Gli ambienti di geometria dinamica e la didattica della matematica Domingo Paola Liceo Issel di Finale Ligure G.R.E.M.G. Dipartimento di Matematica Università di Genova • Cabri e il concetto di funzione • Cabri e i concetti di teoria e di dimostrazione • Presentazione di un CD sull’uso di Cabri per l’avvio ai concetti di dimostrazione e di teoria Cabri e il concetto di funzione Terza media – primo biennio di scuola superiore Problemi di massimo e minimo per avviare al “pensiero variazionale” Le costruzioni possono essere effettuate dall’insegnante e le esplorazioni sono guidate: tanto più quanto è limitata l’esperienza degli studenti. L’aspetto più interessante dell’attività è la compresenza dei registri geometrico, grafico e numerico, che dovrebbe aiutare gli studenti ad affinare la capacità di associare grafici alle variazioni (numeriche e geometriche) Proposta di lavori a coppie 1. Studiare come varia l’area di rettangoli isoperimetrici 2. Si consideri l’insieme dei triangoli isosceli aventi due lati dati (per esempio di misura 5). Che cosa cambia, nei triangoli isosceli dati, al variare della misura del lato non assegnato? Quali caratteristiche ha il triangolo di area massima fra quelli della famiglia considerata? 3. Un segmento AC è lungo 20cm. Scegliete un punto B interno al segmento AC e costruite su AB e BC i quadrati BCDE e BGFA. Che cosa si può dire del perimetro della figura formata dai due quadrati al variare di B su AC? E dell’area della figura? Giustificate le risposte. Cabri e i concetti di teoria e di dimostrazione Una riflessione sulle definizioni A partire da una definizione nota di quadrato, rombo, rettangolo, parallelogramma e trapezio, costruire in Cabri tali quadrilateri. Problema (aperto) Sia dato un quadrilatero ABCD. Tracciate gli assi a del lato AB, b del lato BC, c del lato CD, d del lato DA. Sia A' il punto di incontro degli assi a e b, B' il punto di incontro di b e c, C' il punto di incontro di c e d, D' il punto di incontro di a e d. Studiare come varia A'B'C'D' al variare di ABCD. Dimostrate le congetture prodotte durante l'esplorazione fatta in Cabri. Descrizione dell’attività svolta da un gruppo di alunne di quarta liceo scientifico PNI. Proposta di lavori a coppie su problemi aperti Sia dato un quadrilatero ABCD e siano L, M, N e P rispettivamente i punti medi dei lati AB, BC, CD, DA. Che configurazioni assume il quadrilatero LMNP al variare di ABCD? Giustificare le risposte. Sia dato un quadrilatero ABCD. Considera le bisettrici dei quattro angoli interni A, B, C, D. Siano H, K, L, M rispettivamente le intersezioni tra le bisettrici di A e B, B e C, C e D. Che configurazioni assume HKLM al variare di ABCD? Giustifica le risposte È stata trovata una mappa del tesoro che riporta le seguenti indicazioni: vai sull'isola segnata sulla carta. Appena sceso sull'isola troverai un melo M un pino P e una quercia Q. Da M dirigiti in linea retta fino a giungere in P. Qui gira verso la tua destra di 90 gradi e percorri un segmento di lunghezza uguale a quella di MP. Pianta in questa posizione un paletto P1. Quindi ritorna in M e da qui dirigiti verso Q in linea retta. Giunto in Q gira a sinistra di 90 gradi e percorri un segmento di lunghezza uguale a quella di MQ. Pianta, in questa posizione un paletto P2. Il tesoro T si trova nel punto medio del segmento P1P2.Ariele giunto sull'isola del tesoro ha la brutta sorpresa di non trovare più il melo M. Ci sono P e Q ma non c'è M. Potrà trovare ugualmente il tesoro? La dimostrazione di Vittorio, Valentina, Gabriele Considero P2P2’T e P1P1’T: se sono congruenti T è punto medio sia di P1P2, sia di P1’P2’ Considero MM’Q e QP2P2’ M’Q=QP2’ MQ=QP2 MQM’ = P2’QP2 perché complementari di uno stesso angolo. Quindi MM’=P2P2’ Analogamente P1P1’=MM’ Quindi P1P1’ = P2P2’. Inoltre P2TP2’=P1TP1’. Infine P2 e P2’ sono i corrispondenti di M e M’ in una rotazione di 90°. Quindi P2P2’ è perpendicolare a MM’. Analogamente lo è P1P1’. Quindi P2P2’ e P1P1’ sono paralleli … I problemi per le “eccellenze” Vedere anche il sito e la rivista Cabrirrsae dell’IRRE Emilia Romagna e il sito e le attività dell’IRRE Lazio. 