04 L`effetto fotoelettrico L`effetto fotoelettrico fu osservato

Effetto fotoelettrico
04 L'effetto fotoelettrico
L'effetto fotoelettrico fu osservato, inconsapevolmente, da Hertz e deve il suo nome a
Righi. Valse il Premio Nobel sia a Lenard (1905) perché lo studiò che ad Einstein (1921)
perché lo interpretò.
Nel 1887 Heirich Hertz dimostra sperimentalmente sia l'esistenza delle onde
elettromagnetiche, sia che la loro velocità è uguale a quella della luce (- µ 3.0 1010 m/s),
conferendo, così, validità alla teoria elettromagnetica di Maxwell. Hertz pensò di generare
le onde facendo scoccare una scintilla tra due sfere metalliche, utilizzando il rocchetto di
Ruhmkorff (due bobine accoppiate, un trasformatore sostanzialmente, con un primario di
poche spire, R" ,ed un secondario con moltissime spire, R# ). Un interruttore interrompe
periodicamente, con elevata frequenza,l'alimentazione in continua del primario. Nel
secondario è allora indotta una tensione che sta a quella del primario nel rapporto R# ÎR"
e che può quindi raggiunfere parecchi kV. Ai terminali del secondario Hertz collegò due
sfere metalliche di circa 30 cm di diametro distanti tra loro di circa 1,5 m. Al centro di
esse, collegate ciascuna al filo delle sfere grandi, collocò due piccole sferette, la cui
distanza si poteva regolare con una vite micrometrica (realizzò, in pratica, quello che
comunemente è chiamato spinterometro - in greco spinther significa scintilla). Le due
sfere grandi fungevano da armature di un condensatore, e quando la carica su di esse
raggiungeva un certo valore, il campo elettrico faceva scoccare una scintilla oscillante tra
le sfere piccole.
Figura 1. Schema sperimentale dell'esperimento di Hertz.
La scintilla era il generatore delle onde elettromagnetiche previste da Maxwell. Come
ricevitore Hertz predispose una spira metallica interrotta per un piccolo tratto (Figura 1).
L'eventuale scintilla che si fosse formata tra le estremità della spira interrotta avrebbe
confermato la propagazione dell'onda elettromagnetica attraverso la stanza. Ciò
effettivamente avvenne ed Hertz lo comunicò pubblicamente in un discorso tenuto ad
Heidelberg il 20 settembre del 1889: "Le scintille sono microscopicamente brevi", disse,
"a malapena di un centesimo di millimetro di lunghezza. Durano soltanto un milionesimo
di secondo circa. Sembra quasi assurdo ed impossibile che siano visibili; ma in un
Anno accademico 2011/2012
1
Effetto fotoelettrico
ambiente perfettamente buio sono visibili ad un occhio che sia stato a riposare per bene
nell'oscurità".
La principale limitazione nella sensibilità del rivelatore derivava dalla possibilità
di vedere la minuscola scintilla che in esso scoccava. Fu proprio nel tentativo di ridurre
tale fattore limitante che Hertz si imbatté in qualcosa di strano. Infatti, per rendere più
visibile la piccola scarica elettrica, decise di osservarla al buio ponendo la spira
rivelatrice in una scatola. La cosa inaspettata fu la netta riduzione della scintilla in tali
condizioni. Allora, con mirabile metodicità, rimosse progressivamente le varie pareti
della scatola, osservando in corrispondenza le eventuali variazioni della scintilla: e così
trovò che l'unica parete che provocava l'effetto osservato era quella che schermava
direttamente la scintilla del ricevitore da quella del trasmettitore. Fatto ancora più strano
fu la constatazione che l'entità della riduzione della scintilla determinata dalla parete in
questione non dipendeva dalla posizione di questa lungo la linea congiungente le due
scintille! Fortemente incuriosito dallo strano fenomeno osservato, Hertz diede avvio ad
una serie sistematica di esperimenti, giungendo a comprendere che la piccola scintilla che
scoccava nel ricevitore risultava maggiormente intensa quando questo veniva raggiunto
dalla luce ultravioletta emessa dalla forte scintilla nel trasmettitore.
