1. Coppia e fasori spaziali nella macchina a induzione Si consideri il

Macchina a induzione: note aggiuntive 1. Coppia e fasori spaziali nella macchina a induzione
Si consideri il funzionamento a regime di un motore a induzione con rotore di tipo avvolto trifase, il cui diagramma fasoriale è mostrato in fig. 1, insieme al circuito equivalente di una fase
della macchina, rappresentato in fig. 2. Si supponga che la macchina possieda n = p/2 paia poli, mentre gli angoli del diagramma fasoriale di fig. 1 sono angoli elettrici.
La potenza attiva trasmessa elettromagne
ticamente tra statore e rotore, localizzata
nella resistenza equivalente R2/s, e pari a:
M2
M1
2
Pt = 3(R2/s)I2
(1)
si può anche scrivere come:
Pt = 3 Re (E2  I2 ) ,
(2)

ovvero:
Pt = 3Re[jNe2(/2 )I2] ,
(3)
dove Ne2 è il numero di spire efficaci
dell’avvolgimento di fase di rotore.
Nella ipotesi di saturazione trascurabile, il
flusso di polo si può esprimere come:
 = g Mm = g  (M1 +M2 ) ,
dove g = 0(2/)ℓ/
Mm
M2
(4)
Fig. 1 – Diagramma fasoriale di funzionamen(5) to a regime del motore a induzione.
è la permeanza equivalente di polo al traferro, essendo
 = D/p
(6)
il passo polare, ℓ la lunghezza assiale del pacco
lamiere, D il diametro al
traferro,  il traferro.
Inoltre, il fasore spaziale
f.m.m. di rotoreM2 ha Fig. 2 – Circuito equivalente di una fase del motore a induzioespressione:
ne nel funzionamento a regime.
M2 =  (32/)  (Ne2/n) I2 .
(7)
La velocità 0 del campo rotante è legata alla pulsazione elettrica dalla espressione:
(8)
0 = /n .
Dalla (3), esprimendo la  in funzione di 0, inserendo la espressione dellaI2 ricavata dalla
(7) e sostituendo l’espressione del flusso data dalla (4), per la potenza trasmessa Pt si ha:
Pt = Re [j0n2(/2)g(M1 +M2 )  M2] .
(9)
Considerando che, a prescindere dal sistema di riferimento adottato (ovvero dalla posizione
degli assi reale e immaginario nel piano complesso di fig. 1, risulta:
M1M2 = M1M2exp(j)
(10)
1
Macchina a induzione: note aggiuntive M2M2 = M22
e
,
(11)
sviluppando i calcoli della (9) e dividendo per la velocità del campo rotante 0, l’espressione
della coppia elettromagnetica C = Pt/0 risulta:
C = (/2)n2gM1M2sin() .
(12)
La (12), ottenuta a partire dalle equazioni di funzionamento della macchina a induzione a rotore avvolto, è però applicabile a qualunque macchina isotropa in c.a., ad esempio alla macchina sincrona isotropa: in questo caso, la f.m.m.M2 non è indotta, come nella macchina a
induzione, ma prodotta dalla corrente continua dell’avvolgimento distribuito di eccitazione.
Dalla (12) si osserva che la coppia elettromagnetica è una coppia di allineamento, dipende
dalla ampiezza delle due f.m.m. coinvolte ed è non nulla se l’angolo elettrico  è diverso da
zero e da  radianti elettrici; il senso d’azione di tale coppia tende a trascinare il rotore, sostegno della f.m.m.M2, nel senso di allineare tale f.m.m. con la f.m.m. di statoreM1 (o viceversa, in relazione al funzionamento come motore o come generatore).
A conferma della correttezza della (12), ottenuta dal bilancio di potenza del circuito equivalente di fig. 2 (il cui secondario è stato trasformato mediante la trasformazione di frequenza),
la coppia elettromagnetica sarà ora ricavata applicando il principio dei lavori virtuali.
A tale scopo, si consideri la distribuzione della induzione lungo la periferia, espressa in funzione dell’angolo meccanico , misurato a partire dall’asse magnetico del fasoreMm:
b() = 0(Mm/)cos(n) .
(13)
L’energia magnetica specifica wm nel traferro (per unità di volume) si può quindi scrivere:
wm() = b2()/(20) = 02(Mm/)2cos2(n)/(20) .
(14)
Dunque, l’energia magnetica immagazzinata nel traferro Wm si ottiene integrando la (14) in
tutto il volume del traferro; poiché per qualunque valore del numero di paia poli n, si ottiene:

2
0
risulta:
cos  n     d  
2
D 2

D

1
Wm        w m    d   0 
 M 2m   n    g  M 2m

2 0
4
2
2
(15)
.
(16)
Mm2 =Mm  Mm = (M1 +M2 )  (M1 + M2) = M12 + M22 +M1  M2 + M1 M2
. (17)
La quantità Mm2 può essere espressa in termini fasoriali nel seguente modo:
D’altra parte, considerando la (10), la (17) diviene:
Mm2 = M12 + M22 + M1M2[exp(j)+ exp(j)] = M12 + M22 + 2 M1M2cos() .
(18)
Per il calcolo della coppia, si consideri ora che:
 data l’ipotesi di linearità del sistema, la energia magnetica Wm uguaglia la co-energia W’m;
 la rotazione meccanica infinitesima d, misurata nel senso antiorario di avvicinamento
diM2 versoM1 si può esprimere in funzione dell’incremento d dell’angolo elettrico 
traM2 eM1 come segue:
d =  d/n .
(19)
Dunque, per la coppia si può scrivere:
C = W’m/M1, M2 = cost =  nWm/M1, M2 = co
(20)
2
Macchina a induzione: note aggiuntive da cui, in base alla (16) e alla (18), si ottiene:
C = (/2)n2gM1M2sin() ,
(21)
in accordo con la (12), ottenuta da un bilancio di potenza attiva formulato per via circuitale.
2. Fasori f.m.m., flusso, distribuzione di f.e.m. e correnti nel funzionamento della
macchina a induzione come motore e generatore
Si analizza nel seguito la modalità di funzionamento della macchina a induzione nel funzionamento come motore (0<s<1) e come generatore (s<0), considerando i fasori spaziali f.m.m.
e flusso e la distribuzione delle f.e.m. e delle correnti nei conduttori di statore e di rotore.
A premessa, si opera qualche richiamo sui seguenti aspetti:
 legame tra le distribuzioni di corrente lungo la periferia e della relativa f.m.m.;
 legame tra le distribuzione della f.e.m. mozionale nei conduttori e della induzione.
E’ noto che la distribuzione della f.m.m. è l’integrale della distribuzione delle correnti in cava
lungo la periferia: dunque, una distribuzione di f.m.m. pressoché sinusoidale richiede che sia
pressoché sinusoidale anche la distribuzione delle correnti di cui tale f.m.m. è l’integrale. Nelle macchine rotanti in c.a., dunque, si adottano accorgimenti costruttivi per garantire il più
possibile tale sinusoidalità (tipicamente, adottando avvolgimenti con elevato N° q di cave/(polofase) e con accorciamento di passo delle matasse).
Ad esempio, la fig. 3 mostra la distribuzione dei lati attivi di matassa di un avvolgimento in
due strati (2 lati attivi/cava), con q = 4 cave/(polofase) e con accorciamento di passo  = q/2
= 2 (cioè con spostamento a sinistra di  = 2 cave dei lati attivi dello strato inferiore in cava).
