A TTI A CCADEMIA N AZIONALE L INCEI C LASSE S CIENZE F ISICHE M ATEMATICHE N ATURALI R ENDICONTI L INCEI M ATEMATICA E A PPLICAZIONI Giuseppe Da Prato, Jerzy Zabczyk Differentiability of the Feynman-Kac semigroup and a control application Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 8 (1997), n.3, p. 183–188. Accademia Nazionale dei Lincei <http://www.bdim.eu/item?id=RLIN_1997_9_8_3_183_0> L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1997. Rend. Mat. Ace. Lincei s. 9, v. 8:183-188 (1997) Analisi matematica. — Differentiability of the Feynman-Kac semigroup and a control application. Nota di GIUSEPPE DA PRATO e JERZY ZABCZYK, presentata (*) dal Corrisp. G. Da Prato. ABSTRACT. — The Hamilton-Jacobi-Bellman equation corresponding to a large class of distributed control problems is reduced to a linear parabolic equation having a regular solution. A formula for the first derivative is obtained. KEY WORDS: Stochastic control problem; Feynman-Kac formula; Hamilton-Jacobi equations. RIASSUNTO. — Differenziabilità del semigruppo ài Feynman-Kac e applicazioni. L'equazione di HamiltonJacobi-Bellman corrispondente a un'ampia classe di problemi di controllo distribuiti viene ridotta a una equazione parabolica lineare avente una soluzione regolare. Viene inoltre ottenuta una formula per la derivata prima della soluzione. 1. INTRODUCTION The Note is concerned with a distributed control system in which the control action is perturbed by noise. To write down the system assume that H is a separable Hilbert space and A: D(A) cH-^H, F:H-^H, B: H->L(H,H) are mappings such that: Al) Operator A is the infinitesimal generator of a strongly continuous semigroup S(t), t ^ 0, A2) Mappings F and B are Lipschitz and supdlB^II + llB- 1 ^)!!) < + o o . XBH Let, in addition, W(t), t ^ 0, be a cylindrical Wiener process on H, defined on a probability space (Q, &y P) with a filtration {&}t. The control system under consideration is described by the equations: (1.1) dX = (AX + F(X))dt + B(X)(zdt + adW(t)), X(0)=x, where z{i), t ^ 0, is a control process and a is a constant. Note that if a = 0, the equation (1.1) is deterministic and the action of the controller is not affected by random perturbations. The effect of the noise is present if a ^ 0. Assume that the cost functional is of the form /,(*,*) = E l j[g(X(s,x))+ \z(s)\2]ds + y(X(tyx))V where X(- ,x) denotes the solution to (1.1) and g and ip are given functions. The corre(*) Nella seduta del 19 giugno 1997. 184 G. DA PRATO - J. ZABCZYK sponding Hamilton-Jacobi-Bellman equation for the value function V(t,x) = m£Jt(x,z), is then f Vt{t,x) = ( a 2 / 2 ) T r [ B U ) B M x ) V « ( ^ ) ] + {Ax + F(x), Vx{t,x)) d-2) \ 2 ~ \B*(x)Vx(t,x)\ /4+g(x)y { V(0,-) = y . It is not difficult to show that if equation (1.2) has a classical solution, then it can be identified with the value function and the control z(s)= -o2B* (1.3) {X(s,x))Vx(t ~ s,X(s,x)), *e[0,f[, is an optimal one. However the classical solution does not exist in general. Under some condition one can prove existence of a viscosity solution, see [9-11,13], which is however only continuous and the formula (1.3) loses its meaning. Another way of solving the problem was proposed for systems with diffusion B independent of x. This approach was introduced in [1,2] and it was developped on in [6-8,3]. One writes (1.2) in the so-called mild form: t (1.4) V(tr)-Pty> + jPt.s({F,Vx(s,-))- \B*Vx(s,-)\2/4+g)ds, 0 where Pt, t ^ 0 is the transition semigroup corresponding to (1.1) with F = 0, a = 0. Under assumptions implying regularizing properties of Pt, t ^ 0 one shows existence of a