La comprensione di tale fatto non fu per nulla immediata. Hertz provò ad
utilizzare come parete schermante diversi materiali, tra i quali il vetro, che si rivelò
efficace nel ridurre la scintilla, ed il quarzo, che la lasciava pressoché inalterata.
Osservazioni, queste ultime, che lo misero sulla strada giusta, spingendolo a scomporre
mediante un prisma la luce emessa dalla scintilla trasmettitrice ed esponendo quella
ricevitrice di volta in volta alle differenti componenti spettrali. Fu in seguito a ciò che
raggiunse la certezza che ad intensificare la minuscola scarica del ricevitore era la
componente ultravioletta della luce che lo illuminava.
A consuntivo di numerosi mesi di minuziosi esperimenti, nel 1887 Hertz scrisse
un articolo in cui si limitava a descrivere con precisione quanto osservato, astenendosi
esplicitamente dall'ipotizzare alcuna spiegazione dei fenomeni stessi.
L'anno successivo, Augusto Righi osserva che sottoponendo a radiazione
ultravioletta due elettrodi nasce un arco voltaico; battezza tale fenomeno effetto
fotoelettrico.
Quattro anni dopo la scoperta dell'elettrone, avvenuta nel 1895 ad opera di
Thomson, il fisico tedesco Philip Lenard ipotizza che le particelle emesse dai metalli
colpiti dalla luce sono proprio gli elettroni. Quando inizia ad eseguire esperimenti su
questo fenomeno, scopre che le condizioni di emissione degli elettroni da parte dei
metalli variano da metallo a metallo. La sorpresa maggiore consiste nel fatto che
l'intensità luminosa può aumentare senza, però, produrre aumento nell'energia con cui gli
elettroni sono emessi. Anzi, scopre che per ogni metallo esiste una particolare frequenza
caratteristica; se la radiazione incidente è di frequenza inferiore non si osserva nessuna
emissione elettronica. La soglia "fotoelettrica" di zinco e magnesio è nell'UV, quella del
sodio nella zona del visibile.
Con riferimento alla figura 2, quando la luce colpisce una superficie metallica
pulita (il catodo C) vengono emessi elettroni. Se alcuni di questi colpiscono l'anodo A, si
instaura una corrente nel circuito esterno. Il numero di elettroni emessi che raggiungono
l'anodo può essere aumentato o diminuito rendendo l'anodo positivo o negativo rispetto al
catodo. Detta V la differenza di potenziale tra A e C, si può vedere che solo da un certo
Anno accademico 2011/2012
2
Effetto fotoelettrico
potenziale Z! in poi (detto potenziale d'arresto) la corrente inizia a circolare, aumentando
fino a raggiungere un valore massimo, che rimane costante. Questo massimo valore è,
come scoprì Lenard, direttamente proporzionale all'intensità della luce incidente. Il
potenziale d'arresto è legato all'energia cinetica massima degli elettroni emessi dalla
relazione
"
Ð 7@# Ñ7+B œ /Z!
#
Ð"Þ"Ñ
dove 7 è la massa dell'elettrone, @ la sua velocità, / la sua carica.
Ora, la relazione che lega le due grandezze è proprio quella indicata perché se V è
negativo, gli elettroni vengono respinti dall'anodo, tranne se l'energia cinetica consente
loro, comunque, di arrivare su quest'ultimo. D'altra parte si notò che il potenziale
d'arresto non dipendeva dall'intensità della luce incidente, sorprendendo lo
sperimentatore, che si aspettava il contrario. Infatti, classicamente, il campo elettrico
portato dalla radiazione avrebbe dovuto mettere in vibrazione gli elettroni dello strato
superficiale fino a strapparli al metallo. Usciti, la loro energia cinetica sarebbe dovuta
essere proporzionale all'intensità della luce incidente e non alla sua frequenza, come
sembrava sperimentalmente.
