Algebra
Disequazioni di grado superiore al secondo
di vario tipo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
v 3.0
π₯π₯ 4 − π₯π₯ 2 > 0
π₯π₯ < −1 ∪ π₯π₯ > 1
π₯π₯ 4 − 16ππ4 ≥ 0
π₯π₯ ≤ −2ππ ∪ π₯π₯ ≥ 2ππ
π₯π₯ 2 (π₯π₯ 2 − 1) ≥ 0
π₯π₯ ≤ −1 ∪ π₯π₯ ≥ 1
π₯π₯ 4 + 4 < 0
ππππππππππππππππππππππ
2π₯π₯ 4 + √3 > 0
∀π₯π₯ ∈ β
π₯π₯ 4 + 3 ≥ 0
∀ π₯π₯ ∈ β
π₯π₯ 3 + 1 ≤ 0
π₯π₯ ≤ −1
π₯π₯ 6 + 1 ≥ 0
∀ π₯π₯ ∈ β
π₯π₯ 4 − 81 < 0
−3 < π₯π₯ < 3
4π₯π₯ 8 + 1 ≥ 0
∀ π₯π₯ ∈ β
π₯π₯ 2 (π₯π₯ 2 − 9) > 0
π₯π₯ ≤ −3 ∪ π₯π₯ ≥ 3
2
2
− √3 ≤ π₯π₯ ≤ √3
3
3
π₯π₯ 2 (3π₯π₯ 2 − 4) ≤ 0
(2π₯π₯ 2 − 1)(π₯π₯ 2 − 9) > 0
π₯π₯ < −3 ∪ −
√2
√2
< π₯π₯ <
∪ π₯π₯ > 3
2
2
π₯π₯ 2 − π₯π₯ 4 > 0
−1 < π₯π₯ < 0 ∪ 0 < π₯π₯ < 1
π₯π₯ 3 − 2π₯π₯ 2 − π₯π₯ + 2 ≤ 0
π₯π₯ ≤ −1 ∪ 1 ≤ π₯π₯ ≤ 2
π₯π₯ 3 − 5π₯π₯ 2 + 6π₯π₯ < 0
π₯π₯ < 0 ∪ 2 < π₯π₯ < 3
1
≤ π₯π₯ ≤ 2 ∪ π₯π₯ ≥ 3
2
2π₯π₯ 3 − 11π₯π₯ 2 + 17π₯π₯ − 6 ≥ 0
π₯π₯ 3 + π₯π₯ 2 − 3π₯π₯ + 1 > 0
−√2 − 1 < π₯π₯ < √2 − 1 ∪ π₯π₯ > 1
3
< π₯π₯ < 2
2
2π₯π₯ 4 − 7π₯π₯ 3 + 4π₯π₯ 2 + 7π₯π₯ − 6 < 0
−1 < π₯π₯ < 1 ∪
π₯π₯ 4 − 5π₯π₯ 2 ≥ 0
π₯π₯ = 0 ∨ π₯π₯ ≤ −√5 ∨ π₯π₯ ≥ √5
π₯π₯ 4 + π₯π₯ 2 + 1 > 0
∀ π₯π₯ ∈ β
© 2016 - www.matematika.it
1 di 5
Algebra
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
v 3.0
Disequazioni di grado superiore al secondo
(π₯π₯ 2 − 3)(π₯π₯ − 2)(π₯π₯ 2 + 1) > 0
−√3 < π₯π₯ < √3 ∪ π₯π₯ > 2
4π₯π₯ 6 + 8π₯π₯ 3 + 4 > 0
∀ π₯π₯ ∈ β ∧ π₯π₯ ≠ −1
π₯π₯ 3 + π₯π₯ 2 − 10π₯π₯ + 8 < 0
π₯π₯ < −4 ∪ 1 < π₯π₯ < 2
2π₯π₯ 8 + π₯π₯ 4 − 3 > 0
π₯π₯ < −1 ∨ π₯π₯ > 1
2π₯π₯ 5 − 2π₯π₯ 4 − π₯π₯ 3 + π₯π₯ 2 − 21π₯π₯ + 21 < 0
7
7
π₯π₯ < −οΏ½ ∪ 1 < π₯π₯ < οΏ½
2
2