1. Costruire un quadrato esternamente a ogni lato di un quadrilatero. Considerare il quadrilatero che si ottiene congiungendo i centri dei quattro quadrati così ottenuti.Le diagonali del quadrilatero che si ottiene congiungendo i centri dei quattro quadrati risultano fra loro perpendicolari. Ora Cabri mi convince che questa osservazione corrisponde al vero, ma perché è così? 2. le diagonali continuano a essere perpendicolari anche se invece di quattro quadrati ho quattro rettangoli fra loro simili. Perché? 3. Se in luogo di quattro quadrati costruisco quattro rombi simili le diagonali sono uguali. Perché? Cabri e i concetti di teoria e di dimostrazione Introduzione di un argomento di geometria: i criteri di congruenza dei triangoli Terza media – primo anno di scuola superiore Liberamente tratto da Dreyfus, T. & Hadas, N. 1996 Proof as answer to the question why, ZDM. Due triangoli sono congruenti se… Un triangolo è determinato da .. Sono formulazioni logicamente, ma non cognitivamente equivalenti Noi useremo Cabri per esplorare le relazioni tra le informazioni disponibili su lati e angoli di un triangolo e la possibilità o meno di individuare il triangolo. Nei file che ora esamineremo ho utilizzato tre differenti colori: il blu per i dati, ossia angoli e lati noti del triangolo (parametri) il rosso per i “dati trasportati” o, meglio, per evidenziare, nei triangoli costruiti, lati e angoli dati (parametri fissati nel particolare problema) il verde per gli oggetti che è possibile muovere per compiere le esplorazioni (variabili indipendenti) il nero per gli oggetti dei triangoli costruiti che si muovono al variare degli oggetti verdi (variabili dipendenti) L’azzurro – verde pastello, tratteggiandoli, per gli oggetti non essenziali (artifici retorici per spiegare meglio). Ricapitolando Due elementi non sono mai sufficienti per individuare un triangolo Tre, quattro e anche cinque possono non essere sufficienti, dipende da che cosa è noto (se si lavora sulla congruenza tra due triangoli, si parlerà della corrispondenza fra gli elementi dei due triangoli). È quindi evidente che questa corrispondenza gioca un ruolo fondamentale e che non può essere trascurata quando si enunciano i criteri Sei sono sempre sufficienti. non si tratta di dimostrazioni, ma di esplorazioni e osservazioni di fatti geometrici, attività essenziale per i principianti, quali sono studenti di terza media o di un primo biennio di scuola secondaria, per un avvio motivato al sapere teorico. Come è stato utilizzato Cabri in questo esempio? Presentazione dei criteri di congruenza dei triangoli. Attività di esplorazione su costruzioni realizzate dall’insegnante. Modalità di esplorazione: guidata dall’insegnante (è l’insegnante che dice che cosa muovere e che cosa non muovere o che cosa muovere prima o dopo). L’obiettivo è quello di fondare i criteri di congruenza su un vasto campo di esperienze e osservazioni e poi prendere questi criteri come ipotesi di partenza per lo sviluppo di attività geometriche, anche di piccole catene deduttive a partire dai criteri di congruenza. Il fatto che sia possibile dimostrare il secondo e il terzo a partire dal primo, sarà oggetto di studi successivi, se e quando verrà presentata un’impostazione assiomatica della geometria. Qualche riflessione conclusiva sull’uso di Cabri nell’avvio al pensiero e al sapere teorico Cabri sembra creare una sorta di spazio per la comunicazione, aiutando gli studenti, impegnati nella risoluzione di problemi, a comunicare idee e strategie risolutive L’uso di Cabri e la proposta di problemi aperti favoriscono attività di osservazione, scoperte e produzione di congetture, dando luogo alla necessaria continuità cognitiva tra le fasi di produzione di una congettura, costruzione e sistemazione della dimostrazione È necessaria una genesi strumentale, sulla quale l’insegnante ha forti responsabilità. A questo proposito diventano assai importanti le osservazioni sulle metafore, sulle parole, sui gesti utilizzati dagli studenti, soprattutto se si condivide che la conoscenza sia profondamente embodied, situata La matematica è un paesaggio aperto, infinito, come la Groenlandia …