Sistemi di equazioni di I grado letterali con discussione Algebra 1 2 οΏ½ οΏ½ (ππ − 4)π₯π₯ − 2π¦π¦ = 3 (ππ − 3)π₯π₯ − π¦π¦ = ππ − 2 (ππ − 2)π₯π₯ + 3π¦π¦ = 6 οΏ½ (ππ − 1)π₯π₯ + 4π¦π¦ = 8 4 οΏ½ππ2 6 7 8 9 10 11 v 3.0 οΏ½ 1 οΏ½ (0; 2) 1 C. E. ππ ≠ 0, ππ ≠ 0 π₯π₯ − ππ π¦π¦ = 0 2ππ 2ππ οΏ½ 2 ; 2 οΏ½ ππ + 4 ππ + 4 ππ C. E. ππ ≠ 0, ππ ≠ 0 se ππ = ±1 impossibile se ππ ≠ ±1 determinato 1 1 π₯π₯ + π¦π¦ = 0 ππ οΏ½ππ 1 π₯π₯ + ππππ = 1 ππ ππ ππ οΏ½ ; οΏ½ 1 − ππ 2 ππ 2 − 1 se ππ = 0 impossibile se ππ ≠ 0 impossibile se ππ = 0 indeterminato ππππ + ππππ = 3 οΏ½ 2 ππ π₯π₯ + ππππππ = 2ππ 1 1 π₯π₯ − π¦π¦ = 0 ππ οΏ½ππ 1 2 π₯π₯ − π¦π¦ = 1 ππ ππ 1 1 π₯π₯ − π¦π¦ = 5 ππ οΏ½ππ 1 2 π₯π₯ − π¦π¦ = 0 ππ ππ οΏ½ 3(ππ + 2) 2ππ − 11 ; οΏ½ 2(ππ − 1) 2(ππ − 1) se ππ = 5 indeterminato se ππ ≠ 5 determinato π₯π₯ + 2 π¦π¦ = 1 ππ οΏ½ 2ππ − 7 ππ2 − 9ππ + 17 ; οΏ½ ππ − 2 ππ − 2 se ππ = 1 impossibile se ππ ≠ 1 determinato π₯π₯ + ππππ = 3 − ππ 2π₯π₯ + 2π¦π¦ = −5 3 5 se ππ = 2 impossibile se ππ ≠ 2 determinato C. E. ππ ≠ 0, ππ ≠ 0 (−ππ; −ππ) C. E. ππ ≠ 0, ππ ≠ 0 (10ππ; 5ππ) 3π₯π₯ − 6π¦π¦ = ππ 2π₯π₯ − 4π¦π¦ = ππ + 1 se ππ = −3 indeterminato se ππ ≠ −3 ππmpossibile se ππ = 4, ππ = 1/3 indeterminato se ππ = 4, ππ ≠ 1/3 impossibile se ππ ≠ 4 determinato 6ππ + 6 − 2ππ 1 − 3ππ οΏ½ ; οΏ½ 12 − 3ππ 12 − 3ππ 2π₯π₯ + ππππ = ππ + 1 3π₯π₯ + 6π¦π¦ = 2 se ππ ≠ 0, impossibile se ππ = 5ππ/3 con ππ = 0 indeterminato ππππ + π¦π¦ = 3 οΏ½ 2 ππ π₯π₯ + ππππ = 5ππ © 2016 - www.matematika.it 1 di 7 Algebra Sistemi di equazioni di I grado letterali con discussione 12 (ππ − 2)π₯π₯ − 3π¦π¦ = 3 οΏ½ (2ππ + 5)π₯π₯ − 2π¦π¦ = −1 13 (ππ + 2)π₯π₯ + 3π¦π¦ = 1 οΏ½ (ππ − 3)π₯π₯ + 2π¦π¦ = 5 14 15 οΏ½ οΏ½ se ππ = −19/4 impossibile se ππ ≠ −19/4 determinato 9 13 + 7ππ οΏ½− ;− οΏ½ 19 + 4ππ 19 + 4ππ se