Massa atomica Chimica nucleare • Tabella periodica: Le masse degli elementi sono espresse in unità di massa atomica (uma – amu). • 1 amu = 1/12 massa di 12 6 C. • Isotopo 12 del carbonio Numero di massa A= N + Z 12 6 C Numero atomico Z Come si misurano masse atomiche Risoluzione dello spettrometro di massa Molecole di CO e N2 sono distinte nonostante l’esigua differenza di massa: 0.0112 amu. Schema dello spettrometro di massa: separazione è funzione del rapporto Q/m Isotopi: abbondanza naturale • M è una media pesata: M = ∑ p i mi pi = abbondanza naturale dell'isotopi i • mi = massa dell'isotopo i Natura dell’atomo • Diametro nucleo ≅ 10-2 pm • Diametro atomo ≅ 100 - 500 pm • • Cl ha isotopi naturali 35 e 37: 35 × p1 + 37 × p2 = 35.453 p1 + p2 = 1 • Neutrone • Protone • Elettrone 1 0 n 1 1 p 0 −1 e da cui p1 = 0.75 75% del Cl in natura è isotopo 35. 1 Atomi – particelle elementari Particella Simbolo Neutrone 1 0 n 1.008665 Protone 1 1 p 1.007265 Elettrone 0 −1 e 0.000549 Massa in amu (mu) Massa dell’atomo è concentrata nel nucleo Volume dell’atomo è dato dagli elettroni Atomo • Supponiamo che un atomo p.e. idrogeno, abbia un raggio atomico dell'ordine di 10-10 m un raggio nucleare dell'ordine di 10-16 m. Rispondere ai seguenti quesiti: • a. Qual'è il volume dell'atomo • b. Qual'è il volume del nucleo • c. Qual'è la parte del nucleo espressa come percentuale del volume dell'atomo Atomo Atomo • La massa dell'atomo di idrogeno è circa 1.7 x 10-27 kg, tenendo presente i risultati dell'esercizio precedente, calcolare: • a. Qual'è la densità dell'atomo dell'idrogeno • b. Qual'è la densità del nucleo di idrogeno (Ignorare la massa dell'elettrone) • La terra ha la massa di circa 6 x 1024 kg. Se la terra avesse la densità del nucleo di idrogeno che raggio avrebbe. N.B. Il raggio terrestre è circa 6.4 x 106 m. Perché esiste il nucleo? Perché esiste il nucleo? 4 • Massa: 2×11 p + 2× 01 n + 2× −10 e= 24 He • 24 He = 2x(1.007265+1.0086650+0.000549) = 4.032958 amu Energie: E = m c 2 • Massa sperimentale 2 He = 4.002603 amu 2×11 p + 2×01 n + 2×−01 e = 24He 4 2 4.033 amu He 4.026 amu • La formazione dell’atomo (nucleo) di elio crea un difetto di massa 2 Energia di stabilizzazione per nucleone Perché esiste il nucleo? • Difetto di massa : energia liberata: E = m × c 2 = (0.030355 × 1.661× 10 −27 Kg / atom ) × (2.998 × 108 ms −1 ) 2 = 4.532 × 10 −12 J / atom E ( j / mol ) = 4.532 × 10 −12 ( J / atom ) × 6.02 × 10 23 (atom / mol ) = 2.22 × 1012 J / mol Energia liberata dovuta a forze di coesione nucleare Forze di coesione nucleare Radioattività naturale Tipo di radiazione α Carica (u.e.) 2+ Massa (g) 6.64x10-24 Potere 1 penetrante relativo Identità 4 2 210 84 β −: 3 1 β +: 11 6 γ: 234 90 Cinetica di I ordine dN = r = − kN dt 4 Po→ 206 82 Pb + 2 He 3 2 H → He + β − C →115B + +10 e Th*→ 234 90 Th + γ 19.11x10-28 100 0 0 1000 elettroni radiazioni ad alta energia N = N 0 e − kt − dN = kdt N ( 01n→11p + −10 e) (11p → 01n + +10 e) γ Decadimento radioattivo Decadimento radioattivo α: He β N t − dN ∫N N = ∫0 kdt 0 ln N0 = kt N 3 Decadimento Radioattivo Datazione Carbonio-14 N = N 0 e − kt Tempo di emivita – semivita : 14 7 N0 =2 N 14 6 ln 2 = kt1 2 t1 2 = 0.693 k N + 01n→146C +11H C →147 N + −10 e t 1 = 5730 anni 2 Datazione Carbonio In un campione di carbone di legna antico fu trovata la velocità di 13.6 di disintegrazioni per minuto per grammo. Qual è l’età del carbone. ln N0 kN r 15.3 0.693 = kt = ln 0 = ln 0 = ln = kt = t N kN r t1 2 13.6 da cui si ricava t= 5730 15.3 ln anni = 974 anni 0.693 13.6 R0 = 15.3 dis / min× g Unità radiazione Unità Significato Curie (Ci) 3.7 1010disintegrazione sec-1 (dis. 1g Ra s-1) Becquerel (Bq) 1 disintegrazione s-1 Gray (Gy) 1 J energia / 1kg tessuto vivente Sievert (Sv) Gray * qualità radiazione (α = 20; β = 1) Valori massimi : 0.05 Sv/anno 3-4 Sv dose fatale potassio-40 nel corpo: 0.2 mSv/anno raggi cosmici: 1-3 mSv/anno 4