Algebra Disequazioni di grado superiore al secondo di vario tipo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 v 3.0 π₯π₯ 4 − π₯π₯ 2 > 0 π₯π₯ < −1 ∪ π₯π₯ > 1 π₯π₯ 4 − 16ππ4 ≥ 0 π₯π₯ ≤ −2ππ ∪ π₯π₯ ≥ 2ππ π₯π₯ 2 (π₯π₯ 2 − 1) ≥ 0 π₯π₯ ≤ −1 ∪ π₯π₯ ≥ 1 π₯π₯ 4 + 4 < 0 ππππππππππππππππππππππ 2π₯π₯ 4 + √3 > 0 ∀π₯π₯ ∈ β π₯π₯ 4 + 3 ≥ 0 ∀ π₯π₯ ∈ β π₯π₯ 3 + 1 ≤ 0 π₯π₯ ≤ −1 π₯π₯ 6 + 1 ≥ 0 ∀ π₯π₯ ∈ β π₯π₯ 4 − 81 < 0 −3 < π₯π₯ < 3 4π₯π₯ 8 + 1 ≥ 0 ∀ π₯π₯ ∈ β π₯π₯ 2 (π₯π₯ 2 − 9) > 0 π₯π₯ ≤ −3 ∪ π₯π₯ ≥ 3 2 2 − √3 ≤ π₯π₯ ≤ √3 3 3 π₯π₯ 2 (3π₯π₯ 2 − 4) ≤ 0 (2π₯π₯ 2 − 1)(π₯π₯ 2 − 9) > 0 π₯π₯ < −3 ∪ − √2 √2 < π₯π₯ < ∪ π₯π₯ > 3 2 2 π₯π₯ 2 − π₯π₯ 4 > 0 −1 < π₯π₯ < 0 ∪ 0 < π₯π₯ < 1 π₯π₯ 3 − 2π₯π₯ 2 − π₯π₯ + 2 ≤ 0 π₯π₯ ≤ −1 ∪ 1 ≤ π₯π₯ ≤ 2 π₯π₯ 3 − 5π₯π₯ 2 + 6π₯π₯ < 0 π₯π₯ < 0 ∪ 2 < π₯π₯ < 3 1 ≤ π₯π₯ ≤ 2 ∪ π₯π₯ ≥ 3 2 2π₯π₯ 3 − 11π₯π₯ 2 + 17π₯π₯ − 6 ≥ 0 π₯π₯ 3 + π₯π₯ 2 − 3π₯π₯ + 1 > 0 −√2 − 1 < π₯π₯ < √2 − 1 ∪ π₯π₯ > 1 3 < π₯π₯ < 2 2 2π₯π₯ 4 − 7π₯π₯ 3 + 4π₯π₯ 2 + 7π₯π₯ − 6 < 0 −1 < π₯π₯ < 1 ∪ π₯π₯ 4 − 5π₯π₯ 2 ≥ 0 π₯π₯ = 0 ∨ π₯π₯ ≤ −√5 ∨ π₯π₯ ≥ √5 π₯π₯ 4 + π₯π₯ 2 + 1 > 0 ∀ π₯π₯ ∈ β © 2016 - www.matematika.it 1 di 5 Algebra 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 v 3.0 Disequazioni di grado superiore al secondo (π₯π₯ 2 − 3)(π₯π₯ − 2)(π₯π₯ 2 + 1) > 0 −√3 < π₯π₯ < √3 ∪ π₯π₯ > 2 4π₯π₯ 6 + 8π₯π₯ 3 + 4 > 0 ∀ π₯π₯ ∈ β ∧ π₯π₯ ≠ −1 π₯π₯ 3 + π₯π₯ 2 − 10π₯π₯ + 8 < 0 π₯π₯ < −4 ∪ 1 < π₯π₯ < 2 2π₯π₯ 8 + π₯π₯ 4 − 3 > 0 π₯π₯ < −1 ∨ π₯π₯ > 1 2π₯π₯ 5 − 2π₯π₯ 4 − π₯π₯ 3 + π₯π₯ 2 − 21π₯π₯ + 21 < 0 7 7 π₯π₯ < −οΏ½ ∪ 1 < π₯π₯ < οΏ½ 2 2 π₯π₯(π₯π₯ 