ππ = 13 impossibile se ππ ≠ 13 determinato 13 4ππ + 13 οΏ½ ; οΏ½ ππ − 13 13 − ππ π₯π₯ + π¦π¦ = ππ + 1 π₯π₯ − π¦π¦ = 1 − ππ sistema determinato ∀ ππ (1; ππ) se ππ = 0 ππ = 0 indeterminato se ππ = 0 ππ ≠ 0 impossibile se ππ ≠ 0 determinato π₯π₯ + ππππ = ππ − 1 π₯π₯ − ππππ = ππ2 − 1 οΏ½ ππ + ππ2 − 2 ππ − ππ2 ; οΏ½ 2 2ππ 1 16 17 18 19 v 3.0 1 οΏ½ οΏ½ 6 se ππ = 2ππ−1 ππ = 11 indeterminato (ππ + 1)π₯π₯ + ππππ = 6 οΏ½ (ππ − 1)π₯π₯ − (ππ − 1)π¦π¦ = 5 οΏ½ 6 se ππ = 2ππ−1 ππ ≠ 11 impossibile 1 se ππ ≠ 2ππ−1 determinato 6 − 11ππ 11 − ππ οΏ½ ; οΏ½ ππ − 2ππππ + 1 ππ − 2ππππ + 1 se ππ = −4 ππ = 1 indeterminato se ππ = −4 ππ ≠ 1 impossibile se ππ ≠ −4 determinato π₯π₯ − (ππ + 2)π¦π¦ = 2 2π₯π₯ + 4π¦π¦ = 4ππ 4 + 2ππππ + 4ππ 2ππ − 2 ; οΏ½ ππ + 4 ππ + 4 οΏ½ se ππ = − se ππ = − (ππ + 3)π₯π₯ − 5ππππ = 6 2π₯π₯ + 4π¦π¦ = 1 se ππ ≠ − 5ππ+6 2 5ππ+6 2 5ππ+6 2 ππ = − ππ ≠ − 24 5 24 5 indeterminato impossibile determinato 24 + 5ππ ππ − 9 οΏ½ ; οΏ½ 4ππ + 12 + 10ππ 4ππ + 12 + 10ππ se ππ = 2 impossibile se ππ ≠ 2 determinato 4π₯π₯ + π¦π¦ = ππ (10 − ππ)π₯π₯ + 2π¦π¦ = 10 οΏ½ © 2016 - www.matematika.it 2ππ − 10 ππ 2 − 10ππ + 40 ; οΏ½ ππ − 2 ππ − 2 2 di 7 Algebra 20 21 22 οΏ½ Sistemi di equazioni di I grado letterali con discussione (ππ + 1)π₯π₯ + ππππ = 5 (ππ2 − 1)π₯π₯ + ππ(ππ − 1)π¦π¦ = 3ππ − 5 se ππ = 0 indeterminato se ππ ≠ 0 impossibile se ππ = 6/7 impossibile se ππ ≠ 6/7 determinato 3ππππ + (ππ + 3)π¦π¦ = 1 οΏ½ (3ππ − 2)π₯π₯ + ππππ = 3 οΏ½ 2ππ + 9 6ππ + 2 οΏ½ ; οΏ½ 7ππ − 6 6 − 7ππ π₯π₯ + π¦π¦ = ππ + ππ ππππ + ππ(π¦π¦ − 2ππ) = (ππ − ππ)2 π π π π ππ ≠ ππ: π₯π₯ = ππ − 2ππ, π¦π¦ = 3ππ π π π π ππ = ππ: ππππππππππππππππππππππππππ 23 π₯π₯ + π¦π¦ = ππ − 1 οΏ½ ππππ + π¦π¦ = 0 (ππ − 1)π₯π₯ − π¦π¦ = 3 π π π π ππ = −1: π₯π₯ = −1, π¦π¦ = −1 π π π π ππ = 1: π₯π₯ = 3, π¦π¦ = −3 π π π π ππ ≠ ±1: ππππππππππππππππππππππ 24 ππππ − π¦π¦ = −1 οΏ½ π¦π¦ = ππ + 1 2ππππ − π¦π¦ = ππ − 1 π π π π ππ ≠ 0: π₯π₯ = 1, π¦π¦ = ππ + 1 π π π π ππ = 0: π₯π₯ = π₯π₯, π¦π¦ = 1 25 26 27 οΏ½ 2π₯π₯ + π¦π¦ = ππ + 2 ππππ + (ππ − 1)π¦π¦ = 2ππ π π π π ππ ≠ 2: π₯π₯ = ππ + 1, π¦π¦ = −ππ π π π π ππ = 2: ππππππππππππππππππππππππππ π π π π ππ ≠ 0, ππ ≠ ±2: ππ2 + 2ππ − 4 4 π₯π₯ = , π¦π¦ = ππ(ππ + 2) 4 − ππ2 π π π π ππ = 0, ππ = ±2: ππππππππππππππππππππππ ππ(π₯π₯ − π¦π¦) + 2π¦π¦ = ππ οΏ½ ππ(ππππ + 2π₯π₯ − 2) = (ππ + 2)(ππ − 2) οΏ½ (ππ − 1)π₯π₯ + (ππ + 1)π¦π¦ = −2ππ (ππ + 1)π₯π₯ + (ππ − 1)π¦π¦ = 2ππ π π π π ππ ≠ 0: π₯π₯ = ππ, π¦π¦ = −ππ π π π π ππ = 0: ππππππππππππππππππππππππππ 28 π₯π₯ + π¦π¦ = ππ π₯π₯ οΏ½ + ππππ = 0 π₯π₯ − ππππ = 1 ππππππππππππππππππππππ 29 π₯π₯ + ππππ = 1 οΏ½ π₯π₯ − π¦π¦ = 1 ππππ − π¦π¦ = 0 π π π π ππ = 0: π₯π₯ = 1, π¦π¦ = 0 1 1 π π π π ππ = −1: π₯π₯ = , π¦π¦ = − 2 2 π π π π ππ ≠ −1, ππ ≠ 0: ππππππππππππππππππππππ v 3.0 © 2016 - www.matematika.it 3 di 7 Algebra 30 31 32 33 34 35 36 37 v 3.0 Sistemi di equazioni di I grado letterali con discussione 2π₯π₯ − π¦π¦ = ππ π₯π₯ οΏ½ + ππππ = 1 π₯π₯ + (ππ + 1)π¦π¦ = 3 π π π π ππ = 0: π₯π₯ = 1, π¦π¦ = 2 π π π π ππ ≠ 0: ππππππππππππππππππππππ 2π₯π₯ + π¦π¦ 2ππ − 2 =0 (ππ − 1) ππ οΏ½ 2π₯π₯ + π¦π¦ π¦π¦ − = 2(1 − π₯π₯) ππ2 οΏ½ π π π π ππ ≠ 0 , ππ ≠ ±1: ππππππππππππππππππππππππππ π π π π ππ = 0, ππ = 0: ππππππππππππππππππππππππππ ππ 1 π π π π ππ ≠ 0, ππ ≠ − : π₯π₯ = , 2 2 2ππ − ππ π¦π¦ = 2(ππ − ππ) ππ π π π π ππ ≠ 0, ππ = − : ππππππππππππππππππππππππππ 2 1 π π π π ππ = 0, ππ ≠ 0: π₯π₯ = , 2 2ππ − ππ π¦π¦ = 2(ππ − ππ) (2ππ + ππ)π₯π₯ + (ππ − ππ)π¦π¦ = 2ππ ππ(2π₯π₯ − π¦π¦) + ππ(π₯π₯ + π¦π¦) = ππ π₯π₯ π¦π¦ + =1 ππ ππ οΏ½π₯π₯ π¦π¦ − =2 ππ ππ π₯π₯ π¦π¦ 5 + = οΏ½ ππ ππ ππππ 3π₯π₯ 2π¦π¦ 5 − =− ππ ππ ππππ οΏ½ ππππ + 2π¦π¦ = 0 ππππ + 4π¦π¦ = 0 3 ππ ππ, π¦π¦ = − 2 2 π π π π ππ ≠ 0, ππ ≠ 0: π₯π₯ = 1 4 , π¦π¦ = ππ ππ π π π π ππ = 2ππ: ππππππππππππππππππππππππππ π π π π ππ ≠ 2ππ: π₯π₯ = 0, π¦π¦ = 0 π₯π₯ π¦π¦ 1 + = οΏ½2ππ + ππ 2ππ − ππ 2ππ − ππ π₯π₯ − 1 π¦π¦ = 2ππ + ππ 2ππ − ππ οΏ½ π π π π ππ ≠ 0, ππ ≠ 0: π₯π₯ = π π π π ππ ≠ ±2ππ: π₯π₯ = 2ππ ππ , π¦π¦ = 2ππ − ππ 2ππ + ππ 10 8 , ππ = : ππππππππππππππππππππππππππ 3 3 10 8 π π π π ππ = , ππ ≠ : ππππππππππππππππππππππ 3 3 π π π π ππ = ππππ + 2π¦π¦ = ππ 5π₯π₯ + 3π¦π¦ = 4 π π π π ππ ≠ © 2016 - www.matematika.it 10 8 − 3ππ 5ππ − 4ππ βΆ π₯π₯ = , π¦π¦ = 3 10 − 3ππ 10 − 3ππ 4 di 7 Algebra Sistemi di equazioni di I grado letterali con discussione π π π π ππ = − 38 οΏ½ 5ππ 5 , ππ = : ππππππππππππππππππππππππππ 2 5ππ 5 π π π π ππ = − , ππ ≠ : ππππππππππππππππππππππ 3 2 ππππ + ππππ = 2 5π₯π₯ − 3π¦π¦ = 4 π π π π ππ ≠ 3 −5ππ 16ππ − 10ππ βΆ π₯π₯ = , 3 5(5ππ + 3ππ) 10ππ − 4ππ π¦π¦ = 5ππ + 3ππ 2 39 40 οΏ½ 10−4ππ π π π π ππ ≠ 0, ππ = 0: π₯π₯ = , π¦π¦ = ππ 3ππ 5 6 + 4ππ 10 − 4ππ π π π π ππ < , ππ ≠ 0: π₯π₯ = , π¦π¦ = 2 3ππ + 5ππ 3ππ + 5ππ 5 3ππ 6 + 4ππ π π π π ππ < , ππ ≠ − : π₯π₯ = , 2 5 3ππ + 5ππ 10 − 4ππ π¦π¦ = 3ππ + 5ππ 4 10 − 4ππ 5 π π π π ππ = , ππ ≠ 0: π₯π₯ = , π¦π¦ = 5 5ππ 2 3 4 10 − 4ππ 5 π π π π ππ = , ππ ≠ − : π₯π₯ = , π¦π¦ = 2 5 5ππ 2 3 5 π π π π ππ = , ππ = − : ππππππππππππππππππππππππππ 2 2 6 + 4ππ 10 − 4ππ 5 , π¦π¦ = π π π π ππ > , ππ ≠ 0: π₯π₯ = 3ππ + 5ππ 3ππ + 5ππ 2 3 6 + 4ππ 5 , π π π π ππ > , ππ ≠ ππ: π₯π₯ = 5 3ππ + 5ππ 2 10 − 4ππ π¦π¦ = 3ππ + 5ππ π₯π₯ + ππππ = ππ 5π₯π₯ − 5π¦π¦ = 4 π₯π₯ π¦π¦ + ππ οΏ½ππ − ππ = −2 π₯π₯ − π¦π¦ = −ππ π π π π ππ ≠ 0: ππππππππππππππππππππππππππ 41 οΏ½ π₯π₯ + π¦π¦ = ππ ππππ + ππππ = ππ 2 π π π π ππ ≠ ππ: π₯π₯ = ππ + ππ, π¦π¦ = −ππ; π π π π ππ = ππ ππππππππππππππππππππππππππ. 