Re
m()
A
testa di matassa
c
b
icava()
C
B
a
A
O
A
A
O
c
A
O
c
c
o
c
c
c
c
B
o
c
B
B
B
x
B
B
x
B
a
X
B
a
X
a
X
a
a
X
a
a
C
X
a
C
X
C
C
x
C
C
x
C
b
C
b
b
b
o
b
b
O
O
b
A
A
O
A
21
22
23
24
o
b
A

corrente totale di cava
Intensità:
corrente totale di cava
1
2
3
4
5
uscente O
entrante X
6
7
8
O
o
X
x
9
10
N° cava
11
12
13
14
15
16
17
18
19
20
Fig. 3 – Rappresentazione linearizzata di un avvolgimento trifase in 2 strati (2 lati attivi/cava),
con q = 4 cave/(polofase) e con accorciamento di passo delle matasse pari a  = q/2 = 2. Distribuzione (a barre) della corrente totale di cava, nell’istante di valore massimo della corrente
nel lato attivo A; corrispondente distribuzione di correnti entranti (X) e uscenti (O); distribuzione della f.m.m. m(), integrale della distribuzione delle correnti totali di cava (integrale
operato immaginando ciascuna corrente di cava spalmata sul proprio passo di cava – distanza
tra gli assi dei denti adiacenti – ); distribuzione delle correnti icava() “spazialmente filtrata”.
3
Macchina a induzione: note aggiuntive Le matasse dell’avvolgimento, tutte aventi lo stesso passo, collegano ogni lato attivo dello
strato superiore con il corrispondente posto nello strato inferiore (cfr. la testa di matassa della
1^ matassa di figura); i lati attivi di andata delle matasse (indicati con A, B, C per le 3 fasi)
sono dunque ordinatamente collegati a quelli corrispondenti di ritorno (a, b, c), che risultano
percorsi in modo controverso.
Supponendo correnti sinusoidali equilibrate di sequenza diretta, si considera l’istante in cui è
massima positiva la corrente che percorre i lati attivi A: considerando le proiezioni sull’asse
Re della stella esa-fase di figura, ne conseguono le correnti totali di cava mostrate in figura sia
con le barre verticali, sia con i simboli X e O; con entrambe le simbologie, è evidenziata la
graduazione e il segno delle correnti di cava, in relazione ai lati attivi presenti in cava e
all’istante considerato.
Valgono le seguenti osservazioni:
 trascurando le armoniche superiori, le distribuzioni di corrente di cava e di f.m.m. si possono considerare sinusoidali;
 tali distribuzioni sono spazialmente in quadratura (in senso elettrico): dunque, lo zero del
diagramma di f.m.m. si verifica in corrispondenza della posizione periferica in cui vi è la
corrente massima, mentre lo zero del diagramma della distribuzione della corrente si verifica in corrispondenza al massimo della distribuzione di f.m.m.;
 la fig. 4.a illustra la relazione tra la distribuzione periferica della corrente (current sheet)
prodotta da un avvolgimento trifase statorico a distribuzione sinusoidale e il fasore
f.m.m.M, in quadratura rispetto alla matassa con corrente massima; la fig. 4.b è come la
fig. 4.a, ma con la sola evidenziazione della matassa a corrente massima.
Imax
Imax
M
M

Imax
Imax
(a)
(b)
Fig. 4 – (a) Rappresentazione modulata della distribuzione periferica di corrente di un avvolgimento statorico trifase a “distribuzione sinusoidale”, evidenziazione della matassa a corrente istantanea massima e del fasore f.m.m.M in quadratura con il piano di tale matassa; (b)
come (a), ma con la sola rappresentazione della matassa a corrente massima.
Nel seguito, verranno adottate le seguenti modalità di rappresentazione:
 il fasore spaziale f.m.m. di statore sarà rappresentato insieme alla matassa a corrente massima della distribuzione di corrente corrispondente;
 inoltre, per sintesi grafica, le due strutture di statore e rotore separate dal traferro saranno
sostituite semplicemente da una circonferenza, detta anche circonferenza di traferro;
4
Macchina a induzione: note aggiuntive  nel caso di lati attivi appartenenti allo statore, tali lati attivi saranno rappresentati esternamente alla circonferenza di traferro (come esemplificato in fig. 2); invece, in caso di lati attivi del rotore, tali lati saranno rappresentati internamente alla circonferenza di traferro.
In fig. 5 è richiamata la legge della induzione elettromagnetica nella formulazione elementare: nella applicazione di tale legge occorre ricordare che la velocitàv da considerare è
quella del conduttore di lunghezzaℓ rispetto al campo di induzioneB.
Induzione magneticaB
Forza elettromotrice e
Induzione magneticaB
Forza elettromotrice e
Velocitàv
ℓ
Velocitàv
Fig. 5 – Legge dell’induzione in forma elementare: e =v B xℓ;
v è la velocità relativa del conduttore rispetto al campo di induzioneB.
La fig. 6 mostra il funzionamento come motore a induzione, per scorrimenti 0 < s < 1.
Poiché il campo
M1
rotante ha velocità o,
antioraria come la velocità  del rotore, con
2s
o > , le f.e.m. in
dotte nei conduttori di
statore e di rotore di
2r
massima f.e.m. indotta
o  
o
Mm
1
s
(EM), sul cui piano di
matassa giace il fasore
1r
1r 1s

flusso di polo, sono
concordi fra loro ( in
2r
1s e 1s;  in 1r e 1r).
D’altra parte, con
2s
ritardo  rispetto alla
matassa 1r-1r rotorica
a f.e.m. massima EM vi
M2
è la matassa rotorica
2r-2r con corrente Fig. 6 – Funzionamento come motore con scorrimento s positivo
massima IM (concorde (0 < s < 1):
con EM, perché è o = velocità del campo rotante maggiore di  = velocità del rotore.
quest’ultima
l’unica
causa di circolazione
della corrente).
5
Macchina a induzione: note aggiuntive Dunque ne consegue il fasore f.m.m.M2 di figura. Poiché il flusso di polo è sostenuto dalla f.m.m. magnetizzanteMm, equidiretto con il flusso, la f.m.m.M1 prodotta dallo statore è
quella indicata in figura, dovendo rispettare la leggeMm =M1 +M2. In base alla giacitura
diM1, la matassa statorica con corrente massima è la 2s-2s. Il funzionamento da motore risulta confermato dai seguenti due elementi:
 il verso antiorario della coppia elettromagnetica (di richiamo diM2 versoM1), concorde
con ;
 l’angolo minore di 90° tra la matassa 1s-1s a f.e.m. massima e la matassa 2s-2s a corrente
massima, con versi discordi (la f.e.m. agente in 1s-1s si comporta come forza controelettromotrice).
In fig. 7 è mostrato il funzionamento come generatore a induzione, per scorrimenti s < 0.
Il campo rotante ha ancora velocità o in senso antiorario, come la velocità  del rotore, ma
questa volta con o < .
Pertanto le f.e.m. inM2
dotte nei conduttori di
massima f.e.m. indotta
2s
(EM), sul cui piano di

matassa giace il fasore
flusso di polo, ri2r
o
sultano discordi fra lo1 r 1s
ro ( in 1s e + in 1r; 
1r
in 1s e  in 1r).

Mm
1s
D’altra parte, con sfao  
samento  rispetto alla
2r
matassa 1r-1r rotorica
a f.e.m. massima EM
2s
vi è la matassa rotorica
2r-2r con corrente
massima IM (concorde
M1
con EM, perché anche
in
questo
caso Fig. 7 – Funzionamento come generatore con scorrimento s negatiquest’ultima si com- vo:
porta come f.e.m.).
o = velocità del campo rotante minore di  = velocità del rotore.
