Algebra 1 2 3 4 5 6 7 8 Sistemi di equazioni di secondo grado fratte π₯π₯ + 2π¦π¦ =2 οΏ½ π₯π₯ β 1 4(π₯π₯ β π¦π¦)2 = 22 + π₯π₯ 1 οΏ½3; οΏ½ ; (β6; β4) 2 3π₯π₯ β π¦π¦ = 2 1 + 2π¦π¦ β 4 οΏ½ 3 = π₯π₯ β 1 1 β π¦π¦ 1 οΏ½β ; β3οΏ½ 3 2π₯π₯ β 2π¦π¦ = 3 3 8 οΏ½ 3 β = π₯π₯ β 1 2 β π₯π₯ π¦π¦ 1 5 οΏ½ ; β1οΏ½ ; οΏ½ ; 1οΏ½ 2 2 2 β§ π₯π₯ β 3π₯π₯ + 2 = π¦π¦ + 2 βͺ π₯π₯ β π¦π¦ β¨ 2π₯π₯ + 3π¦π¦ βͺπ₯π₯ + 5π¦π¦ + 5 = 1 β© (1; β2); οΏ½ 1 π₯π₯ + π¦π¦ 3 + = β§ π₯π₯ + π¦π¦ 2 2 β¨1 + 1 = 1 β© π₯π₯ π¦π¦ π₯π₯π₯π₯ 13 1 ;β οΏ½ 3 3 ππππππππππππππππππππππππππ 3 5π₯π₯ + 2π¦π¦ β 4 = 1+ οΏ½ π₯π₯ β 1 1 β π¦π¦ 3π₯π₯ β π¦π¦ = 2 1 7 οΏ½β ; β οΏ½ 2 2 1 1 2 β§ β = π¦π¦ π₯π₯ π₯π₯π₯π₯ π₯π₯ 2 β¨ = 2 β©π¦π¦ + π¦π¦ + 4 π₯π₯ + 1 (3; 1); (4; 2) 1 π₯π₯ + π¦π¦ 3 + = β§ π₯π₯ + π¦π¦ 2 2 β¨1 + 1 = 1 β© π₯π₯ π¦π¦ π₯π₯π₯π₯ ππππππππππππππππππππππππππ 9 2 β§π₯π₯ β π₯π₯ = 4 β π₯π₯ βͺ π¦π¦ (2; 1) 10 π₯π₯ + π¦π¦ β§ βͺ π₯π₯ β π¦π¦ = 2 ππππππππππππππππππππππππππ v 3.0 β¨ π₯π₯ + 2π¦π¦ βͺ π₯π₯ β π¦π¦ = 4 β© 2 3 β¨ π₯π₯ βͺπ₯π₯ 2 + π₯π₯π₯π₯ = 4 β© © 2016 - www.matematika.it 1 di 3 Algebra Sistemi di equazioni di secondo grado fratte 11 β§1 + 2 β π₯π₯ + π¦π¦ = 1 βͺπ₯π₯ π¦π¦ π₯π₯π₯π₯ 12 β§1 + 13 14 15 16 17 18 19 20 v 3.0 1 οΏ½ ; 1οΏ½ ; (10; 1) 2 2 β¨(π₯π₯ β 2) + π¦π¦ 13 βͺ(π¦π¦ β 1)2 + π₯π₯ = 2 β© π₯π₯π₯π₯ 2 =β π₯π₯ + 2π¦π¦ π₯π₯ + 2π¦π¦ 10 1 β¨7 π₯π₯ β π¦π¦ = β©2 3 2 9 17 οΏ½β2; β οΏ½ ; οΏ½β ; β 1οΏ½ 4 21 2 2 β§π₯π₯ β π¦π¦ = β 8 βͺ π₯π₯π₯π₯ 3 ππππππππππππππππππππππππππ β¨ π₯π₯ + π¦π¦ = 0,4 βͺ π₯π₯ β 2π¦π¦ β© π₯π₯ π¦π¦ 9 + = 2 οΏ½π₯π₯ + π¦π¦ π₯π₯ + 2π¦π¦ π₯π₯ + 3π₯π₯π₯π₯ + 2π¦π¦ 2 (π₯π₯ β 2)2 β (π¦π¦ β 1)2 = (π₯π₯ + π¦π¦)(π₯π₯ β π¦π¦) β 3 π₯π₯(1 + π₯π₯) β 4 = π₯π₯ 2 β 4 β π¦π¦ οΏ½5π₯π₯(5π¦π¦ + 3) =1 3(5π₯π₯ β 3) (0; β3); οΏ½ 21 9 ; οΏ½ 11 11 3 3 οΏ½β ; οΏ½ 5 5 1 π₯π₯ + π¦π¦ 3 + = β§ π₯π₯ + π¦π¦ 2 2 β¨1 + 1 = 1 β© π₯π₯ π¦π¦ π₯π₯π₯π₯ ππππππππππππππππππππππππππ 2(π₯π₯ β 1) = 3(3 β π¦π¦) β π₯π₯ οΏ½π₯π₯(π¦π¦ + 2) =2 π₯π₯ + 1 2 2 οΏ½ ; 3οΏ½ ; οΏ½3; οΏ½ 3 3 1 οΏ½ β 1οΏ½ (π₯π₯ β π¦π¦ + 1) = 0 οΏ½ π₯π₯ + π¦π¦ (π₯π₯ β 2)(π₯π₯ + π¦π¦ β 4) = 0 3 5 (2; β1); (2; 3); οΏ½ ; οΏ½ 2 2 β§6π₯π₯(π₯π₯ β 1) + 7 = 6 βͺ π₯π₯ 2 + π¦π¦ 1 2 2 1 οΏ½ ; οΏ½; οΏ½ ; οΏ½ 2 3 3 2 β¨3π₯π₯ β π¦π¦ = β π¦π¦ β 1 βͺ 1 + π¦π¦ π¦π¦ β© π₯π₯ + π¦π¦ = 7 7 οΏ½1 1 + =β π₯π₯ π¦π¦ 30 (β3; 10); (10; β3) © 2016 - www.matematika.it 2 di 3 Sistemi di equazioni di secondo grado fratte Algebra 21 22 23 24 25 26 27 28 29 30 31 32 v 3.0 4(1 β π₯π₯ β π¦π¦) β π₯π₯ 2 = π¦π¦ β π₯π₯(π₯π₯ β 1) οΏ½ π¦π¦ 2 + 4π₯π₯π₯π₯ =1 π¦π¦ 2 β π₯π₯π₯π₯ β 1 1 1 οΏ½1; β οΏ½ ; οΏ½β ; 1οΏ½ 5 5 1 1 + =5 οΏ½π₯π₯ π¦π¦ 6π₯π₯π₯π₯ = 1 1 1 1 1 οΏ½ ; οΏ½; οΏ½ ; οΏ½ 2 3 3 2 π₯π₯ + π¦π¦ 2 = οΏ½ π₯π₯π₯π₯ β 1 π₯π₯ + π¦π¦ β 3 (π₯π₯ β π¦π¦)(2π₯π₯ β 2π¦π¦ + 1) = 2(12 β 2π₯π₯π₯π₯ β π¦π¦) (3; 1); (1; 3) 1 1 1 + + = 11 οΏ½π₯π₯ π¦π¦ π₯π₯π₯π₯ 6π₯π₯ + 6π¦π¦ = 5 7 π₯π₯π₯π₯ β 1 = οΏ½ π₯π₯π₯π₯ 6 π₯π₯ + π¦π¦ = 5 2β (2; 3); (3; 2) 11 1 1 β β =1 π₯π₯π₯π₯ π₯π₯ π¦π¦ β¨π₯π₯(1 β π¦π¦) = 30 β© π₯π₯π₯π₯ β§ (2; 3); (3; 2); (1; 5); (5; 1) 3(2 β π¦π¦ β π₯π₯ 2 ) + 1 = 3π₯π₯ 1 β π₯π₯ β¨ 9(π₯π₯ + 2)(π₯π₯ β 2) = 1 β©(1 + 3π¦π¦)(1 β 3π¦π¦) β§ 1 1 οΏ½ ; 2οΏ½ ; οΏ½2; οΏ½ 3 3 π₯π₯ + π¦π¦ = 8 312 1 1 οΏ½π₯π₯ + π¦π¦ +1= οΏ½ β οΏ½ π₯π₯π₯π₯ π₯π₯ 2π¦π¦ 3π¦π¦ 2 1 1 1 1 οΏ½ ; οΏ½; οΏ½ ; οΏ½ 2 3 3 2 2 (2; 6); (6; 2) 3(π¦π¦ + 1) + π₯π₯(π¦π¦ + 3) = 0 οΏ½ (3π₯π₯ + 5)(π¦π¦ + 1) = β2 π₯π₯ + 4 (3; β2); (β2; 3) π₯π₯ + π¦π¦ = 9 οΏ½π₯π₯ 2 + π₯π₯π₯π₯ + π¦π¦ 2 67 = π₯π₯ 2 β π₯π₯π₯π₯ + π¦π¦ 2 39 (7; 2); (2; 7) π₯π₯(1 β π₯π₯) + π¦π¦(1 + 2π₯π₯) = 3 β π₯π₯ 2 οΏ½ 8π₯π₯(2 β 3π¦π¦) + 3 = 16 1 β π¦π¦ 5 1 1 5 οΏ½ ; οΏ½; οΏ½ ; οΏ½ 4 2 2 4 π₯π₯π₯π₯ + π¦π¦ 1 = π₯π₯ β οΏ½ π₯π₯ π₯π₯ π¦π¦(π₯π₯π₯π₯ β π¦π¦) = 0 (β1; 0); (0; β1) © 2016 - www.matematika.it 3 di 3