2 − 11) < 7π₯π₯(1 − π₯π₯) π₯π₯ < −9 ∨ 0 < π₯π₯ < 2 π₯π₯ 5 + 2π₯π₯ 4 − 21π₯π₯ 3 − 24π₯π₯ 2 + 38π₯π₯ + 40 > 0 −5 < π₯π₯ < −√2 ∪ π₯π₯ > √2 (π₯π₯ 2 − 3π₯π₯ + 4)(π₯π₯ + 5)(π₯π₯ 2 − 2) > 0 π₯π₯ 4 − 10π₯π₯ 3 + 28π₯π₯ 2 − 15π₯π₯ − 18 > 0 3π₯π₯ 4 − 7π₯π₯ 3 − 13π₯π₯ 2 + 35π₯π₯ − 10 < 0 −5 < π₯π₯ < −√2 ∪ π₯π₯ > √2 π₯π₯ < 5 − √37 5 + √37 ∪ 2 < π₯π₯ < 3 ∪ π₯π₯ > 2 2 −√5 < π₯π₯ < π₯π₯ 3 − 2π₯π₯ − 21 < 0 π₯π₯ < 3 3π₯π₯ 4 − π₯π₯ 3 + 3π₯π₯ − 1 < 0 −1 < π₯π₯ < π₯π₯ 4 − π₯π₯ 3 + π₯π₯ 2 > 0 β − {0} 1 ∪ 2 < π₯π₯ < √5 3 1 3 π₯π₯ 6 − 5π₯π₯ 5 + 6π₯π₯ 4 + 4π₯π₯ 3 − 24π₯π₯ 2 + 16π₯π₯ + 32 ≤ 0 1 − √5 ≤ π₯π₯ ≤ −1 ∪ 2 ≤ π₯π₯ ≤ 1 + √5 8π₯π₯ 3 + 2π₯π₯ 2 − 24π₯π₯ − 6 > 0 1 −√3 < π₯π₯ < − ∪ π₯π₯ > √3 4 10π₯π₯ 3 + 5π₯π₯ 2 − 2π₯π₯ − 1 > 0 1 − √5 1 + √5 ≤ π₯π₯ ≤ 2 2 π₯π₯ 4 − π₯π₯ 3 − π₯π₯ 2 ≤ 0 π₯π₯ 3 − π₯π₯ 2 − 2π₯π₯ + 2 > 0 −√2 < π₯π₯ < 1 ∪ π₯π₯ > √2 1 1 π₯π₯ ≤ − ∪ π₯π₯ ≥ 2 2 16π₯π₯ 4 − 1 ≥ 0 27π₯π₯ 6 + 5 > 0 4π₯π₯ 4 − 2π₯π₯ 2 − 2 < 0 1 √5 √5 − < π₯π₯ < − ∪ π₯π₯ > 2 5 5 ∀π₯π₯ ∈ β −1 < π₯π₯ < 1 © 2016 - www.matematika.it 2 di 5 Algebra 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 v 3.0 Disequazioni di grado superiore al secondo π₯π₯ 5 − 32 ≤ 0 π₯π₯ ≤ 2 8π₯π₯ 4 − 11π₯π₯ 2 + 3 > 0 3 3 π₯π₯ < −1 ∪ −οΏ½ < π₯π₯ < οΏ½ ∪ π₯π₯ > 1 8 8 π₯π₯ 6 + 1 < 0 ππππππππππππππππππππππ π₯π₯ 4 − 5π₯π₯ 2 − 6 > 0 π₯π₯ < −√6 ∪ π₯π₯ > √6 π₯π₯ 4 − 5π₯π₯ 2 + 4 ≥ 0 π₯π₯ ≤ −2 ∪ −1 ≤ π₯π₯ ≤ 1 ∪ π₯π₯ ≥ 2 π₯π₯ 4 − 8π₯π₯ 2 + 16 > 0 β − {−2; 2} 2π₯π₯ 8 − 5π₯π₯ 4 + 2 > 0 √8 √8 4 π₯π₯ < √2 ∪ − < π₯π₯ < ∪ π₯π₯ > √2 2 2 π₯π₯ 4 − 7π₯π₯ 2 + 18 > 0 ∀π₯π₯ ∈ β (π₯π₯ 4 − 25π₯π₯ 