Dunque ne consegue il fasore f.m.m.M2 di figura.
Pertanto, la f.m.m.M1 prodotta dallo statore è quella di figura, dovendo rispettare la leggeMm =M1 +M2. In base alla giacitura diM1, la matassa statorica con corrente massima è
la 2s-2s.
Il funzionamento da generatore risulta confermato dai seguenti due elementi:
 il verso orario della coppia elettromagnetica (di richiamo diM2 versoM1), discorde con
;
 l’angolo minore di 90° tra la matassa 1s-1s a f.e.m. massima e la matassa 2s-2s a corrente
massima, con versi concordi (la f.e.m. agente in 1s-1s si comporta come forza elettromotrice).
6
Macchina a induzione: note aggiuntive 3. L’indotto a gabbia
Nelle considerazioni svolte finora l'avvolgimento di indotto sul rotore è sempre stato considerato avvolto, con numero di poli uguale a quello dello statore-induttore e stabilmente chiuso
in corto circuito.
Una soluzione costruttiva equivalente dal punto di vista funzionale, ma molto più semplice e
robusta, è costituita dall'avvolgimento a gabbia, che è formato da semplici barre in materiale
conduttore che riempiono le cave e sono poste in corto circuito tra di loro mediante due anelli
frontali, che assumono la funzione delle testate delle matasse. Ora, mentre nell'arco di un passo polare in un avvolgimento trifase si trovano conduttori appartenenti alle tre fasi, le barre di
una gabbia comprese entro un passo polare costituiscono un avvolgimento polifase, con un
numero di fasi fg pari al numero di barre comprese entro un passo polare:
fg = nb/p = (N° barre gabbia)/(N° poli statore)
(22)
Quindi un indotto a gabbia non ha un suo prefissato numero di poli, ma assume la medesima
polarità dell'avvolgimento primario di statore con cui è concatenato.
Nel seguito si mostra come, pur di considerare che la distribuzione della induzione nel traferro sia spazialmente sinusoidale, risulta spazialmente sinusoidale anche la distribuzione delle
f.e.m. nelle barre e, pertanto la distribuzione spaziale delle corrispondenti correnti: ne consegue che anche la f.m.m. prodotta da tale distribuzione di correnti è sinusoidale.
A tale scopo, si consideri che la gabbia schematizzata in fig. 8 sia investita al traferro da una
distribuzione di induzione bg avente forma d’onda spaziale sinusoidale a 2 poli (si noti che,
nel caso il numero di paia poli sia superiore a 1, la porzione considerata è quella di un paio
poli, gli angoli sono quelli elettrici e tutto si ripete ad ogni paio poli lungo la periferia).
k

   
Fig. 8 – Macchina a induzione con rotore a gabbia: è evidenziata la posizione  della barra k
rispetto all’asse magnetico della distribuzione di induzione al traferro (orientato come).
Per il fatto di essere a distribuzione spaziale sinusoidale, il campo di induzione al traferro può
essere rappresentato dal fasore spaziale, orientato secondo l’angolo  rispetto ad un riferimento orizzontale;  sia la posizione della generica barra k-esima di rotore, sempre rispetto
alla orizzontale, mentre  =    è la posizione di tale barra rispetto all’asse magnetico del
campo al traferro. La fig. 9 mostra una mappa qualitativa delle linee di induzione, in una
7
Macchina a induzione: note aggiuntive schematizzazione linearizzata della macchina.
Assunta come origine dell’angolo  la posizione dell’asse magnetico (ossia del fasore spaziale), dove si ha il massimo Bg della distribuzione della induzione al traferro bg(), si può
scrivere:
bg() = Bgcos() .
(23)
Considerando poi come vanno addensandosi le linee di campo nella zona della corona di rotore (con il flusso transitante in corona che è nullo per  = 0 e massimo per  = /2),
l’induzione in corona vale:
by() = Bysin() .
(24)
bg()
by()
x

Fig. 9 – Schematizzazione delle linee di induzione di una macchina a induzione con rotore a
gabbia e distribuzione bg() e by() rispettivamente al traferro e nella corona di rotore.
Poiché il totale flusso di polo  al traferro si suddivide metà a sinistra e metà a destra, tra il
flusso di polo e il massimo flusso di corona yM esiste il seguente legame:
 = 2yM ,
ovvero
(2/)Bgℓ = 2Byhyℓ ,
(25)
(26)
dove  è il passo polare, hy l’altezza radiale della corona di rotore, ℓ la lunghezza assiale del
pacco lamiere.
Il flusso che transita in corona nella posizione  vale:
y() = yM  sin() = (/2)  sin() .
(27)
Tale flusso y() è anche il flusso concatenato con la barra in posizione .
In una condizione del tutto generale di funzionamento, il fasore flusso al traferro può variare nel tempo con legge qualunque, sia in ampiezza  che come orientazione :
(t) = (t)exp(j(t)) .
(28)
Analogamente, anche per il rotore può valere una legge di moto di tipo generale, con la seguente espressione della velocità :
(t) = d(t)/dt .
(29)
Di conseguenza, la barra k, ed il rotore a cui essa è solidale, si muove rispetto al campo al tra-
8
Macchina a induzione: note aggiuntive ferro con la seguente velocità rel(t):
rel(t) = d(t)/dt = d[(t)  (t)]/dt = (t)  (t) .
(30)
Legando il verso della f.e.m. a quella del flusso con la regola della vite destrorsa, la f.e.m. indotta nella barra k di rotore in posizione  può dunque esprimersi come segue:
eb(, t) =  dy/dt =  (1/2)d[(t)sin()]/dt =
(31)
=  (1/2)sin()d(t)/dt  (1/2)(t)cos()rel(t) = eb.trasf + eb.moz ,
dove i due contributi alla f.e.m. sono quello trasformatorico (dovuto a d(t)/dt) e quello mozionale (dovuto a rel).
E’ significativo osservare che il primo di tali contributi ha come fattore sin(), mentre il secondo cos(): da ciò consegue che, qualunque sia la condizione di funzionamento, la distribuzione spaziale istantanea delle f.e.m. di barre è funzione sinusoidale della posizione .
Indicata con Rb e Lb rispettivamente la resistenza e l’induttanza equivalente di ciascuna barra
(comprensive dei contributi dei tronchi di anello di pertinenza), la distribuzione delle correnti
ib in ogni barra della gabbia soddisfa all’equazione:
eb(, t) = Rbib + Lbdib/dt .
(32)
Si riconosce che la distribuzione spaziale sinusoidale delle f.e.m. di barra implica una corrispondente distribuzione spaziale delle correnti di barra, ciascuna soddisfacente l’evoluzione
istantanea data dalla precedente equazione differenziale in cui  identifica ciascuna barra: infatti, l’ampiezza dei contributi forzanti di f.e.m. è costituita da termini che pur essendo identici, sono spazialmente modulati con legge sinusoidale e co-sinusoidale di .
Poiché la distribuzione della f.m.m. al traferro è data dall’integrale lungo la periferia della distribuzione delle correnti nelle barre, si verifica la situazione schematizzata in fig. 10, dove
ib() e mr() sono rispettivamente la distribuzione delle correnti e la f.m.m. di rotore.
mr()
     ib()
Îb Mr x
x
x
x
x x
x
x
x
  
  
Fig. 10 – Distribuzione spaziale delle correnti nelle barre della gabbia e corrispondente diagramma di f.m.m. al traferro, pari all’integrale di tali correnti lungo la periferia.