42 οΏ½ π₯π₯ + π¦π¦ = ππ ππππ + ππππ = ππ2 π π π π ππ ≠ ππ: π₯π₯ = ππ + ππ, π¦π¦ = −ππ ; π π π π ππ = ππ ππππππππππππππππππππππππππ ππππ + (ππ + 1)π¦π¦ = 2 (ππ2 + ππ)(π₯π₯ − π¦π¦) = 1 1 π π π π ππ ≠ 0 ∧ ππ ≠ −1 ∧ ππ ≠ − , π₯π₯ 2 1 1 = , π¦π¦ = ; ππ ππ + 1 π π π π ππ = 0 ∨ ππ = −1 ππππππππππππππππππππππ; 1 π π π π ππ = − ππππππππππππππππππππππππππ 2 43 v 3.0 οΏ½ © 2016 - www.matematika.it 5 di 7 Algebra 44 45 46 47 48 49 50 51 52 v 3.0 οΏ½ Sistemi di equazioni di I grado letterali con discussione (ππ + ππ)π₯π₯ − ππππ = ππ ππππ + 2ππππ = 3ππππ 2 π π π π ππ ≠ − ππ ∧ ππ ≠ 0: 3 = ππ; 2 π π π π ππ = − ππ ∨ ππ 3 = 0 ππππππππππππππππππππππππππ 2 ππ ≠ −2 ∧ ππ ≠ 1 π π π π ππ = 0 ππππππππππππππππππππππππππ 1 π π π π ππ ≠ 0 π₯π₯ = , π¦π¦ = ππ − 1 ππ + 2 (ππ + 2)π₯π₯ + π¦π¦ = ππ π¦π¦ ππ οΏ½ 2π₯π₯ − + =0 ππ − 1 ππ + 2 οΏ½ οΏ½ π₯π₯ = ππ, π¦π¦ π π π π ππ = 0 ∨ ππ = 1 ππππππππππππππππππππππππππ; π π π π ππ ≠ 0 ∧ ππ ≠ 1 ππππππππππππππππππππππ (ππ + 1)π₯π₯ − (ππ 2 − 1)π¦π¦ = ππ 2 + 1 π₯π₯ − (ππ − 1)π¦π¦ = 1 ππ + 5 ππ, π¦π¦ 5 3ππ − 10 = ; 5ππ π π π π ππ = 0 ππππππππππππππππππππππ π π π π ππ ≠ 0: π₯π₯ = 2π₯π₯ + ππππ = ππ 3π₯π₯ − ππππ = 5 π₯π₯ π¦π¦ 1 + = 2 2 οΏ½ππ − ππ ππ + ππ ππ − ππ π₯π₯ π¦π¦ 1 + = ππ ππ ππππ ππ ≠ ±ππ ∧ ππ ≠ 0 ∧ ππ ≠ 0 ππ ππ π₯π₯ = 2 , π¦π¦ = 2 ; ππ + ππ 2 ππ + ππ 2 π₯π₯ + π¦π¦ + 3ππ π¦π¦ 2ππ + = 2 ππ + 1 ππ − 1 οΏ½ 4ππ − 4 π₯π₯ π¦π¦ ππ + 2 + = ππ ππ + 1 ππ + 1 ππ ≠ 0 ∧ ππ ≠ ±1 3 π π π π ππ ≠ : π₯π₯ = 2ππ, π¦π¦ = −ππ; 4 3 π π π π ππ = ππππππππππππππππππππππππππ 4 ππ(π₯π₯ − π¦π¦ − 2) = π₯π₯ + 3π¦π¦ + 7 π¦π¦ + 2 1 οΏ½ π₯π₯ + = 2 ππ + 3 1 − ππ ππ + 2ππ − 3 ππ ≠ −3 ∧ ππ ≠ 1 ππππππππππππππππππππππππππ π₯π₯ + 2ππ π¦π¦ + ππ + =7 ππ οΏ½ ππ 2π₯π₯ − ππ 3π¦π¦ − ππ − = −2 ππ ππ ππ ≠ 0 ∧ ππ ≠ 0 π₯π₯ = 2ππ, π¦π¦ = 2ππ ππππ π¦π¦ − =1 ππ(ππ + ππ) ππ οΏ½ 2π₯π₯ π¦π¦ − ππ + ππ 2(ππ + ππ) − = ππ − ππ ππ ππ − ππ ππ ≠ ±ππ ∧ ππ ≠ 0 ∧ ππ ≠ 0 1 π π π π ππ ≠ − : π₯π₯ = 1, π¦π¦ = ππ; 5 1 π π π π ππ = − ππππππππππππππππππππππππππ 5 © 2016 - www.matematika.it 6 di 7 Algebra 53 54 55 56 57 58 59 60 61 v 3.0 Sistemi di equazioni di I grado letterali con discussione 1 : π₯π₯ = −ππ, π¦π¦ = ππ; 2 1 π π π π ππ = ππππππππππππππππππππππππππ 2 π π π π ππ ≠ ππππ + (ππ + 1)π¦π¦ = ππ οΏ½ π₯π₯ + 3π¦π¦ = 2ππ οΏ½ ππππ + 2π¦π¦ = 4 (ππ − 1)π₯π₯ + π¦π¦ = ππ π π π π ππ ≠ 2: π₯π₯ = 2, π¦π¦ = 2 − ππ; π π π π ππ = 2 ππππππππππππππππππππππππππ ππ + π₯π₯ 3 1 − π¦π¦ − = −2 + 2ππ 2ππ οΏ½ ππ π₯π₯ − ππ π¦π¦ + ππ 13 + ππ + = 3 2 6 ππ ≠ 0 3 π₯π₯ = 2, π¦π¦ = 3 2 3 π π π π ππ = − ππππππππππππππππππππππππππ 2 π π π π ππ ≠ − π₯π₯ + π¦π¦ π₯π₯ − π¦π¦ 2(ππ2 + ππ 2 ) β§ + = ππ ππ ππππ π₯π₯ + π¦π¦ ππ β¨ = β© π₯π₯ − π¦π¦ ππ ππ ≠ 0 ∧ ππ ≠ 0: π₯π₯ = ππ + ππ, π¦π¦ = ππ − ππ π₯π₯ + π¦π¦ π₯π₯ − π¦π¦ + =4 οΏ½ ππ ππ ππππ + ππππ = (ππ + ππ)2 − 2ππ 2 ππ ≠ 0 ∧ ππ ≠ 0 π₯π₯ = ππ + ππ, π¦π¦ = ππ − ππ 2ππ + ππ ππ οΏ½ 2ππ − ππ 2ππππ + ππππ = ππ 2ππππ − ππππ = ππ ≠ 0 1 1 π₯π₯ = , π¦π¦ = − ππ ππ ππ(π₯π₯ + 1) ππ(π¦π¦ − 1) + = ππ + ππ οΏ½ ππ ππ ππ(π₯π₯ − ππ) − ππ(π¦π¦ − ππ) = −(ππ + ππ) ππ ≠ 0 ∧ ππ ≠ 0 π π π π ππ ≠ −ππ: π₯π₯ = ππ − 1, π¦π¦ = ππ + 1; π π π π ππ = −ππ ππππππππππππππππππππππππππ π₯π₯ − π¦π¦ π₯π₯ − π¦π¦ + = 2ππ ππ + ππ ππ − ππ οΏ½3(π₯π₯ − π¦π¦) 5(π₯π₯ − π¦π¦) + = 2(4ππ + ππ) ππ + ππ ππ − ππ ππ ≠ ±ππ ππππππππππππππππππππππππππ π₯π₯ − π¦π¦ + ππ π¦π¦ − π₯π₯ + ππ 9ππ2 − 2ππππ − ππ 2 οΏ½ ππ + ππ − ππ − ππ = ππ2 − ππ 2 π₯π₯ − 2ππ = −π¦π¦ © 2016 - www.matematika.it ππ ≠ ±ππ π π π π ππ ≠ 0 π₯π₯ = 3ππ, π¦π¦ = −ππ; π π π π ππ = 0 ππππππππππππππππππππππππππ 7 di 7