2 + 144)(π₯π₯ 2 − 3) < 0 −4 < π₯π₯ < −3 ∪ −√3 < π₯π₯ < √3 ∪ 3 < π₯π₯ < 4 π₯π₯ 6 − 7π₯π₯ 3 − 8 < 0 −1 < π₯π₯ < 2 (π₯π₯ 2 − 1)6 + 3(π₯π₯ 2 − 1)3 − 40 ≤ 0 3 3 −οΏ½1 + √5 ≤ π₯π₯ ≤ οΏ½1 + √5 4 4 4 π₯π₯ 5 − 2π₯π₯ 4 + 5π₯π₯ 3 + 5π₯π₯ 2 − 2π₯π₯ + 1 > 0 π₯π₯ > −1 −5π₯π₯ 3 − 38π₯π₯ 2 − 5π₯π₯ − 38 < 0 π₯π₯ > − (π₯π₯ 3 − 8)(π₯π₯ − 3)(π₯π₯ 4 − 2) > 0 π₯π₯ < − √2 ∪ √2 < π₯π₯ < 2 ∪ π₯π₯ > 3 π₯π₯ 6 − 5π₯π₯ 3 + 6 > 0 π₯π₯ < √2 ∨ π₯π₯ > √3 3π₯π₯ 3 − 12π₯π₯ 2 − 12π₯π₯ + 3 > 0 −1 < π₯π₯ < 4π₯π₯ 3 − 13π₯π₯ 2 − 13π₯π₯ + 4 ≥ 0 38 5 −1 ≤ π₯π₯ ≤ 4 5 − √21 5 − √21 ∪ π₯π₯ > 2 2 1 ∪ π₯π₯ ≥ 4 4 4 (π₯π₯ 3 + π₯π₯ 2 + π₯π₯ + 1)(π₯π₯ 3 − 27) < 0 −1 < π₯π₯ < 3 [π₯π₯(π₯π₯ + 1) − 3π₯π₯]π₯π₯(π₯π₯ + 2) < 4 − π₯π₯ 2 −2 < π₯π₯ < 2 3 © 2016 - www.matematika.it 3 3 di 5 Algebra 62 63 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 v 3.0 Disequazioni di grado superiore al secondo π₯π₯ 5 − 2π₯π₯ 4 + π₯π₯ 3 − 2π₯π₯ 2 − 2π₯π₯ + 4 ≤ 0 π₯π₯ ≤ −1 ∨ 1 ≤ π₯π₯ ≤ 2 8π₯π₯ 3 − (π₯π₯ 2 + 7) ≥ 0 π₯π₯ ≥ 1 2π₯π₯ 3 − 5π₯π₯ 2 + 8π₯π₯ − 20 < 0 π₯π₯ < 5π₯π₯ 2 + 7π₯π₯ 4 ≤ 0 π₯π₯ = 0 π₯π₯ 4 − 4 ≤ 0 −√2 ≤ π₯π₯ ≤ √2 π₯π₯ 3 + 4π₯π₯ 2 + π₯π₯ < 6 π₯π₯ < −3 ∨ −2 < π₯π₯ < 1 (π₯π₯ 2 − 3π₯π₯ − 4)(π₯π₯ 2 − 25) < 0 −5 < π₯π₯ < −1 ∨ 4 < π₯π₯ < 5 (π₯π₯ 2 − 4)(π₯π₯ + 1) > 0 −2 < π₯π₯ < −1 ∨ π₯π₯ > 2 π₯π₯ 3 + π₯π₯ 2 − 4π₯π₯ − 4 < 0 π₯π₯ < −2 ∨ −1 < π₯π₯ < 2 π₯π₯ 3 > 6π₯π₯ 2 − 8π₯π₯ 0 < π₯π₯ < 2 ∨ π₯π₯ > 4 2π₯π₯ 3 + 3π₯π₯ 2 − 2π₯π₯ − 3 > 0 3 − < π₯π₯ < −1 ∨ π₯π₯ > 1 2 π₯π₯ 6 + 2π₯π₯ 3 − 15 < 0 − √5 < π₯π₯ < √3 2π₯π₯(π₯π₯ 2 + 1) + π₯π₯ 3 (π₯π₯ − 1) − (3π₯π₯ + 1) > 0 π₯π₯ < −1 ∨ π₯π₯ > 1 