Poiché la distribuzione di f.m.m. è sinusoidale, si riconosce che il comportamento magnetico
al traferro di una gabbia, visto dalla struttura primaria di statore, è analogo a quello di un avvolgimento trifase: si può dunque sostituire alla gabbia un avvolgimento trifase equivalente.
Si consideri ora il caso particolare ma significativo in cui il funzionamento della macchina a
induzione sia di tipo stazionario, in regime sinusoidale; allora il flusso al traferro è costante in
ampiezza e si muove con velocità pure costante  = /n =  (perché nel caso in esame n =
1); analogamente, il rotore viaggia a velocità  = (1s) costante.
9
Macchina a induzione: note aggiuntive In tali condizioni la f.e.m. trasformatorica è nulla, mentre per quella mozionale risulta:
eb.moz =  (1/2)cos()rel =  (1/)ℓBgcos()(  ) =
= s(1/)ℓBgcos() = sℓBgcos()v ,
(33)
dove v = 2f è la velocità del campo rotante in [m/s]: poiché Bgcos() è la induzione al traferro davanti alla barra in posizione , si riconosce, come prevedibile, che la f.e.m. mozionale
in ogni barra è calcolabile con la legge elementare della induzione elettromagnetica.
Per quanto riguarda l’avvolgimento trifase equivalente alla gabbia, indicata con Îb = 2Ib la
corrente di picco di barra, il valore di picco Mr della f.m.m. della gabbia si può determinare
come prodotto della corrente media (2/)Îb di una semionda di distribuzione della corrente
moltiplicato per il N° di barre incluse in metà polo nb/(2p):
Mr = (2/)Îb  nb/(2p) = (2/) Ibnb/p .
(34)
Assumendo che questa f.m.m. sia prodotta da un sistema trifase di correnti di valore efficace
I’ riportate allo statore, ovvero che la corrispondente f.m.m. valga:
Mr’ = (32/)kaNsI’/(p/2),
(35)
imponendo che Mr’ = Mr, si ottiene il fattore di riporto kI dalla corrente efficace di barra Ib alla corrispondente corrente efficace I’ riportata allo statore:
I’ = kIIb , con kI = nb/(6kaNs) .
(36)
I vantaggi dell'avvolgimento a gabbia sono:
1. grande robustezza meccanica e possibilità di costruzione meccanizzata;
2. massimo sfruttamento della sezione delle cave: dato infatti il modesto valore delle f.e.m.
indotta per conduttore non è necessario isolare il conduttore rispetto ad circuito magnetico,
e la corrente d'altra parte circola quasi esclusivamente nella barra in ragione della assai elevata conduttività del materiale della gabbia rispetto a quella del materiale magnetico.
3. il rotore a gabbia è usato per qualsiasi potenza del motore, da qualche decina di W ad alcuni MW; in grosse macchine il materiale impiegato è il rame, mentre per potenze dell'ordine
delle decine di kW e inferiori di regola è impiegato l'alluminio; in quest'ultimo caso la
gabbia è direttamente fusa sul circuito magnetico già calettato sull'albero motore (processo
di pressofusione), realizzando così un assieme meccanicamente assai robusto;
4. un altro vantaggio è l'elevata temperatura raggiungibile dal rotore, per l’assenza di isolanti.
4. Potenza nominale - Caratteristiche di funzionamento
La definizione di potenza nominale per un motore asincrono non presenta difficoltà, in quanto
è pari alla potenza meccanica disponibile all'asse, nelle condizioni nominali di alimentazione.
Il fattore di potenza è sempre inferiore all'unità, e assume valori abbastanza bassi; di conseguenza la zona di effettivo funzionamento si limita alla zona compresa tra il funzionamento a
vuoto e all'incirca il punto a cos massimo, cui corrispondono scorrimenti compresi tra 0 e
0.05 (5%). Definita la potenza nominale Pn, tramite il rendimento e il fattore di potenza si determina la potenza apparente e la corrente nominali:
An = Pn / (cos) ;
In = An / (3Vn) .
Poiché  e cos non sono noti a priori, sulla targa del motore é di solito riportato sia Pn che In.
La tabella che segue fornisce dei dati orientativi sui valori assunti da  e cos in funzione della potenza nominale, del numero di poli, e del tipo di rotore.
10
Macchina a induzione: note aggiuntive Valori orientativi del rendimento e del fattore di potenza delle macchine a induzione.
Rendimento (%)
Fattore di potenza
Tipo Potenza
nominale
Numero di poli
Numero di poli
(k W)
4 poli
8 poli 12 poli 4 poli
8 poli 12 poli
gabbia
anelli
0,7
4
15
70
700
2
15
70
700
72
84
88
91
93
76
87
91
93
83
85
90
93
74
85
89
92
81
83
89
92
82
88
91
0,75
0,86
0,89
0,92
0,94
0,78
0,88
0,92
0,94
0,74
0,83
0,89
0,93
0,6
0,80
0,87
0,91
0,70
0,75
0,84
0,91
0,70
0,83
0,90
Dal punto di vista della rete di
alimentazione un motore asincrono si presenta come un carico variabile, in cui via via
che il carico meccanico aumenta variano valori di corrente e fattore di potenza. Contemporaneamente variano il
rendimento della macchina e
le perdite, e di conseguenza lo
scorrimento. Tutte queste
quantità vengono di solito rappresentate in un diagramma in
funzione della potenza resa, e
le curve vengono dette caratteristiche di funzionamento della Fig. 11 – Caratteristiche di funzionamento di un motore a
macchina (fig. 11).
induzione. Le scale di I e p sono arbitrarie.
La loro determinazione si può fare sia con metodi diretti (prova al freno) che indiretti.
Dal punto di vista della rete di alimentazione un motore asincrono si presenta come un carico
variabile, in cui via via che il carico meccanico aumenta variano valori di corrente e fattore di
potenza. Contemporaneamente variano il rendimento della macchina e le perdite, e di conseguenza lo scorrimento. Tutte queste quantità vengono di solito rappresentate in un diagramma
in funzione della potenza resa, e le curve vengono dette caratteristiche di funzionamento della
macchina (fig. 6). Tali curve sono ottenibili sia da metodi diretti (prova al freno) che indiretti.
5. Reostato di avviamento nel caso di rotore di tipo avvolto
La caratteristica meccanica della macchina a induzione ha un andamento tale da permettere il
verificarsi di condizioni di instabilità. Inoltre il valore della coppia di avviamento è relativamente modesto (Cavv  Cn) e possono verificarsi difficoltà pratiche. Infine la corrente transitoria di avviamento può arrivare (in valore di cresta) a oltre 10In, facendo intervenire le protezioni. Inoltre, nelle macchine a rotore avvolto possono esistere delle anomalie come quella
indicata a tratteggio in fig. 12, causate dai campi armonici, che rendono ancora più critico
l'avviamento.
11
Macchina a induzione: note aggiuntive C 12
0 No N Fig. 12 – Caratteristica meccanica di un motore a induzione.
Per queste ragioni si pone il problema di aumentare la coppia di avviamento, e ridurre le correnti allo spunto. E' subito evidente che una riduzione della tensione di alimentazione, pur
raggiungendo il secondo obiettivo, ha come conseguenza una drastica riduzione della coppia
(C  V2) e quindi un peggioramento delle condizioni di avviamento.