solution to (1.4) for which Vx does exist. There are essential difficulties to extend this method to the case of B dependent of x. The corresponding semigroup Pn t ^ 0 has regularizing properties under very strong assumptions. In the present paper we show that the so-called logarithmic transform can be used to obtain solution of class C1. Note that setting V(t,x) = - 2 a 2 l n ^ U , x ) , (1.5) one arrives, after straightforward calculations, to a linear equation on u: f ut(t,x) = ( a 2 / 2 ) T r [ E ( x ) E * («)««(*,*)] + (1.6) I [ V(0, •)=e-^{2°2) +(Ax + F{x)yux{t,x)) - g(x)u{t,x)/{2o2), = (p, which is of the Feynman-Kac type. In the next section we will derive a formula for ux giving a meaning to the feedback law (1.5). Some of the assumptions of our theorem could be removed as we intend to show in a future paper. We conjecture that if the functions g, F and B are Gateaux differentiate with bounded and weakly continuous derivatives, and cp is bounded continuous, then equation (1.6) has a solution and the optimal control is of the form (1.5). DIFFERENTIABILITY OF THE FEYNMAN-KAC SEMIGROUP ... 185 2. THE FEYNMAN-KAC SEMIGROUP Let g be a bounded and continuous function from H into R. We shall denote by Pf, t ^ 0 the Feynman-Kac semigroup - (2.1) P?cp(x)=E[(p(X(t>x))e \g{X(s,x))ds o ], f^o, for cp on the space By (H) of bounded Borei functions. The function u(t,x) =Pf(p(x), t^O, xeH, is a candidate for a solution to equation (1.2) in which for simplicity, we set a = 1 and replace g/2 by g. We show that under conditions Al), A2) the semigroup P/ has regularizing properties similarly as in the finite dimensional case. The formula (2.2) below is new. It is well known in the special case g = 0, see [5,12]. THEOREM 2.1. Assume that conditions Al), A2 ) hold. Assume moreover that F, B,gare twice differentiahle functions with hounded and continuous derivatives up to the second order. If cp e Cy(H) then Pf cp is differentiahle in any direction h s H and (2.2) D;Pf<pM = E (p(X(t,x))e -\g(X(a,x))dal o J lt-1j(B-1(X(s,x)Xxb(s,x),dW(s)) - | ( 1 - s/t){Xhx (s, x), Dxg(X(s, x)))ds o Im where Dx denotes the derivative in the direction h. Let {e„} be a complete orthonormal system on H. For each n E N let X„('yX) be the solution of the problem PROOF. (2.3) dXH = (AXn + F(Xn))dt + B(XH)QHdW(t) Xn(0)=x, 1 where A„ = nA(n - A)' is the Yosida approximation of A and Qn is the orthogonal projection of H onto linj^j, ...,e„}. Then the function - jg(Xn(s,x))ds un{t,x) = E[cp(Xn(t,x))e o ], is a strict solution of parabolic equation Dtu„ (t, x) = Tr [B(x) QnB* (x)D2un (*, x)]/2 + + {Ax + F(x),D2un(t,x)) - g{x)un{t,x) u„(0,x) = cp{x). Fix t > 0. Applying Itô's formula to the process - jg(Xn(a,x))do e ° u„(t-s,X„(s,x)), se [0,t] = £„un{t,x) 186 G. DA PRATO - J. ZABCZYK we have - ^g(Xn(o,x))do de ° un{t - s,Xn(s,x)) = - = ( -Dtu„(t - s,Xn(s,x)) + £nun{t -syXn(s,x)))e ^g(X„(o,x))do ° ds + - + (Dxun(t-s,Xn(s,x)),B(Xn(s,x))QJW(s))e \g(Xn(o,x))do » Therefore e o cp{Xn{t,x)) =u„{t,x) + ' - + \e \g{Xn(o,x))do « (DA(/-5,X,(J,X)),B(X,(J,X))û,^)). 0 Letting /z tend to infinity we obtain that -\g{X(o,x))do e ° cp{X(t,x)) = u(t,x) + ' ~ \g(X(o,x))do + \e » (Dxu^-^^^))^(X(s,x))QndW(s)). o Multiplying this identity by t ^(B-1(X(s>x))X*(s,x),dW(s)), 0 and taking expectation, we arrive at K:=E\e •^g(X(o,x))do <p(X(t, x)) j(B - 1 (X(s, x)) Xhx {s, x), dW(s)) = ° - \g(X(a,x))da {Dxu{t-s,X{s,x)),Xhx{s,x))). = E(e • On the other hand - K = Dhxie » \g(X(a,x))da u(t-s,X(s,x))] = - \g(X(a,x))da / \(Dxg{X{o,x)),Xhx{o,x))dou(t-s,X{s,x)) = -e ' + 0 + {Dxu(t-s,X{s,x)),Xhx{s,x)). DIFFERENTIABILITY O F T H E FEYNMAN-KAC