π₯π₯ 4 − 5π₯π₯ 3 − π₯π₯ + 5 < 0 1 < π₯π₯ < 5 π₯π₯ 3 (π₯π₯ 2 − 1) − 2π₯π₯(π₯π₯ 2 + 14) < 0 π₯π₯ < −√7 ∨ 0 < π₯π₯ < √7 π₯π₯ 3 + 2π₯π₯ 2 − 9π₯π₯ − 18 < 0 π₯π₯ < −3 ∨ −2 < π₯π₯ < 3 π₯π₯ 3 − 8 ≥ 0 π₯π₯ ≥ 2 3 3 5 2 1 ∨ π₯π₯ > 2 2 (π₯π₯ − 2)(2π₯π₯ − 1)(π₯π₯ + 3) > 0 −3 < π₯π₯ < 2π₯π₯ 4 − 5π₯π₯ 3 + 5π₯π₯ − 2 < 0 −1 < π₯π₯ < π₯π₯ 3 > π₯π₯ 2 + 2π₯π₯ −1 < π₯π₯ < 0 ∨ π₯π₯ > 2 © 2016 - www.matematika.it 1 ∨ 1 < π₯π₯ < 2 2 4 di 5 Algebra 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 v 3.0 Disequazioni di grado superiore al secondo 2 < π₯π₯ < 1 5 5π₯π₯ 3 − 2π₯π₯ 2 − 5π₯π₯ + 2 < 0 π₯π₯ < −1 ∨ π₯π₯(π₯π₯ − 1)2 (π₯π₯ + 2) < 0 −2 < π₯π₯ < 0 π₯π₯ 4 − 7π₯π₯ 2 + 6 ≥ 0 π₯π₯ ≤ −√6 ∨ −1 ≤ π₯π₯ ≤ 1 ∨ π₯π₯ ≥ √6 9π₯π₯ 4 + 46π₯π₯ 2 + 5 < 0 −√5 < π₯π₯ < − π₯π₯ 3 (π₯π₯ + 1)2 ≥0 π₯π₯ + 3 π₯π₯ < −3 ∨ π₯π₯ ≥ 0 ∨ π₯π₯ = −1 π₯π₯(π₯π₯ − 1)(π₯π₯ + 2) > 0 −2 < π₯π₯ < 0 ∨ π₯π₯ > 1 (π₯π₯ − 1)(π₯π₯ 2 + 4π₯π₯)(5 + 2π₯π₯) < 0 −4 < π₯π₯ < − π₯π₯ 4 − 26π₯π₯ 2 + 25 > 0 π₯π₯ < −5 ∨ −1 < π₯π₯ < 1 ∨ π₯π₯ > 5 π₯π₯ 4 − 3π₯π₯ 3 + 2π₯π₯ 2 ≤ 0 5 ∨ 0 < π₯π₯ < 1 2 1 1 ∨ < π₯π₯ < √5 3 3 π₯π₯ = 0 ∨ 1 ≤ π₯π₯ ≤ 2 π₯π₯ 3 (π₯π₯ − 1)3 ≥0 π₯π₯ + 3 −3 < π₯π₯ ≤ 0 ∨ π₯π₯ ≥ 1 π₯π₯ 2 − 4 <0 π₯π₯ 2 + 5π₯π₯ − 14 −7 < π₯π₯ < −2 1 π₯π₯ − 1 < 2 π₯π₯ π₯π₯ + π₯π₯ + 1 1 − < π₯π₯ < 0 2 1 π₯π₯ + 1 ≥ 2 π₯π₯ − 1 π₯π₯ − 1 π₯π₯ ≠ ±1 π₯π₯ 2 + 4π₯π₯ + 4 ≥0 12π₯π₯ − 4 − 9π₯π₯ 2 π₯π₯ = −2 π₯π₯ − 1 π₯π₯ + 1 ≥ π₯π₯ + 1 π₯π₯ − 1 π₯π₯ < −1 ∨ 0 ≤ π₯π₯ < 1 π₯π₯ 3 + π₯π₯ 2 + 1 ≤1 π₯π₯ 3 − 1 π₯π₯ < 1 π₯π₯ + 3 π₯π₯ − 2 < π₯π₯ − 2 π₯π₯ + 3 1 π₯π₯ < −3 ∨ − < π₯π₯ < 2 2 © 2016 - www.matematika.it 5 di 5