Il provvedimento più opportuno consiste invece nell'aumentare la resistenza di rotore, che
nelle macchine a rotore avvolto e con anelli si effettua collegando al circuito di indotto un reostato di avviamento, secondo lo schema di fig. 13.
STATORE ROTORE REOSTATO DI AVVIAM. ALIM.
TRAFERRO ANELLI
Fig. 13 – Schema di inserzione del reostato di avviamento.
Va osservato che un aumento della resistenza secondaria R2’ (ottenuta con l’inserimento in
serie di quella reostatica) non ha effetto sul valore della coppia massima:
Cmax 
3  V f2
o  2  Z  1  R1 Z 
dove Z2 = (R1)2 + Xk2
(Xk = X1d + X2d’) ,
ma sulle seguenti quantità:
- scorrimento di coppia massima: smax = R2’/Z, che aumenta al crescere di R2’;
- coppia di spunto:
Ck = 3R2’(I’2k)2/o = 3R2’Vf2/(oZ2) ,
(37)
(38)
(39)
che aumenta con l’aumento di R2’, favorendo l’avviamento del motore;
- corrente di spunto:
Ik 
V f2
R  R 
1
' 2
2
 X k2
(40)
Macchina a induzione: note aggiuntive che diminuisce con l’aumento di R2’, limitando l’impatto sulla rete di alimentazione.
La coppia d'avviamento così aumenta, mentre la coppia massima è immutata; aumenta anche
lo scorrimento di coppia massima. Di conseguenza le caratteristiche meccaniche assumono, al
variare di R2’, gli andamenti indicati in fig. 14: è evidente l'utilità di un reostato con cui si
passa con continuità dalla condizione di avviamento a quella di lavoro.
E' altresì evidente la riduzione delle correnti di spunto che accompagna l'inserzione del reostato; un ulteriore vantaggio sta nell'aumentato valore di cosk, e quindi nella minore costante
di tempo elettrica del transitorio di inserzione.
Fig. 14 – Effetto dell'inserzione del reostato sulle caratteristiche meccaniche.
6. Motori a induzione a doppia gabbia
I motori a gabbia, non avendo un avvolgimento dotato né di terminali né di anelli, non possono essere evidentemente equipaggiati con il reostato di avviamento. Quando non vi sono difficoltà di avviamento, su carichi con caratteristica meccanica C(N) quadratica, si ricorre
all'avviamento stella-triangolo, che consiste nell'avviare un motore previsto per funzionare a
D, con un collegamento Y, e poi passare a D con uno speciale commutatore. Le correnti allo
spunto sono così ridotte a 1/3 e le coppie a 1/3 di quelle che si hanno con collegamento D.
Per avere condizioni di avviamento migliori, o per particolari necessità dell’azionamento, si
impiegano i motori con rotore a doppia gabbia: una macchina a doppia gabbia ha lo statore
identico a quello di una macchina normale, mentre il rotore è provvisto di due gabbie coassiali, con sezioni diverse: la gabbia esterna ha sezione molto minore di quella interna (Fig. 15).
Fig. 15 – Rotore a doppia gabbia: in nero
l’esterna, di sezione inferiore; in bianco l'interna, a sezione maggiore; di conseguenza Re
> R i.
gabbia interna
Il circuito equivalente di una macchina così fatta può essere agevolmente ricavato con il procedimento di trasformazione per dualità da rete magnetica ad elettrica equivalente.
In fig. 16 è schematizzato il percorso dei flussi mediamente concatenati in una porzione
schematica della macchina, costituita simbolicamente da una cava di statore e da una doppia
barra di rotore; a fianco è mostrata la relativa rete magnetica a costanti concentrate.
Nella schematizzazione di fig. 16 sono messi in evidenza: il flusso c comune a statore e ad
entrambe le gabbie; il flusso di dispersione del primario 1, il flusso di dispersione comune ad
13
Macchina a induzione: note aggiuntive entrambe le gabbie 2 e i flussi dispersi delle singole gabbie 3 e 4.
Nella rete magnetica si hanno altrettante riluttanze, corrispondenti nel circuito equivalente elettrico a induttanze di magnetizzazione (Lm) e di dispersione (Lds, Ldr, Ldr’, Ldr”) (Fig. 17).
14
Fig. 16 – Circuito magnetico del motore a doppia gabbia e rete magnetica corrispondente.
Fig. 17 – Circuito equivalente alla rete
magnetica di fig. 9, tenendo solo conto
delle induttanze.
A questo punto è immediato il passaggio al circuito equivalente completo, che tiene conto anche degli effetti dissipativi, e che si trasforma nel circuito equivalente ridotto portando laYo
a monte dellaZ1 (Fig. 18).
Fig. 18 – Circuito equivalente ridotto di un motore a doppia gabbia.
Macchina a induzione: note aggiuntive All'avviamento (s = 1) e in prossimità di questa condizione i termini resistivi dell'arco doppio
sono trascurabili rispetto quelli reattivi e quindi la corrente percorre la gabbia esterna, la cui
impedenza é inferiore a quella della gabbia interna. Di conseguenza l'avviamento avviene con
un circuito di rotore ad alta resistenza e alta coppia di spunto.
In vicinanza del sincronismo (s  0  0.05) i termini resistivi prevalgono, e la corrente è ora
convogliata nella gabbia interna, a bassa resistenza, e quindi con velocità a carico N vicina a
No, e perdite ridotte nel rotore.
Per interpretare il circuito e dedurne le caratteristiche della macchina va ora considerato che:
R e > R i e Xe < Xi
.
(41)
Il comportamento complessivo della macchina è indicato dalla caratteristica meccanica di fig.
19, in cui sono anche mostrati i contributi delle due gabbie.
E’ evidente che modificando opportunamente forme e proporzioni delle due gabbie si possono ottenere caratteristiche meccaniche di andamenti diversi; al limite le due gabbie possono
anche unirsi, e in tal caso i rotori sono detti a gabbia profonda.
Fig. 19 - Caratteri-stica meccanica di una macchina a doppia
gabbia: sono evidenti i contributi
delle due gabbie.
Fig. 20 – Sezioni di cava di forma più comune per
avvolgimenti a gabbia semplice, doppia e profonda.
L'avviamento Y – D di un motore a doppia gabbia ha caratteristiche molto più favorevoli di
quello di un motore normale, in quanto nel primo si ha una coppia all'avviamento circa uguale
alla massima Cavv  Cmax  (2  3)Cn: dunque, in collegamento Y la coppia, riducendosi a 1/3
é ancora dell'ordine di grandezza di Cn.
7. Motori asincroni sincronizzati
Una delle caratteristiche più sfavorevoli della macchina a induzione è il valore relativamente
basso del fattore di potenza (0,7  0.9), che comporta l'assorbimento dalla rete di una potenza
reattiva di valore rilevante, dal 100% al 50% della potenza attiva.
15
Macchina a induzione: note aggiuntive Infatti un fattore di potenza basso provoca un aumento della corrente in linea, e quindi maggiori perdite, maggiori cadute dì tensione e, considerando che venga applicata una penalità
per basso cos, un costo maggiore dell'energia.
Tali inconvenienti possono essere superati sincronizzando la macchina a induzione, ossia in
altre parole trasformandola in sincrona, attraverso la iniezione di corrente continua nel rotore.
Si ricordi infatti che in una macchina sincrona variando l'eccitazione per P = cost e V = cost
viene controllata la potenza reattiva ed il fattore di potenza.
La sincronizzazione delle macchine a induzione è quindi possibile con macchine con rotore
avvolto e dotate di anelli; in pratica si effettua solo per grosse unità di potenza dell'ordine dei
MW, mentre per le piccole unità la potenza reattiva si ottiene da batterie di condensatori di rifasamento.
