Sistemi di equazioni di I grado fratte

Sistemi di equazioni di I grado fratte
Algebra
1
2
3
4
5
9 2
⎧ + =4
π‘₯π‘₯ 𝑦𝑦
⎨6 = 2 + 3
βŽ©π‘¦π‘¦
π‘₯π‘₯
4 5
+ =2
π‘₯π‘₯ 𝑦𝑦
⎨10 − 4 = 1
⎩ 𝑦𝑦 π‘₯π‘₯
⎧
13 3
+ =0
4π‘₯π‘₯ 𝑦𝑦
⎨ 3 +9= 1+ 5
⎩2𝑦𝑦
2 2π‘₯π‘₯
3
π‘₯π‘₯ = − ; 𝑦𝑦 = −3
2
8 2
=
π‘₯π‘₯ 𝑦𝑦
𝑦𝑦 + 4
⎨
⎩1 − π‘₯π‘₯ − 2 = 0
7
1
; 𝑦𝑦 = 1
4
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1 1 3
⎧ + =
π‘₯π‘₯ 𝑦𝑦 𝑦𝑦
3
⎨
⎩π‘₯π‘₯ − 2 = 𝑦𝑦
⎧−
v 3.0
π‘₯π‘₯ =
𝑦𝑦 + 1
=2
π‘₯π‘₯
−
3
οΏ½
𝑦𝑦 + 1
π‘₯π‘₯ − 3 =
2
6
9
π‘₯π‘₯ = 4; 𝑦𝑦 = 5
⎧10 −
⎧
8
π‘₯π‘₯ = 3; 𝑦𝑦 = 2
π‘₯π‘₯ = 8; 𝑦𝑦 = 2
π‘₯π‘₯ + 4
=2
𝑦𝑦 + 4
⎨ 𝑦𝑦 + 5
⎩ π‘₯π‘₯ + 3 = −1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
8π‘₯π‘₯ + 4𝑦𝑦 + 7
13
=−
4π‘₯π‘₯ − 9𝑦𝑦 + 1
2
7𝑦𝑦
−
2π‘₯π‘₯
+
6
3
⎨
=
⎩ 3𝑦𝑦 + 4 − 5π‘₯π‘₯ 11
⎧
π‘₯π‘₯ = −2; 𝑦𝑦 = −1
8(2𝑦𝑦 − 3π‘₯π‘₯ + 7) = 7(π‘₯π‘₯ + 3𝑦𝑦 − 9)
οΏ½ π‘₯π‘₯ − 1 1 9 − 3π‘₯π‘₯
= −
1 + 𝑦𝑦 2 𝑦𝑦 + 1
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
© 2016 - www.matematika.it
1 di 3
Sistemi di equazioni di I grado fratte
Algebra
10
11
12
13
14
15
16
17
18
v 3.0
π‘₯π‘₯ + 1 1 − 2𝑦𝑦
𝑦𝑦 − π‘₯π‘₯
−
=
6 − 4𝑦𝑦 2𝑦𝑦 − 3 12 − 8𝑦𝑦
4
⎨
𝑦𝑦
=
+ π‘₯π‘₯
⎩
3
⎧
π‘₯π‘₯ = −1; 𝑦𝑦 =
7 − π‘₯π‘₯ 2 + 3𝑦𝑦
𝑦𝑦 − 2
=
1
−
π‘₯π‘₯π‘₯π‘₯ − π‘₯π‘₯ 2
𝑦𝑦 − π‘₯π‘₯
2(4π‘₯π‘₯ + 𝑦𝑦)
⎨ 6 + 2π‘₯π‘₯
=
⎩ 2π‘₯π‘₯ − 1 1 − 4π‘₯π‘₯ + 4π‘₯π‘₯ 2
⎧
1
3
2
π‘₯π‘₯ = − ; 𝑦𝑦 = −
3
2(1 + 𝑦𝑦) = 5 − π‘₯π‘₯ + 2𝑦𝑦
οΏ½1 + 2π‘₯π‘₯ + 3𝑦𝑦 3π‘₯π‘₯ + 2𝑦𝑦 + 1
=
2π‘₯π‘₯ + 3𝑦𝑦
3π‘₯π‘₯ + 2𝑦𝑦
π‘₯π‘₯ = 3; y=3
2(π‘₯π‘₯ + 𝑦𝑦) = 3
οΏ½1 𝑦𝑦 + 1 2 𝑦𝑦 − 1 9
4+
4
2−5
=0
