Massa atomica
Chimica nucleare
• Tabella periodica: Le masse degli elementi
sono espresse in unità di massa atomica
(uma – amu).
• 1 amu = 1/12 massa di
12
6
C.
• Isotopo 12 del carbonio
Numero di massa
A= N + Z
12
6
C
Numero atomico Z
Come si misurano masse atomiche
Risoluzione dello spettrometro di massa
Molecole di CO e N2
sono distinte
nonostante l’esigua
differenza di massa:
0.0112 amu.
Schema dello spettrometro di massa:
separazione è funzione del rapporto Q/m
Isotopi: abbondanza naturale
•
M è una media pesata:
M = ∑ p i mi
pi = abbondanza
naturale dell'isotopi i
• mi = massa
dell'isotopo i
Natura dell’atomo
• Diametro nucleo ≅ 10-2 pm
• Diametro atomo ≅ 100 - 500 pm
•
•
Cl ha isotopi naturali 35 e 37:
35 × p1 + 37 × p2 = 35.453
p1 + p2 = 1
• Neutrone
• Protone
• Elettrone
1
0
n
1
1
p
0
−1
e
da cui p1 = 0.75
75% del Cl in natura è isotopo 35.
1
Atomi – particelle elementari
Particella
Simbolo
Neutrone
1
0
n
1.008665
Protone
1
1
p
1.007265
Elettrone
0
−1
e
0.000549
Massa in amu (mu)
Massa dell’atomo è concentrata nel nucleo
Volume dell’atomo è dato dagli elettroni
Atomo
• Supponiamo che un atomo p.e. idrogeno,
abbia un raggio atomico dell'ordine di 10-10
m un raggio nucleare dell'ordine di 10-16
m. Rispondere ai seguenti quesiti:
• a. Qual'è il volume dell'atomo
• b. Qual'è il volume del nucleo
• c. Qual'è la parte del nucleo espressa
come percentuale del volume dell'atomo
Atomo
Atomo
• La massa dell'atomo di idrogeno è circa
1.7 x 10-27 kg, tenendo presente i risultati
dell'esercizio precedente, calcolare:
• a. Qual'è la densità dell'atomo
dell'idrogeno
• b. Qual'è la densità del nucleo di idrogeno
(Ignorare la massa dell'elettrone)
• La terra ha la massa di circa 6 x 1024 kg.
Se la terra avesse la densità del nucleo di
idrogeno che raggio avrebbe. N.B. Il
raggio terrestre è circa 6.4 x 106 m.
Perché esiste il nucleo?
Perché esiste il nucleo?
4
• Massa: 2×11 p + 2× 01 n + 2× −10 e= 24 He
• 24 He = 2x(1.007265+1.0086650+0.000549) =
4.032958 amu
Energie: E = m c
2
• Massa sperimentale 2 He = 4.002603 amu
2×11 p + 2×01 n + 2×−01 e = 24He
4
2
4.033 amu
He
4.026 amu
• La formazione dell’atomo (nucleo) di elio
crea un difetto di massa
2
Energia di stabilizzazione per
nucleone
Perché esiste il nucleo?
• Difetto di massa : energia liberata:
E = m × c 2 = (0.030355 × 1.661× 10 −27 Kg / atom ) × (2.998 × 108 ms −1 ) 2
= 4.532 × 10 −12 J / atom
E ( j / mol ) = 4.532 × 10 −12 ( J / atom ) × 6.02 × 10 23 (atom / mol ) = 2.22 × 1012 J / mol
Energia liberata dovuta a forze di coesione nucleare
Forze di coesione nucleare
Radioattività naturale
Tipo di radiazione
α
Carica (u.e.) 2+
Massa (g)
6.64x10-24
Potere
1
penetrante
relativo
Identità
4
2
210
84
β −:
3
1
β +:
11
6
γ:
234
90
Cinetica di I ordine
dN
= r = − kN
dt
4
Po→ 206
82 Pb + 2 He
3
2
H → He + β
−
C →115B + +10 e
Th*→ 234
90 Th + γ
19.11x10-28
100
0
0
1000
elettroni
radiazioni ad
alta energia
N = N 0 e − kt
− dN
= kdt
N
( 01n→11p + −10 e)
(11p → 01n + +10 e)
γ
Decadimento radioattivo
Decadimento radioattivo
α:
He
β
N
t
− dN
∫N N = ∫0 kdt
0
ln
N0
= kt
N
3
Decadimento Radioattivo
Datazione Carbonio-14
N = N 0 e − kt
Tempo di emivita – semivita :
14
7
N0
=2
N
14
6
ln 2 = kt1 2
t1 2 = 0.693 k
N + 01n→146C +11H
C →147 N + −10 e
t 1 = 5730 anni
2
Datazione Carbonio
In un campione di carbone di legna antico fu trovata la
velocità di 13.6 di disintegrazioni per minuto per grammo.
Qual è l’età del carbone.
ln
N0
kN
r
15.3
0.693
= kt = ln 0 = ln 0 = ln
= kt =
t
N
kN
r
t1 2
13.6
da cui si ricava
t=
5730 15.3
ln
anni = 974 anni
0.693 13.6
R0 = 15.3 dis / min× g
Unità radiazione
Unità
Significato
Curie (Ci)
3.7 1010disintegrazione sec-1 (dis. 1g Ra s-1)
Becquerel (Bq)
1 disintegrazione s-1
Gray (Gy)
1 J energia / 1kg tessuto vivente
Sievert (Sv)
Gray * qualità radiazione (α = 20; β = 1)
Valori massimi : 0.05 Sv/anno
3-4 Sv dose fatale
potassio-40 nel corpo: 0.2 mSv/anno
raggi cosmici: 1-3 mSv/anno
4