L’avviamento della macchina avviene in asincrono, eventualmente con reostato di avviamento. La velocità di regime in funzionamento asincrono è, per le grosse macchine, molto prossima a quella di sincronismo: lo scorrimento nominale va dallo 0.5 all’1%.
A questo punto si stacca una fase dal corto circuito e si applica una tensione continua tra questa fase e le altre due collegate: si stabilisce una corrente continua che, attraversata la fase
singola si divide in parti uguali nelle altre due, esattamente come avviene nell'istante in cui
una corrente di un sistema trifase è massima (IM) e le altre due assumono il valore (IM/2)
(Fig. 21). La macchina è ora equivalente ad una macchina sincrona fuori passo: tuttavia, se
ora la coppia sincronizzante è sufficientemente elevata (e per far questo è sufficiente aumentare l'eccitazione) la macchina prende il passo, e si comporta da sincrona.
Fig. 21 – Le tre fasi di passaggio da macchina a induzione a macchina sincrona; sono rappresentati solo gli avvolgimenti di rotore: a: avviamento su reostato; b: marcia in asincrono in
corto circuito; c: marcia in sincrono con l’avvolgimento alimentato in c.c..
E' evidente che, a pari valore del campo di rotore, la fase percorsa dall'intera corrente di eccitazione è in condizioni termiche più gravose che nel funzionamento in asincrono: le sue perdite sono infatti RfIM2 = 2RfI2 mentre in asincrono sono RfI2; inoltre la corrente di eccitazione
deve essere convenientemente aumentata per ridurre la potenza reattiva.
Come conseguenza l’avvolgimento di rotore di un motore a induzione sincronizzabile deve
avere conduttori di sezione maggiore di quelli di una macchina normale; questo é pero di vantaggio, in quanto la velocità a carico in asincrono è ancora più vicina a quella di sincronismo,
in ragione delle ridotte perdite di rotore. Diviene allora inferiore anche l'energia che va somministrata al rotore per accelerarlo dalla velocità N alla velocità No, che si traduce in corrente
16
Macchina a induzione: note aggiuntive assorbita all'atto della sincronizzazione.
Oltre allo schema indicato in fig. 21, molti altri sono egualmente possibili, con carichi termici
del rotore diversi, ma con comportamento equivalente (Fig. 22).
17
Fig. 22 – Alcuni schemi di collegamento per la sincronizzazione di macchine a induzione.
8. Generatori a induzione
8.1.
Generatori a induzione in parallelo alla rete o su carichi isolati
Si tratta di un impiego nel quale la macchina è direttamente connessa alla rete (o al carico) attraverso i terminali di statore; il rotore può essere del tipo a gabbia. Vengono qui riportate alcune considerazioni di carattere applicativo circa queste modalità di funzionamento.
La coppia massima e lo scorrimento di coppia massima nel funzionamento come generatore
sono poco diversi da quelli che si hanno nel funzionamento come motore; invece i1 fattore di
potenza del generatore è sempre inferiore a quello del motore.
I1 comportamento di un generatore è diverso se è collegato ad una rete di potenza infinita, o
se alimenta un carico indipendente (Fig. 23).
Fig. 23 – I due possibili funzionamenti di un generatore a induzione, collegato ad una rete elettrica, o indipendente.
Nel primo caso, essendo la frequenza di rete fissa ed imposta, la velocità del campo rotante
No è costante, e, per funzionare come generatore la macchina deve ruotare ad una velocità N
maggiore di No (s è negativo), tanto più elevata quanto più alta é la potenza attiva erogata. La
potenza reattiva è stabilmente assorbita dalla rete.
Generatori a induzione di potenza rilevante (alcuni MW) sono installati entro condotte ad ac-
Macchina a induzione: note aggiuntive qua fluente, direttamente alloggiati nel mozzo della girante (Kaplan o elica). Sono stabilmente
in parallelo alla rete e non necessitano di alcuna regolazione.
Viceversa, in caso di piccoli generatori, tipicamente utilizzati nei gruppi elettrogeni, questi
alimentano un carico indipendente. Evidentemente la potenza reattiva necessaria alla magnetizzazione non può provenire dal carico (spesso di natura induttiva), né può essere somministrata per via meccanica; in tal caso, per produrre la potenza reattiva necessaria al generatore,
viene collegata ai morsetti dello statore una batteria trifase di condensatori.
All'atto dell'avviamento del gruppo si verifica un'autoeccitazione, e la macchina è perciò in
grado di erogare potenza. Le variazioni di potenza reattiva richieste dal generatore si traducono in variazioni di tensione ai morsetti. Se la velocità di rotazione del motore che aziona il
generatore è mantenuta costante, la frequenza diminuisce al crescere del carico, via via che No
si riduce rispetto a N.
8.2.
Il generatore a induzione a doppia alimentazione (DFIG)
Il generatore a doppia alimentazione (Doubly Fed Induction Generator – DFIG) è un'evoluzione del generatore a induzione; il termine “doubly fed” riflette il fatto che la macchina è
doppiamente alimentata: dallo statore attraverso la rete e dal rotore tramite un apposito convertitore statico.
In fig. 24 viene rappresentato un tipico sistema di turbina eolica equipaggiata con un DFIG.
Fig. 24 – Turbina eolica equipaggiata con DFIG.
Lo statore non presenta differenze rispetto a una normale macchina a induzione, mentre il rotore deve essere necessariamente di tipo avvolto e non a gabbia.
Come si può notare in fig. 24, le principali caratteristiche che distinguono il DFIG rispetto alla macchina a induzione classica sono:
- i circuiti rotorici non vengono cortocircuitati, ma anch'essi alimentati;
18
Macchina a induzione: note aggiuntive - la alimentazione del rotore avviene dalla rete, tramite un convertitore di frequenza di interfacciamento e il sistema spazzole-anelli.
Il convertitore statico di frequenza, di tipo trifase-trifase, è costituito da 3 componenti:
- un convertitore ac-dc, collegato sul lato ac verso la rete: tale convertitore, che ha la struttura di un inverter PWM (Pulse Width Modulation), è reversibile nel senso del flusso di potenza: se la potenza attiva arriva dalla rete, il convertitore funge da raddrizzatore, mentre se
la potenza fluisce verso la rete, il convertitore si comporta da invertitore vero e proprio;
- un dc bus capacitivo;
- un altro convertitore ac-dc lato rotore del generatore, anch’esso avente la struttura di un
inverter PWM: se la potenza attiva esce dal rotore del generatore, il convertitore funziona
da raddrizzatore, mentre se la potenza attiva fluisce verso il rotore, il convertitore si comporta da invertitore vero e proprio.
I vantaggi principali del DFIG sono:
- possibilità di funzionamento a velocità sub-sincrona e super-sincrona, con ampio campo di
variazione della velocità (valori tipici si trovano attorno al  30% rispetto alla nominale);
- favorevole dimensionamento del convertitore di alimentazione rotorica.
- sfruttamento ottimo delle fonti rinnovabili, come per esempio il piccolo idroelettrico oppure l'eolico, che per loro natura non garantiscono un flusso energetico costante;
- controllabilità degli scambi di potenza attiva e reattiva con la rete, grazie al convertitore;
- costo moderato dell'inverter e bassi valori di armoniche immesse in rete;
- possibilità di funzionamento in isola.
