione C che calcoli le disposizioni. Le combinazioni Le combinazioni degli elementi di un insieme X di cardinalità n su k caselle sono tutte le possibili sequenze non ordinate di lunghezza k che si possono costruire con gli n elementi di X. Es X = {a, b, c, d} k=2 Combinazioni: (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c) Idea: le combinazioni si ottengono dalle disposizioni dividendo per le possibili permutazioni su k caselle (cioè togliendo le coppie sottolineate in rosso). Il numero di combinazioni di n elementi su k caselle: Cn, k = [n*(n-1)*(n-2)…(n-k+1)] / k! = (n!) / [(n-k)! * k!] Esempi sulle combinazioni Es X = {a, b, c, d} k=2 Disposizioni: (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c) C4, 2 = (4*3)/(2!) = 12/2 = 6 Es1: Quante diverse terne di alunni posso interrogare in una classe di dieci persone? Es2: Quanti diversi gruppi di 5 carte posso ottenere da un mazzo di 40 carte? Es3: scrivere e usare una funzione C che calcoli le combinazioni. Le configurazioni Le “configurazioni” degli elementi di un insieme X di cardinalità n su k caselle sono tutte le possibili sequenze ordinate con ripetizioni, di lunghezza k, che si possono costruire con gli n elementi di X. Idea: è il prodotto cartesiano n*n*n… ripetuto k volte È la regola che abbiamo usato tante volte a proposito del sistema binario. Il numero di configurazioni di n elementi su k caselle è: n elevato a k Es. Trovare quante parole di 3 lettere si possono scrivere usando un alfabeto di 21 lettere. Probabilità e calcolo combinatorio Es1: Si prendono a caso 3 lampadine da una scatola da 15, dove ve ne sono 5 difettose. Calcolare la probabilità che nessuna delle lampadine prese sia difettosa. Es2: Si estraggono 2 carte da un mazzo di 52. Calcolare la probabilità che siano entrambe di picche. Es3: In una classe di 10 maschi e 7 femmine si estraggono 4 interrogati. Calcolare la probabilità che siano interrogati 4 maschi.