S E M I G R O U P 187 ... Therefore J K=E JD*(e - fg(X(o,x))da o \ u{t-s,X{syx)))ds\ / - \g(X(o,x))do ((Dxg(X(o,x),Xxb(o,x))do)u(t-s,X(s,x)) \e ° +E + Applying to both the expressions the Markov property we obtain that t K = Dhx\Pf{Pf^cp){x)ds + 0 ( - \g{X{o,x))da cp(X{tyx))e o I * * \ J j(Dxg(X(o,x)),X*(o,x))dods\ = \g(X(a,x))da J \ <p(X(t, x)) e« J (t - o)(Dxg(X(o, *)), Xhx (a, x))da , and the result follows for cp e Cl (lì). Let now cp be an arbitrary function from Q (H). Then there exists a sequence {cpn} eCl(H) uniformly bounded and pointwise convergent to cp. Let us fix t > 0, x E H and h e H, and consider functions vn{o)=Pfcpn{x + oh), O^o^l. Then vl(o)=DÏPf(pH(x + oh), 0 ^ o ^ 1. From the definition of vn and the formula for DxPfcpn valid for {cpn} s Cl (H) one easily gets that functions vn, v'n are convergent, in a bounded way, to Pfcp{x + oh) and to - \g(X{o,x + oh))dol E cp{X{t,x + ah))e ° \rl{B-l{X(s,x + oh)Xxh(s,x + oh),dW(s)) - J ( l -s/t)(Xxh(syx + oh), Dxg{X{syx + oh)))ds for o e]0, 1]. Taking o = 0 one gets that the formula for the directional derivative is true in general. • REFERENCES [1] P . CANNARSA - G. D A PRATO, Some results on nonlinear optimal control problems and equations infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. Hamilton-]acobi [2] P . CANNARSA - G. D A PRATO, Direct solution of a second order Hamilton-]acobi equation in Hilbert spaces. In: G. D A PRATO - L. TUBARO (eds.), Stochastic partial differential equations and applications. Pitman Research Notes in Mathematics Series n. 268, 1992, 72-85. 188 G. DA PRATO - J. ZABCZYK [3] G. D A PRATO - A. DEBUSSCHE, Control of the stochastic Burgers model of turbulence. Scuola Normale Superiore preprint n. 4, Pisa 1996. [4] G. D A PRATO - J. ZABCZYK, Ergodicity for infinite dimensions. Enciclopedia of Mathematics and its Applications, Cambridge University Press, 1996. [5] K. D . ELWORTHY, Stochastic flows on Riemannian manifolds. In: M. A. P I N SKY - V. VIHSTUTZ (eds.), Diffusion Processes and Related Problems in Analysis. Birkhàuser, 1992, vol. II, 33-72. [6] F. G o z z i , Regularity of solutions of a second order Hamilton-]acobi equation and application to a control problem. Commun, in partial differential equations, 20 (5&6), 1995, 775-826. [7] F. G o z z i , Global regular solutions of second order Hamilton-]acobi equations in Hilbert spaces with locally Lipschitz nonlinearities. Journal of Mathematical Analysis and Applications, 198, 1996, 399-443. [8] F. G o z z i - E. ROUY, Regular solutions of second order stationary Hamilton-]acobi equations. J. Differential Equations, to appear. [9] P . L. L I O N S , Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math., 161, 1988, 243-278. [10] P . L. L I O N S , Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control fo Zakais equation. In: G. D A PRATO - L. TUBARO (eds.), Stochastic Partial Differential Equations and Applications. Lecture Notes in Mathematics N o . 1390, Springer-Verlag, 1989, 147-170. [11] P. L. L I O N S , Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. A n a l , 86, 1989, 1-18. [12] S. PESZAT - J. ZABCZYK, Strong Feller property and irreducibility for diffusions on Hilbert spaces. Annals of Probability, 1996. [13] A. SWIECH, Viscosity solutions of fully nonlinear partial differential equations with «unbounded» terms in infinite dimensions. Ph. D . Thesis, University of California at Santa Barbara, 1993. G. D a Prato: Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA J. Zabczyk: Instytut Matematyczny Polskiej Akademii N a u k ul. Sniadeckich 8 skr. pocztowa, 137 - 00-950 VARSAVIA (Polonia)