Il concetto principale su cui basa il funzionamento del DFIG è che per ottenere una frequenza
f costante in uscita dallo statore, la frequenza f2 di rotore deve essere variata dal convertitore
in modo da “adattarsi” alla velocità effettiva di rotazione, così da non fare uscire la macchina
dalla sua zona di funzionamento stabile da generatore.
L'imposizione da parte del convertitore RSC di fig. 24 di una determinata frequenza agli avvolgimenti di rotore determina dei flussi di potenza che, in base allo scorrimento, possono essere sia entranti (positivi) che uscenti (negativi); per meglio comprendere le dinamiche di
funzionamento sono tracciati in fig. 25 e 26 i flussi di potenza che interessano la macchina
funzionante da generatore nei due casi che riservano maggiore interesse, vale a dire il funzionamento sub-sincrono (s>0) e il funzionamento super-sincrono (s<0).
Fig. 25 – Flussi di
potenza nel DFIG
nel caso di funzionamento sub-sincrono (s>0)
Nel caso di funzionamento sub-sincrono (fig. 25), il rotore gira ad una velocità minore rispetto a quella del campo rotante. Normalmente, per una macchina a induzione, questo punto di
funzionamento corrisponde al funzionamento come motore: per passare a generatore, il DFIG,
oltre ad assorbire la potenza meccanica Pm deve assorbire tramite il rotore anche la potenza
19
Macchina a induzione: note aggiuntive elettrica Pr necessaria a compensare la differenza, in termini di frequenza, tra la velocità elettrica di statore e la velocità meccanica di rotore: in questo modo è possibile ottenere un flusso
di potenza uscente dallo statore.
Nel caso di funzionamento super-sincrono (fig. 26) il rotore si muove ad una velocità
maggiore rispetto a quella di sincronismo: per una macchina a induzione questo corrisponderebbe già al funzionamento come generatore. C'è tuttavia da notare che oltre al flusso di potenza immesso dallo statore verso la rete, ne esiste anche un altro proveniente dal rotore, con
un aumento dell'effettiva potenza immessa in rete.
Fig. 26 – Flussi di
potenza nel DFIG in
caso di funzionamento super-sincrono (s<0)
Sviluppando la teoria di funzionamento della macchina, è possibile tracciare il circuito equivalente di fase di fig. 27.
Nel circuito di fig. 27 tutti i parametri e le grandezze rotoriche sono riferite ai dati di avvolgimento e alla frequenza di statore: il circuito risulta molto simile a quello classico della macchina a induzione, con l'unica differenza che ora il rotore è aperto e ai suoi capi è imposta la
tensione di alimentazioneV2’/s.
Fig. 27 – Circuito elettrico equivalente del generatore asincrono a doppia alimentazione.
Dalla osservazione del circuito di fig. 27 emerge che la potenza reattiva necessaria alla magnetizzazione del traferro, cui corrisponde la corrente magnetizzanteIm, può provenire in parte dallo statore, in parte dal rotore; peraltro, la sola provenienza diIm dalla alimentazione di
statore (cui corrisponde la circolazione di una correnteI2’ puramente attiva) consente di contenere il dimensionamento del convertitore di frequenza.
9. Impiego della macchina a induzione come variatore di fase e di tensione
Sempre facendo riferimento ad una macchina a rotore avvolto e con anelli, mantenuta ferma
da un blocco meccanico, possono essere messe in evidenza alcune applicazioni interessanti.
In generale queste utilizzazioni sono limitate ad uso di laboratorio, per potenze modeste.
20
Macchina a induzione: note aggiuntive I maggiori inconvenienti di queste disposizioni risiedono nella elevata reattanza serie e nella
forma d'onda deformata da armoniche di dentatura (dovute al susseguirsi di denti e cave nel
circuito magnetico). Dati i modesti spostamenti angolari, di regola gli anelli sono sostituiti da
connessioni flessibili.
9.1. Variatore di fase
In primo luogo le f.e.m. di rotore Eo, pur restando immutate in modulo, variano di fase rispetto la E1, se la mutua posizione delle due parti della macchina viene variata (Fig. 28).
La macchina a induzione funge così da variatore di fase: sfasamenti compresi tra 0 e 360° si
ottengono con rotazione di 2 passi polari.
9.2. Variatore di tensione
Collegando ad autotrasformatore i due avvolgimenti del variatore di fase si ottiene il variatore
di tensione (Fig. 29); va osservato che ad una variazione di tensione si accompagna sempre
una variazione di fase; qualora questa variazione sia indesiderata, si collegano in serie due variatori che provochino sfasamenti opposti.
Fig. 28 – Variatore di fase: V1 = tensione di alim.; V2 = tensione di uscita.
Il rapporto dei moduli V1/V2 è costante;
la fase tra le due terne è modificabile
regolando la posizione del rotore.
Fig. 29 – Variatore di tensione; il rotore funge da
avvolg. derivato, lo statore da avvolgimento serie.
A destra la situazione fasoriale, con la circonferenza luogo degli estremi diE2. In caso si abbia
E1 = E2 la tensione in uscita va da 0 a 2V1.
10. La macchina a induzione monofase
La distribuzione dell’energia alle utenze di modesta potenza (abitazioni civili, uffici, piccole
officine, ...) é effettuata con un sistema monofase, di solito a 220 V, che si ottiene tra una fase
e il centro stella (collegato a terra) del secondario del trasformatore di distribuzione (Fig. 30).
Quindi i motori a induzione trifasi studiati in precedenza non sono utilizzabili.
Per potenze comprese tra alcune decine di W e qualche kW sono impiegati in modo diffusissimo í motori asincroni monofasi, che uniscono alle qualità di robustezza e basso costo dei
motori asincroni trifasi la possibilità di funzionare con alimentazione monofase: essi sono utilizzati in elettrodomestici, pompe, ventilatori e molte altre applicazioni.
Costruttivamente una macchina monofase è molto simile ad una trifase: identico é il circuito
magnetico di statore e rotore, identico l'avvolgimento di rotore che di regola è a gabbia; l'unica differenza di rilievo sta nell’avvolgimento di statore, che è monofase, e che occupa circa
2/3 del passo polare (fig. 31). Il campo magnetico generato da questo avvolgimento ha direzione fissa nello spazio (diretta lungo l'asse polare che è l'asse dell'avvolgimento) e intensità
variabile nel tempo con lo stesso andamento della corrente, e quindi sinusoidale.
21
Macchina a induzione: note aggiuntive 22
Fig. 30 – Distribuzione monofase ottenuta da un trasformatore trifase D/yn (o Y/zn), con secondario collegato a stella con neutro, e neutro a terra.
Fig. 31 – Raffigurazione
schematica di un motore
monofase ad induzione a
due poli. Il rotore è a gabbia e l'avvolgimento di statore occupa 2/3 di passo
polare. Tutte le correnti nei
conduttori che occupano le
cave superiori sono entranti, e viceversa per quelle inferiori. L'avvolgimento
crea un campo di polarità
fissa, diretto lungo l'asse
polare.
Si è quindi nell'identica situazione geometrica ed elettromagnetica considerata per lo studio
del campo magnetico rotante: si è mostrato che il campo pulsante a distribuzione spaziale sinusoidale lungo il traferro è equivalente a una coppia di campi controrotanti con ugual velocità angolare e ampiezza metà del valor massimo del campo stazionario. Le velocità di rotazione dei campi controrotanti sono legate al numero di poli e alla frequenza dalla nota relazione:
NoD =  NoI = 120f/p .