π₯π₯(π₯π₯ 2 − 11) < 7π₯π₯(1 − π₯π₯)
π₯π₯ < −9 ∨ 0 < π₯π₯ < 2
π₯π₯ 5 + 2π₯π₯ 4 − 21π₯π₯ 3 − 24π₯π₯ 2 + 38π₯π₯ + 40 > 0
−5 < π₯π₯ < −√2 ∪ π₯π₯ > √2
(π₯π₯ 2 − 3π₯π₯ + 4)(π₯π₯ + 5)(π₯π₯ 2 − 2) > 0
π₯π₯ 4 − 10π₯π₯ 3 + 28π₯π₯ 2 − 15π₯π₯ − 18 > 0
3π₯π₯ 4 − 7π₯π₯ 3 − 13π₯π₯ 2 + 35π₯π₯ − 10 < 0
−5 < π₯π₯ < −√2 ∪ π₯π₯ > √2
π₯π₯ <
5 − √37
5 + √37
∪ 2 < π₯π₯ < 3 ∪ π₯π₯ >
2
2
−√5 < π₯π₯ <
π₯π₯ 3 − 2π₯π₯ − 21 < 0
π₯π₯ < 3
3π₯π₯ 4 − π₯π₯ 3 + 3π₯π₯ − 1 < 0
−1 < π₯π₯ <
π₯π₯ 4 − π₯π₯ 3 + π₯π₯ 2 > 0
β − {0}
1
∪ 2 < π₯π₯ < √5
3
1
3
π₯π₯ 6 − 5π₯π₯ 5 + 6π₯π₯ 4 + 4π₯π₯ 3 − 24π₯π₯ 2 + 16π₯π₯ + 32 ≤ 0
1 − √5 ≤ π₯π₯ ≤ −1 ∪ 2 ≤ π₯π₯ ≤ 1 + √5
8π₯π₯ 3 + 2π₯π₯ 2 − 24π₯π₯ − 6 > 0
1
−√3 < π₯π₯ < − ∪ π₯π₯ > √3
4
10π₯π₯ 3 + 5π₯π₯ 2 − 2π₯π₯ − 1 > 0
1 − √5
1 + √5
≤ π₯π₯ ≤
2
2
π₯π₯ 4 − π₯π₯ 3 − π₯π₯ 2 ≤ 0
π₯π₯ 3 − π₯π₯ 2 − 2π₯π₯ + 2 > 0
−√2 < π₯π₯ < 1 ∪ π₯π₯ > √2
1
1
π₯π₯ ≤ − ∪ π₯π₯ ≥
2
2
16π₯π₯ 4 − 1 ≥ 0
27π₯π₯ 6 + 5 > 0
4π₯π₯ 4 − 2π₯π₯ 2 − 2 < 0
1
√5
√5
− < π₯π₯ < −
∪ π₯π₯ >
2
5
5
∀π₯π₯ ∈ β
−1 < π₯π₯ < 1
© 2016 - www.matematika.it
2 di 5
Algebra
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
v 3.0
Disequazioni di grado superiore al secondo
π₯π₯ 5 − 32 ≤ 0
π₯π₯ ≤ 2
8π₯π₯ 4 − 11π₯π₯ 2 + 3 > 0
3
3
π₯π₯ < −1 ∪ −οΏ½ < π₯π₯ < οΏ½ ∪ π₯π₯ > 1
8
8
π₯π₯ 6 + 1 < 0
ππππππππππππππππππππππ
π₯π₯ 4 − 5π₯π₯ 2 − 6 > 0
π₯π₯ < −√6 ∪ π₯π₯ > √6
π₯π₯ 4 − 5π₯π₯ 2 + 4 ≥ 0
π₯π₯ ≤ −2 ∪ −1 ≤ π₯π₯ ≤ 1 ∪ π₯π₯ ≥ 2
π₯π₯ 4 − 8π₯π₯ 2 + 16 > 0
β − {−2; 2}
2π₯π₯ 8 − 5π₯π₯ 4 + 2 > 0
√8
√8
4
π₯π₯ < √2 ∪ −
< π₯π₯ <
∪ π₯π₯ > √2
2
2
π₯π₯ 4 − 7π₯π₯ 2 + 18 > 0
∀π₯π₯ ∈ β
