Equazioni di grado superiore al secondo Algebra 1 2 3 4 5 6 π₯π₯ 3 + 27 = 0 32π₯π₯ − 1 = 0 64π₯π₯ 6 + 1 = 0 13 14 15 16 17 18 19 20 v 3.0 2√3 3 ππππππππππππππ π π π π π π ππππππ ππππππππππ ± 36π₯π₯ 2 − 81 = 0 ± 3 2 1 οΏ½ ; 2 5 5 π₯π₯ 4 − 4 = 0 12 π π π π π π π π π π π π π π π π π π ππππππ ππππππππππ 27π₯π₯ 6 − 64 = 0 8 11 1 π₯π₯ = ; 2 ππππππππππππππ π π π π π π ππππππ ππππππππππ 5 4π₯π₯ − 2 = 0 10 1 − ; ππππππ π π π π π π ππππππ ππππππππππ 3 27π₯π₯ 3 + 1 = 0 7 9 −3; ππππππ π π π π π π ππππππ ππππππππππ ππππππππππππππ π π π π π π ππππππ ππππππππππ ±√2 due π π π π π π non reali π₯π₯ 4 − 16π₯π₯ 2 = 0 ±4; 0 ππππππππππππ (π₯π₯ 2 − 1)(π₯π₯ 2 − 9) = 0 ±1; ±3 π₯π₯ 3 − 3π₯π₯ 2 − 3π₯π₯ + 9 = 0 ±√3; 3 3±√21 π₯π₯ 5 − 3π₯π₯ 4 − 3π₯π₯ 3 = 0 2 ; 0 π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘ π₯π₯ 3 + 3π₯π₯ 2 + 3π₯π₯ + 1 = 0 −1 π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘ 3π₯π₯ 3 − 5π₯π₯ 2 + 2π₯π₯ = 0 0; 1; π₯π₯ 3 + 3π₯π₯ 2 − π₯π₯ − 3 = 0 ±1; −3 2π₯π₯ 4 − 5π₯π₯ 3 − 18π₯π₯ 2 + 45π₯π₯ = 0 ±3; 0; π₯π₯ 3 − 9π₯π₯ 2 − 4π₯π₯ + 36 = 0 ±2; 9 π₯π₯ 4 − 5π₯π₯ 3 + 2π₯π₯ 2 + 20π₯π₯ − 24 = 0 5 2 −2; 3; 2 ππππππππππππ 1 2 1; − ; 2 3 6π₯π₯ 3 − 7π₯π₯ 2 − π₯π₯ + 2 = 0 π₯π₯ 3 − 2π₯π₯ + 1 = 0 2 3 1; © 2016 - www.matematika.it −1 ± √5 2 1 di 3 Equazioni di grado superiore al secondo Algebra 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 v 3.0 1 ± √13 6 3π₯π₯ 3 − 4π₯π₯ 2 + 1 = 0 1; 6π₯π₯ 4 − 13π₯π₯ 3 − 3π₯π₯ 2 + 12π₯π₯ − 4 = 0 −1; 2; π₯π₯ 3 − 2π₯π₯ − 21 = 0 3; ππππππ π π π π π π ππππππ ππππππππππ 1 2 ; 2 3 1 1; − ; −2; 3 2 2π₯π₯ 4 − 3π₯π₯ 3 − 12π₯π₯ 2 + 7π₯π₯ + 6 = 0 8π₯π₯ 4 − 12π₯π₯ 3 + 6π₯π₯ 2 − π₯π₯ = 0 0; π₯π₯ 4 − π₯π₯ 3 − π₯π₯ 2 − π₯π₯ − 2 = 0 1 π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘ 2 −1; 2 π₯π₯ 4 − 2π₯π₯ 3 − 7π₯π₯ 2 + 20π₯π₯ − 12 = 0 −3; 1; 2 ππππππππππππ π₯π₯ 3 − 6π₯π₯ 2 + 11π₯π₯ − 6 = 0 1; 2; 3 8π₯π₯ − 7π₯π₯ − 1 = 0 1 − ; 