Liceo Colombini
Liceo Economico Sociale Biomedico
Programma di matematica di seconda
CONTENUTI
COMPETENZE
TIPOLOGIA DI VERIFICA
Equazioni di 1°grado intere,
semplici fratte, numeriche
problemi di 1°grado, anche
geometrici, in un’incognita.
Conoscere la definizione di
equazione, i principi di
equivalenza e la definizione di
soluzione.
Saper risolvere un’equazione
intera o fratta.
Essere in grado di impostare e
risolvere un’equazione che risolva
un problema proposto.
Risoluzione di esercizi e problemi
Interrogazioni orali
Questionari a risposta aperta
Questionari a scelta multipla
Questionari Vero/Falso
Sistemi lineari in due o tre
incognite.
Conoscere saper applicare i
metodi risolutivi di un sistema
lineare ed essere in grado di
scegliere quello più conveniente.
Disequazioni intere di grado 1° e
superiore al 1°; disequazioni fratte, sistemi di
disequazioni.
Saper risolvere, applicando i
principi di equivalenza,
disequazioni di primo grado.
Saper rappresentare
graficamente l’insieme delle
soluzioni sulla retta reale.
Saper risolvere disequazioni di
grado superiore al primo o fratte
studiando il segno dei vari fattori.
Saper risolvere un sistema di
disequazioni.
Numeri irrazionali e numeri reali.
Radicali ed operazioni con essi.
Conoscere le regole di calcolo per
i radicali aritmetici.
Saper operare con i radicali
numerici: portar fuori il segno di
radice, addizione, moltiplicazione,
divisione, elevamento a potenza.,
radice di radice.
Conoscere i metodi di
razionalizzazione. Potenze ad
esponente frazionario.
Il piano cartesiano e la retta:
distanza fra due punti, punto
medio di un segmento. Equazione
generale della retta, rette parallele
agli assi, retta sotto forma
implicita ed esplicita. Rette
parallele e rette perpendicolari.
Fascio di rette. Retta per due
punti. Distanza di un punto da una
retta.
Conoscere ed applicare le
formule della distanza fra due
punti e del punto medio di un
segmento.
Saper rappresentare rette e
determinarle assegnate
determinate condizioni.
Individuare le proprietà essenziali
delle figure e riconoscerle in
situazioni concrete
Coefficiente angolare
Risolvere un sistema con il
Interpretazione grafica dei sistemi
nel piano cartesiano
Grafico della proporzionalità
diretta ed inversa, della funzione
lineare e quadratica
metodo grafico
Saper riconoscere e
rappresentare grandezze
direttamente ed inversamente
proporzionali
Criterio di parallelismo.
Proprietà degli angoli dei poligoni
Parallelogrammi: rettangolo,
rombo, quadrato. Trapezi
Conoscere il criterio di
parallelismo. Conoscere la
somma degli angoli interni ed
esterni di un poligono. Conoscere
le proprietà dei parallelogrammi,
in particolate di rettangolo, rombo,
quadrato.
Conoscere la classificazione dei
trapezi e le proprietà del trapezio
isoscele.
Equivalenza delle figure piane:
teoremi di Pitagora ed Euclide
Risoluzione algebrica di problemi
geometrici
Conoscere il concetto di
equivalenza e gli enunciati dei
teoremi di Pitagora ed Euclide e
saperli applicare nella risoluzione
di problemi.
Probabilità classica e statistica
Conoscere le definizioni relative
e saper applicare le formule in
situazioni semplici.