Calcolo delle Probabilità Definizioni di probabilità: Classica (Pascal) Se un evento si può verificare in N modi mutuamente esclusivi ed ugualmente probabili, se m di questi possiede una caratteristica E, la probabilità di E è il 1623-1662 rapporto tra il numero di casi favorevoli e il totale dei casi possibili (tutti equiprobabili) Esempi •Nel caso del lancio di una moneta S={Testa, Croce}. p(Testa)=1/2 (casi favorevoli 1, possibili 2) •Lanciamo due dadi e calcoliamo la probabilità che la somma dei punti sia 4 Per semplicità scriviamo i numeri estratti come coppie: Le coppie di 6 numeri sono 6 * 6= 36 = numero di casi possibili; I casi favorevoli sono dati dalle coppie (1,3), (2,2) e (3,1) e sono quindi 3. Pertanto p(somma 4 in 2 lanci)=3/36=1/12 Problemi della definizione classica: •non sempre posso dire che eventi sono equiprobabili (asimmetrie - esempio: ho un dado truccato) •il numero di casi deve essere finito Aspetti positivi: •è una definizione operativa Definizione assiomatica Determinazione della probabilità usando il calcolo combinatorio Definizione di probabilità. Def. 4. Classica La probabilità di un evento A è il rapporto tra il numero di casi favorevoli di A e il numero di casi possibili, ammesso che questi siano equiprobabili. EVENTI INDIPENDENTI E DIPENDENTI L’evento A è indipendente da B se il fatto che si verifichi il primo non altera la probabilità che si verifichi il secondo Esempi di probabilità condizionata Esempio: un’urna contiene 15 palline rosse e 5 nere. Calcoliamo la probabilità di ottenere in 2 estrazioni consecutive senza reimbussolamento una pallina rossa e poi una nera: A:=estraggo una rossa B:=estraggo una nera p(A)=15/20=3/4 La probabilità di estrarre una nera dopo aver estratto una rossa è 5/19. La conoscenza dell’evento A ha ridotto lo spazio dei campioni Dati due eventi A e B si dice probabilità di B condizionata ad A p(B|A) la probabilità di B calcolata sapendo che si è verificato A. (E’ ovvio che si può definire una probabilità condizionata al verificarsi di A soltanto se A è possibile.) p(B|A) = 5/19 La probabilità di estrarre prima una rossa e poi una nera è p(AB)=p(A)p(B|A)=3/4*5/19=15/76 Regola di moltiplicazione: p(B|A) in funzione di p(A) e p(AB) se p(A)≠0 Esempio: trovare la probabilità che con un lancio di un dado si ottenga un numero < 5, sapendo che il risultato del lancio è dispari B:={ottengo un numero < 5} A:={ottengo un dispari} p(B)=2/3, p(A)=1/2, A B={1,3}, p(A B)=1/3 p(B|A)=p(A B)/p(A)=(1/3)/(1/2)=2/3 Esempio: in un’urna ci sono 10 palline rosse e 12 nere. Estraiamo dall’urna una pallina poi la rimettiamo nell’urna (estrazione con reimbussolamento). Siano A1={estraggo una pallina rossa alla prima estrazione} A2={estraggo una pallina rossa alla seconda estrazione} L’aver estratto una rossa alla prima estrazione non influenza la probabilità che la seconda sia rossa A1 e A2 sono indipendenti Regola di moltiplicazione per eventi indipendenti Esempio: Nel caso dell’estrazione con reimbussolamento dell’esempio precedente la probabilità di estrarre entrambe le volte una pallina rossa è p(A1A2)=p(A1)p(A2)=(10/22)2 Vale la seguente regola di moltiplicazione per eventi indipendenti A e B: p(AB)=p(A)p(B) Prove ripetute Formula di Bernoulli Teorema della probabilità totale Formula di Bayes Teorema di Bayes Se B è un evento che si verifica insieme ad n eventi incompatibili A1,…,An se sappiamo che B si è verificato, ci si può porre il problema di calcolare la probabilità che B venga da uno di tali eventi, un generico Ai effetto cause