(42)
Se ne deduce che un avvolgimento monofase è equivalente a due avvolgimenti trifasi idealmente disposti nella medesima struttura magnetica, posti in serie tra loro (in modo che le due
f.m.m. siano uguali) e con due fasi scambiate, in modo da produrre due campi controrotanti. I
due campi così prodotti agiscono su un unico rotore (Fig. 32).
Il circuito equivalente di tale struttura risulta dalla serie di due normali circuiti equivalenti di
una macchina a induzione trifase. Il campo rotante nella medesima rotazione del rotore, e
l'avvolgimento ideale che lo genera, sono detti diretti; l'altro campo e il relativo avvolgimento
sono detti inversi.
Macchina a induzione: note aggiuntive 23
Fig. 32 – Schema elettrico che mostra l'equivalenza tra una macchina monofase e due macchine trifasi, che producono due campi controrotanti e agenti su un unico rotore.
Una generica velocità di rotazione N è espressa naturalmente mediante lo scorrimento che,
prendendo come base la velocità di sincronismo del campo diretto No risulta pari a s per il
campo diretto e 2  s per il campo inverso.
Il circuito equivalente assume pertanto la configurazione di fig. 33: naturalmente, la coppia e
la potenza meccanica rappresentate dal primo circuito, quello diretto, sono motrici, e quelle
del secondo circuito sono frenanti per velocità dì rotazione comprese tra 0 e No.
Fig. 33 – Due circuiti equivalenti di una macchina a induzione trifase, connessi in serie ai
morsetti di statore, costituiscono il circuito equivalente della macchina monofase.
Possiamo ora determinare il comportamento della macchina per vari valori di scorrimento.
Per s = 1, i due circuiti equivalenti assumono identici valori, le potenze trasmesse del campo
diretto e da quello inverso sono uguali e quindi la coppia di avviamento è nulla.
Per valori di s bassi, (0.01  0.10) ossia in prossimità del sincronismo e quindi nelle condizioni di funzionamento R2’/s » R2’/(2  s), trascurando l'influenza dei due rami derivati, il rapporto tra potenza trasmessa dal campo diretto e potenza trasmessa dal campo inverso risulta
elevato (ad esempio per s = 0.05, tale rapporto è circa 40). Di conseguenza la caratteristica
meccanica in questa zona è assai simile a quella di una normale macchina trifase.
Nel campo di valori di scorrimento compresi tra 1 e 2 il comportamento della macchina, che
ruota nel senso del campo inverso, è del tutto simmetrico (Fig. 34).
Macchina a induzione: note aggiuntive Fig. 34 – Caratteristiche meccaniche del campo diretto e di
quello inverso (a tratteggio) e
caratteristica meccanica risultante della macchina a induzione monofase.
In conclusione la macchina non è in grado di avviarsi, ma se viene fatta ruotare debolmente in
una qualsiasi delle due direzioni, accelera fino a portarsi in prossimità del sincronismo, ed è in
grado di sviluppare coppia e potenze motrici: ovviamente, con questo handicap, una macchina
di questo tipo non è di utilità pratica; si descriveranno dunque gli accorgimenti che si adottano
per avere una coppia di avviamento diversa da zero.
E' però interessante osservare che il suo comportamento equivale a quello di un normale motore trifase a cui, per qualsiasi ragione (guasto alla linea, interruzione di un avvolgimento di
fase, intervento fusibile, …) venga a mancare una fase dell'alimentazione: se il motore è in
funzionamento continuerà a funzionare, pur con le due restanti fasi sovraccaricate; se però
viene arrestato, non è più in grado di ripartire: al successivo avviamento, restando a rotore
fermo, assorbirà la corrente Ik, risultando deteriorato irrimediabilmente in breve tempo.
Il principio di cui ci si avvale per produrre delle coppie di avviamento nei motori monofasi é
in embrione già stato indicato nello studio del campo rotante, in cui si era visto che due avvolgimenti monofasi, posti in quadratura spaziale elettrica e percorsi da due correnti di ugual
valore ma in quadratura temporale generano un campo rotante, identico a quello generato dai
comuni avvolgimenti trifasi.
In generale, disponendo due avvolgimenti monofasi con assi polari diversi sullo statore, e facendo percorrere questi avvolgimenti da due correnti sfasate tra di loro, si ottiene un campo
ellittico, formato dalla sovrapposizione di un campo rotante e di uno pulsante.
Le soluzioni costruttive impiegate sono assai numerose; in tutti i casi il motore, pur essendo
chiamato monofase (in quanto alimentato da una linea monofase), è in realtà una macchina
bifase. La disposizione dell'avvolgimento indicato in fig. 35 mostra che sulla corona statorica
sono disponibili delle cave che possono alloggiare un avvolgimento con asse polare a 90° con
quello preesistente: abbiamo così un avvolgimento principale, o di lavoro, e un avvolgimento
ausiliario, o di avviamento.
Si tratta ora di disporre di una corrente ausiliaria sfasata rispetto a quella principale: a tale
scopo, sono possibili diverse soluzioni, come schematizzato in fig. 36.
24
Macchina a induzione: note aggiuntive Fig. 35 – Sopra: disposizione
lungo lo statore di una macchina
a 2 poli di un avvolgimento di lavoro (a tratteggio, distribuito su
120° elettrici/polo) e di un avvolgimento di avviamento (in nero distribuito sui restanti 60° elettrici/polo).
Sotto: lamierino magnetico di
statore, con cave (più grandi) per
l’avvolgimento di lavoro e cave
(più piccole) per l’avvolgimento
di avviamento; a fianco il lamierino magnetico di rotore, destinato ad alloggiare la gabbia.
25
Macchina a induzione: note aggiuntive 1.
26
2.
3.
4.
Fig. 36 – Schemi adottati per realizzare motori monofase auto avviabili, relativi diagrammi
fasoriali e caratteristiche meccaniche:
1. motori con fase ausiliaria resistiva (avvolgimento con filo di piccola sezione, inserito solo
all’avviamento, per ottenere corrente ausiliaria quasi in fase con la tensione);
2. motori con condensatore di avviamento (di elevata capacità, inserito solo all’avviamento);
3. motore con condensatore permanentemente inserito (di capacità ottimale per il regime);
4. motore con condensatore di avviamento e condensatore permanentemente inserito (per avere elevata coppia di avviamento e buone prestazioni a regime).
Macchina a induzione: note aggiuntive Un cenno a parte merita la soluzione molto semplice realizzata con macchina a polo suddiviso
e spira di cortocircuito (inglese: “shaded-pole”; fig. 37): il rotore è a gabbia, mentre lo statore
presenta bobine concentrate ed espansioni polari che ad una estremità presentano un intaglio;
attorno a tali parti sono disposte spire in corto circuito.
Alimentando l’avvolgimento statorico concentrato in c.a., le spire in cortocircuito sono sede
di f.e.m. e quindi di correnti, che producono uno sfasamento locale della quota parte del flusso di polo con esse concatenate.
L’effetto in termini di flusso al traferro è quello di generare un campo magnetico rotante di
induzione, che agisce sulla gabbia di rotore, producendo coppia.
Le taglie di questi motori sono piccole (da qualche W a qualche decina di W), e i loro rendimenti modesti (20 – 40 %): per tale ragione, nonostante le potenze unitarie siano piccole, il
loro uso tende ad essere scoraggiato dalle recenti normative energetiche, per l’elevatissimo
numero di esemplari installati e quindi per gli elevati consumi.
Fig. 37 – In alto: schema di principio del motore a polo suddiviso a due poli e sua implementazione costruttiva; in basso: disposizione del motore a quattro poli.
27