Figura 2: schema dell'apparato per la misura dell'effetto fotoeletrrico.
I risultati sperimentali (Figura 3) portano all'individuazione degli elementi
caratterizzanti il fenomeno fotoelettrico, che si possono così riassumere:
gli atomi emettono elettroni solo e solo se la frequenza della radiazione incidente
è superiore al valore della soglia fotoelettricaà
l'energia cinetica degli elettroni emessi dipende dalla frequenza della radiazione
elettromagnetica incidente e non dalla sua intensitàà
il numero di elettroni che fuoriescono in un secondo dipende dall'intensità della
radiazione elettromagnetica incidenteà
la comparsa della corrente segue immediatamente l'accensione della
illuminazione.
La teoria dell'effetto fotoelettrico
L'interpretazione classica si basa sull'esistenza di una barriera di potenziale che
impedisce agli elettroni (liberi) nel metallo di fuoriuscire spontaneamente. Per estrarre un
elettrone è necessario effettuare un lavoro (lavoro di estrazione, A! ), che dipenderà dalla
natura del metallo. Se si ammette che l'energia incidente sia uniformemente distribuita
Anno accademico 2011/2012
3
Effetto fotoelettrico
Figura 3: sinistra: andamento della fotocorrente in funzione della differenza di potenziale
applicata per due valori dell'intensità della radiazione incidente. centro: andamento della
fotocorrente in funzione del potenziale di frenamento per varie intensità luminose; destra:
andamento della fotocorrente in funzione del potenziale di frenamento per varie
frequenze della radiazione incidente
sulla superficie del metallo, occorrerà un certo tempo affinché un singolo elettrone
accumuli l'energia sufficiente per superare la barriera di potenziale ed essere emesso. Si
può fare una stima grossolana del tempo necessario, supponendo di far incidere su un
cm2 di superficie del metallo un'energia di " erg/s. Usiamo la luce del doppietto del
sodio, la cui frequenza è !Þ& "!"& =" e come metallo il potassio (K), il cui lavoro di
estrazione a questa frequenza è circa # eV (1 eV = 1.6 10-12 erg): avremo, quindi
A! ¶ $Þ# "!"# erg.
Anno accademico 2011/2012
4
Effetto fotoelettrico
L'energia che investe un atomo, di diametro dell'ordine di " Å œ "!) cm, è circa "! "'
erg/sec. Assumendo perciò che l'energia sia distribuita uniformemente su di una
superficie con diametro di 1 Å e che l'elettrone possa accumulare l'energia, si avrebbe un
tempo dell'ordine di $Þ# "!"# erg/"!"' erg /s ~ $Þ# "!% s, cioè circa 9 ore. Il processo
avviene invece in modo pressochè istantaneo. Inoltre, con questo modello, non si riesce
a spiegare l'indipendenza della velocità massima degli elettroni dall'intensità della
radiazione.
Nel 1905 Einstein riesce a spiegare le leggi stabilite per l'effetto fotoelettrico
utilizzando l'ipotesi del quanto di luce (più tardi chiamato fotone). Il fotone di frequenza
/ ha energia 2/ e sarà in gredo di liberare un elettrone dal metallo solo se 2/ A! , ciò
che determina la frequenza di soglia /! œ A! Þ Quando / è > /! , l'elettrone fuoriesce dal
metallo con un'energia cinetica data da
I-38 œ /Z! œ 2Ð/  /! Ñ
L'andamento di I-38 è quindi lineare con / ; la pendenza della retta è 2 , il cui valore
venne quindi misurato e trovato in accordo con il valore ricavato dalla formula di Planck.
Aumentare l'intensità del fascio significa aumentare il numero di fotoni enon la
loro energia. Per questa interpretazione dell'effetto fotoelettrico Einstein ottenne il
premio Nobel nel 1921.
Anno accademico 2011/2012
5