(π₯π₯ 4 − 25π₯π₯ 2 + 144)(π₯π₯ 2 − 3) < 0
−4 < π₯π₯ < −3 ∪ −√3 < π₯π₯ < √3 ∪ 3 < π₯π₯ < 4
π₯π₯ 6 − 7π₯π₯ 3 − 8 < 0
−1 < π₯π₯ < 2
(π₯π₯ 2 − 1)6 + 3(π₯π₯ 2 − 1)3 − 40 ≤ 0
3
3
−οΏ½1 + √5 ≤ π₯π₯ ≤ οΏ½1 + √5
4
4
4
π₯π₯ 5 − 2π₯π₯ 4 + 5π₯π₯ 3 + 5π₯π₯ 2 − 2π₯π₯ + 1 > 0
π₯π₯ > −1
−5π₯π₯ 3 − 38π₯π₯ 2 − 5π₯π₯ − 38 < 0
π₯π₯ > −
(π₯π₯ 3 − 8)(π₯π₯ − 3)(π₯π₯ 4 − 2) > 0
π₯π₯ < − √2 ∪ √2 < π₯π₯ < 2 ∪ π₯π₯ > 3
π₯π₯ 6 − 5π₯π₯ 3 + 6 > 0
π₯π₯ < √2 ∨ π₯π₯ > √3
3π₯π₯ 3 − 12π₯π₯ 2 − 12π₯π₯ + 3 > 0
−1 < π₯π₯ <
4π₯π₯ 3 − 13π₯π₯ 2 − 13π₯π₯ + 4 ≥ 0
38
5
−1 ≤ π₯π₯ ≤
4
5 − √21
5 − √21
∪ π₯π₯ >
2
2
1
∪ π₯π₯ ≥ 4
4
4
(π₯π₯ 3 + π₯π₯ 2 + π₯π₯ + 1)(π₯π₯ 3 − 27) < 0
−1 < π₯π₯ < 3
[π₯π₯(π₯π₯ + 1) − 3π₯π₯]π₯π₯(π₯π₯ + 2) < 4 − π₯π₯ 2
−2 < π₯π₯ < 2
3
© 2016 - www.matematika.it
3
3 di 5
Algebra
62
63
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
v 3.0
Disequazioni di grado superiore al secondo
π₯π₯ 5 − 2π₯π₯ 4 + π₯π₯ 3 − 2π₯π₯ 2 − 2π₯π₯ + 4 ≤ 0
π₯π₯ ≤ −1 ∨ 1 ≤ π₯π₯ ≤ 2
8π₯π₯ 3 − (π₯π₯ 2 + 7) ≥ 0
π₯π₯ ≥ 1
2π₯π₯ 3 − 5π₯π₯ 2 + 8π₯π₯ − 20 < 0
π₯π₯ <
5π₯π₯ 2 + 7π₯π₯ 4 ≤ 0
π₯π₯ = 0
π₯π₯ 4 − 4 ≤ 0
−√2 ≤ π₯π₯ ≤ √2
π₯π₯ 3 + 4π₯π₯ 2 + π₯π₯ < 6
π₯π₯ < −3 ∨ −2 < π₯π₯ < 1
(π₯π₯ 2 − 3π₯π₯ − 4)(π₯π₯ 2 − 25) < 0
−5 < π₯π₯ < −1 ∨ 4 < π₯π₯ < 5
(π₯π₯ 2 − 4)(π₯π₯ + 1) > 0
−2 < π₯π₯ < −1 ∨ π₯π₯ > 2
π₯π₯ 3 + π₯π₯ 2 − 4π₯π₯ − 4 < 0
π₯π₯ < −2 ∨ −1 < π₯π₯ < 2
π₯π₯ 3 > 6π₯π₯ 2 − 8π₯π₯
0 < π₯π₯ < 2 ∨ π₯π₯ > 4
2π₯π₯ 3 + 3π₯π₯ 2 − 2π₯π₯ − 3 > 0
3
− < π₯π₯ < −1 ∨ π₯π₯ > 1
2
π₯π₯ 6 + 2π₯π₯ 3 − 15 < 0
− √5 < π₯π₯ < √3
2π₯π₯(π₯π₯ 2 + 1) + π₯π₯ 3 (π₯π₯ − 1) − (3π₯π₯ + 1) > 0
π₯π₯ < −1 ∨ π₯π₯ > 1
π₯π₯ 4 − 5π₯π₯ 3 − π₯π₯ + 5 < 0
1 < π₯π₯ < 5
π₯π₯ 3 (π₯π₯ 2 − 1) − 2π₯π₯(π₯π₯ 2 + 14) < 0
π₯π₯ < −√7 ∨ 0 < π₯π₯ < √7
π₯π₯ 3 + 2π₯π₯ 2 − 9π₯π₯ − 18 < 0
π₯π₯ < −3 ∨ −2 < π₯π₯ < 3
π₯π₯ 3 − 8 ≥ 0
π₯π₯ ≥ 2
3
3
5
2
1
∨ π₯π₯ > 2
2
(π₯π₯ − 2)(2π₯π₯ − 1)(π₯π₯ + 3) > 0
−3 < π₯π₯ <
2π₯π₯ 4 − 5π₯π₯ 3 + 5π₯π₯ − 2 < 0
−1 < π₯π₯ <
π₯π₯ 3 > π₯π₯ 2 + 2π₯π₯
−1 < π₯π₯ < 0 ∨ π₯π₯ > 2
© 2016 - www.matematika.it
1
∨ 1 < π₯π₯ < 2
2
4 di 5
Algebra
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
v 3.0
Disequazioni di grado superiore al secondo
2
< π₯π₯ < 1
5
5π₯π₯ 3 − 2π₯π₯ 2 − 5π₯π₯ + 2 < 0
π₯π₯ < −1 ∨
π₯π₯(π₯π₯ − 1)2 (π₯π₯ + 2) < 0
−2 < π₯π₯ < 0
π₯π₯ 4 − 7π₯π₯ 2 + 6 ≥ 0
π₯π₯ ≤ −√6 ∨ −1 ≤ π₯π₯ ≤ 1 ∨ π₯π₯ ≥ √6
9π₯π₯ 4 + 46π₯π₯ 2 + 5 < 0
−√5 < π₯π₯ < −
π₯π₯ 3 (π₯π₯ + 1)2
≥0
π₯π₯ + 3
π₯π₯ < −3 ∨ π₯π₯ ≥ 0 ∨ π₯π₯ = −1
π₯π₯(π₯π₯ − 1)(π₯π₯ + 2) > 0
−2 < π₯π₯ < 0 ∨ π₯π₯ > 1
(π₯π₯ − 1)(π₯π₯ 2 + 4π₯π₯)(5 + 2π₯π₯) < 0
−4 < π₯π₯ < −
π₯π₯ 4 − 26π₯π₯ 2 + 25 > 0
π₯π₯ < −5 ∨ −1 < π₯π₯ < 1 ∨ π₯π₯ > 5
π₯π₯ 4 − 3π₯π₯ 3 + 2π₯π₯ 2 ≤ 0
5
∨ 0 < π₯π₯ < 1
2
1 1
∨ < π₯π₯ < √5
3 3
π₯π₯ = 0 ∨ 1 ≤ π₯π₯ ≤ 2
π₯π₯ 3 (π₯π₯ − 1)3
≥0
π₯π₯ + 3
−3 < π₯π₯ ≤ 0 ∨ π₯π₯ ≥ 1
π₯π₯ 2 − 4
<0
π₯π₯ 2 + 5π₯π₯ − 14
−7 < π₯π₯ < −2
1
π₯π₯ − 1
< 2
π₯π₯ π₯π₯ + π₯π₯ + 1
1
− < π₯π₯ < 0
2
1
π₯π₯ + 1
≥ 2
π₯π₯ − 1 π₯π₯ − 1
π₯π₯ ≠ ±1
π₯π₯ 2 + 4π₯π₯ + 4
≥0
12π₯π₯ − 4 − 9π₯π₯ 2
π₯π₯ = −2
π₯π₯ − 1 π₯π₯ + 1
≥
π₯π₯ + 1 π₯π₯ − 1
π₯π₯ < −1 ∨ 0 ≤ π₯π₯ < 1
π₯π₯ 3 + π₯π₯ 2 + 1
≤1
π₯π₯ 3 − 1
π₯π₯ < 1
π₯π₯ + 3 π₯π₯ − 2
<
π₯π₯ − 2 π₯π₯ + 3
1
π₯π₯ < −3 ∨ − < π₯π₯ < 2
2
© 2016 - www.matematika.it
5 di 5