π‘₯π‘₯
π‘₯π‘₯
10
1
π‘₯π‘₯ = − ; 𝑦𝑦 = 2
2
2
2
⎧ 5𝑦𝑦 − 12π‘₯π‘₯ − 12(π‘₯π‘₯ − 2𝑦𝑦) = 5(6π‘₯π‘₯ + 4𝑦𝑦 − 16) − 𝑦𝑦 − 42
βŽͺ 7 − 𝑦𝑦
7 + 𝑦𝑦
𝑦𝑦 2 − 49
⎨ π‘₯π‘₯ + 2 𝑦𝑦 − 1 (𝑦𝑦 − π‘₯π‘₯)(π‘₯π‘₯ + 𝑦𝑦) − 3(π‘₯π‘₯ + 𝑦𝑦) − 4
βŽͺ− 𝑦𝑦 − 1 + π‘₯π‘₯ + 2 =
π‘₯π‘₯π‘₯π‘₯ − π‘₯π‘₯ + 2𝑦𝑦 − 2
⎩
π‘₯π‘₯ − 3𝑦𝑦
5
⎧
= −
2π‘₯π‘₯ + 𝑦𝑦
4
⎨ π‘₯π‘₯ + 5 = 6
⎩ 𝑦𝑦 − 1
9
π‘₯π‘₯ = 5; 𝑦𝑦 = 4
π‘₯π‘₯ = 1; 𝑦𝑦 = 2
π‘₯π‘₯ 2
26
+ = 5 − 𝑦𝑦
𝑦𝑦 3
3
⎨π‘₯π‘₯ + 𝑦𝑦 + 1 = 11
𝑦𝑦 + 1 12
⎩ 2
⎧
π‘₯π‘₯ = 0; 𝑦𝑦 =
12π‘₯π‘₯ − 7 5(𝑦𝑦 + 1)
35
+
=
π‘₯π‘₯ + 2
6
οΏ½ 2
1
1
8
π‘₯π‘₯ + 𝑦𝑦 =
5
3
15
π‘₯π‘₯ + 𝑦𝑦
1
= −
⎧
2
5
5π‘₯π‘₯
+
3𝑦𝑦
⎨
=0
⎩2π‘₯π‘₯ + 7𝑦𝑦
25
1
2
π‘₯π‘₯ = 1; 𝑦𝑦 = 1
π‘₯π‘₯ = −
π‘₯π‘₯ =
© 2016 - www.matematika.it
17
18
; 𝑦𝑦 =
13
6
3
; 𝑦𝑦 = −1
5
2 di 3
Algebra
19
20
21
22
23
24
v 3.0
Sistemi di equazioni di I grado fratte
π‘₯π‘₯ − 7
1
+7=
𝑦𝑦
π‘₯π‘₯
⎨1 + 1 = π‘₯π‘₯
⎩π‘₯π‘₯ 𝑦𝑦 + 1 2
⎧
π‘₯π‘₯ = −1; 𝑦𝑦 = 1
π‘₯π‘₯ + 𝑦𝑦 − 3
1
=−
⎧
π‘₯π‘₯ + 𝑦𝑦
2
⎨1 + 3 = 4
⎩ π‘₯π‘₯ 𝑦𝑦
1
3
; 𝑦𝑦 =
2
2
π‘₯π‘₯ = 1; 𝑦𝑦 = 1
π‘₯π‘₯ =
π‘₯π‘₯ − 1 π‘₯π‘₯
1
+ =−
𝑦𝑦 + 1 𝑦𝑦
3
⎨5π‘₯π‘₯ + 7𝑦𝑦 + 𝑦𝑦 = −5
⎩ π‘₯π‘₯ − 𝑦𝑦
⎧
π‘₯π‘₯ = 0; 𝑦𝑦 = 2
3π‘₯π‘₯
π‘₯π‘₯ + 𝑦𝑦
9
+
=−
οΏ½ 𝑦𝑦 − 3 2π‘₯π‘₯ − 𝑦𝑦
10
−π‘₯π‘₯ + 2𝑦𝑦 + 7 = 0
π‘₯π‘₯ = 1; 𝑦𝑦 = −3
91
784
π‘₯π‘₯ =
; 𝑦𝑦 = −
237
237
π‘₯π‘₯ =
π‘₯π‘₯ + 𝑦𝑦 − 5
59
=−
π‘₯π‘₯ − 𝑦𝑦
4
⎨ 3π‘₯π‘₯ − 5𝑦𝑦 = 0
⎩6π‘₯π‘₯ + 10𝑦𝑦 − 1
⎧
π‘₯π‘₯ =
5π‘₯π‘₯ − 𝑦𝑦
1
⎧
= π‘₯π‘₯ −
11π‘₯π‘₯ + 7𝑦𝑦
7
⎨ 3π‘₯π‘₯ − 5𝑦𝑦
= −1
⎩
5
117
133
; 𝑦𝑦 = −
13
7
2
2
; 𝑦𝑦 =
3
5
π‘₯π‘₯ = 0; 𝑦𝑦 = 1
523
15
; 𝑦𝑦 =
π‘₯π‘₯ = −
532
532
© 2016 - www.matematika.it
3 di 3