1; 2 ππππππππππππππ π π π π π π ππππππ ππππππππππ 5π₯π₯ 3 − 21π₯π₯ 2 − 21π₯π₯ + 5 = 0 −1; 6 3 ±√2; ±1; ππππππππππππππ π π π π π π ππππππ ππππππππππ π₯π₯ 8 − 5π₯π₯ 4 + 4 = 0 1 ; 5 5 1 1 −2; − ; ; 3 2 3 6π₯π₯ 4 − 5π₯π₯ 3 − 38π₯π₯ 2 − 5π₯π₯ + 6 = 0 3 2 − ;− ; 1 2 3 6π₯π₯ 3 + 7π₯π₯ 2 − 7π₯π₯ − 6 = 0 3π₯π₯ 4 − 10π₯π₯ 3 + 10π₯π₯ − 3 = 0 −1; (π₯π₯ 2 − 3)6 + 13(π₯π₯ 2 − 3)3 + 40 = 0 2(π₯π₯ 2 − 1)(π₯π₯ 2 + 3) + 7π₯π₯ = 7π₯π₯ 3 1 ; 1; 3 3 3 ±1; ±οΏ½3 − √5 ; ππππππππ π π π π π π ππππππ ππππππππππ ±1; 2; 3 2 (π₯π₯ 2 − 1)2 − π₯π₯ 2 + 2π₯π₯ − 1 = 0 0; −2; 1 ππππππππππππ 4 4π₯π₯ 3 + 3 − =8 π₯π₯ 3 + 1 π₯π₯ 6 − 1 ±οΏ½ π₯π₯ 2 − 3π₯π₯ π₯π₯ − 2 − =0 2π₯π₯ π₯π₯ − 1 3 ± √2 π₯π₯ 4 − 25π₯π₯ 2 + 144 = 0 1 2 ±3; ±4 © 2016 - www.matematika.it 2 di 3 Algebra 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 v 3.0 Equazioni di grado superiore al secondo 4π₯π₯ 4 − 12π₯π₯ 2 − 16 = 0 ±2; ππππππ π π π π π π ππππππ ππππππππππ π₯π₯ 4 − 10π₯π₯ 2 + 9 = 0 ±1; ±3 9π₯π₯ 4 − 8π₯π₯ 2 − 1 = 0 ±1; ππππππ π π π π π π ππππππ ππππππππππ 1 1 π₯π₯ 4 − 7π₯π₯ 2 + 1 = 0 ± οΏ½3 + √5οΏ½; ± οΏ½√5 − 3οΏ½ 4π₯π₯ 4 − 13π₯π₯ 2 + 9 = 0 ±1; ± 2 π₯π₯ 4 − 5π₯π₯ 2 + 4 = 0 ±1; ±2 4π₯π₯ 4 − 15π₯π₯ 2 − 4 = 0 3 2 ±2; due π π π π π π ππππππ ππππππππππ 1 3 2 − π₯π₯ + π₯π₯ 4 = 0 2 2 1 ±οΏ½ ; ±1 2 1 3 ± ;± 2 2 16π₯π₯ 4 − 40π₯π₯ 2 + 9 = 0 π₯π₯ 4 − 13π₯π₯ 2 + 36 = 0 ±2; ±3 π₯π₯ 4 + 4π₯π₯ 2 − 5 = 0 ±1; due π π π π π π ππππππ ππππππππππ 3 ± ; ±1 5 25π₯π₯ 4 − 34π₯π₯ 2 + 9 = 0 π₯π₯ 4 − 11π₯π₯ 2 + 18 = 0 π₯π₯ 4 + (2√2 − 8)π₯π₯ 2 + 15 − 10√2 = 0 π₯π₯ 4 − 5π₯π₯ 2 − 14 = 0 ±√2; ±3 ±οΏ½√2 − 1οΏ½ ; ±√5 ±√7; due π π π π π π ππππππ ππππππππππ 1 ± ; ±2 2 4π₯π₯ 4 − 17π₯π₯ 2 + 4 = 0 π₯π₯ 4 − 17π₯π₯ 2 + 16 = 0 ±1; ±4 4π₯π₯ 4 − 41π₯π₯ 2 + 45 = 0 4π₯π₯ 4 + 11π₯π₯ 2 − 45 = 0 π₯π₯ 4 − 2 ± √5 ; ±3 2 ± 1 √3 − 1 ; ± 2 2 ± 5 − 2√3 2 4 − 2√3 π₯π₯ + =0 4 16 (π₯π₯ 2 − 2)2 − 4π₯π₯ 2 + 11 = 0 3 2 ±√3 ; ±√5 © 2016 - www.matematika.it 3 di 3