Network medicine Applicazioni: L’impatto dei network cellulari sulla comorbidity Studio della comorbidity Le interazioni tra molecole a livello cellulare correlano a livello di popolazione con i pattern di comorbidity? L impatto dei network cellulari sulla comorbidity Morbidity (from Latin morbidus, meaning "sick, unhealthy") = is a diseased state, disability, or poor health due to any cause. = incidence of a particular disease in a population Morbilità/Morbosità indica uno stato patologico dell'individuo Comorbidity = comorbosità, cioè coesistenza di stati patologici/malattie nella stessa persona. Comorbility = comorbilità, che, in ambito statistico, indica incidenza o prevalenza di più patologie in una particolare area geografica. Comorbidity - considerazioni generali e domande aperte 1. Le funzioni cellulari sono controllate da reti di geni, proteine, metaboliti, etc. Diffetti in un modulo si possono propagare ad altri moduli? 2. Le interdipendenze tra i network/subnetwork cellulari sono più importanti a livello di individuo oppure anche di popolazioni? 3. La comorbidity è influenzata dallo stile di vita, condizioni ambientali, e terapie. 4. Le malattie presenti nel network delle malattie (studio sul diseasoma) presentano una comorbidity significativa? 5. Le malattie genetiche che condividono geni e le proteine codificate da questi geni interagiscono, presentano comorbidity? 6. Le malattie che hanno un alto livello di geni coespressi presentano comorbidity? Le tappe dello studio della comorbidity delle malattie genetiche 1. Costruzione della rete di malattie genetiche 2. Analisi della comorbidity 3. Predizioni / Conclusioni Goh K et al. PNAS 2007;104:8685-8690 2. Analisi della comorbidity Classificazione delle malattie "The International Classification of Diseases, 9th Revision, Clinical Modification" (ICD-9-CM), issued for use beginning October 1, 2008 for federal fiscal year 2009 (FY09). http://www.cms.gov/ http://www.cms.gov/MedicareGenInfo/ http://www.medicare.gov/ The ICD-9-CM is maintained jointly by the National Center for Health Statistics (NCHS) and the Centers for Medicare & Medicaid Services (CMS). http://www.icd9data.com/ 001-139 140-239 240-279 280-289 290-319 320-389 390-459 460-519 520-579 580-629 630-679 680-709 710-739 740-759 760-779 780-799 800-999 INFECTIOUS AND PARASITIC DISEASES NEOPLASMS ENDOCRINE, NUTRITIONAL AND METABOLIC DISEASES, AND IMMUNITY DISORDERS DISEASES OF THE BLOOD AND BLOOD-FORMING ORGANS MENTAL DISORDERS DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS DISEASES OF THE CIRCULATORY SYSTEM DISEASES OF THE RESPIRATORY SYSTEM DISEASES OF THE DIGESTIVE SYSTEM DISEASES OF THE GENITOURINARY SYSTEM COMPLICATIONS OF PREGNANCY, CHILDBIRTH, AND THE PUERPERIUM DISEASES OF THE SKIN AND SUBCUTANEOUS TISSUE DISEASES OF THE MUSCULOSKELETAL SYSTEM AND CONNECTIVE TISSUE CONGENTIAL ANOMALIES CERTAIN CONDITIONS ORIGINATING IN THE PERINATAL PERIOD SYMPTOMS, SIGNS, AND ILL-DEFINED CONDITIONS INJURY AND POISONINGRY AND POISONING http://www.icd9data.com/2011/Volume1/140-239/170-175/170/default.htm 2011 ICD-9-CM Diagnosis Code 170 Malignant neoplasm of bone and articular cartilage 2011 ICD-9-CM Diagnosis Code 170.0 Malignant neoplasm of bones of skull and face except mandible 2011 ICD-9-CM Diagnosis Code 170.1 Malignant neoplasm of mandible 2011 ICD-9-CM Diagnosis Code 170.2 Malignant neoplasm of vertebral column excluding sacrum and coccyx 2011 ICD-9-CM Diagnosis Code 170.3 Malignant neoplasm of ribs sternum and clavicle 2011 ICD-9-CM Diagnosis Code 170.4 Malignant neoplasm of scapula and long bones of upper limb 2011 ICD-9-CM Diagnosis Code 170.5 Malignant neoplasm of short bones of upper limb 2011 ICD-9-CM Diagnosis Code 170.6 Malignant neoplasm of pelvic bones sacrum and coccyx 2011 ICD-9-CM Diagnosis Code 170.7 Malignant neoplasm of long bones of lower limb 2011 ICD-9-CM Diagnosis Code 170.8 Malignant neoplasm of short bones of lower limb 2011 ICD-9-CM Diagnosis Code 170.9 Malignant neoplasm of bone and articular cartilage site unspecified Studio della comorbidity 2. Analisi della comorbidity Pazienti Studio effettuato su pazienti registrati nel database Medicare: N= 13.039.018 pazienti registrati su Medicare per un totale di 32.341.348 visite mediche Periodo: più di 4 anni (1990 to 1993) Età media: 76.3 ± 7.4; 41.8% maschi; 89.9% caucasici http://www.medicare.gov/ IL CALCOLO DELLA COMORBIDITY i, j = malattie co-espresse Ii = incidenza della malattia i (numero di pazienti) Cij = numero di pazienti simultaneamente diagnosticati con le malattie i e j Parametri per misurare la comorbidity: RR = Cij/Cij* = rischio relativo Cij* = IiIj/N (valore atteso di Cij quando le due malattie sono indipendenti) φ correlation RR>1 φ>0 >4.900 associazioni malattia-gene: OMIM database (2008) I codici ICD-9-CM (12.000) sono stati manualmente connessi ai nomi delle malattie del database OMIM Solamente 763 codici ICD-9-CM sono stati mappati nel database OMIM! 90% dei pazienti Medicare sono diagnosticati con i codici ICD - OMIM Esempio di due malattie che mostrano comorbidity e sono linked a livello di network cellulare 13 PPI Le due malattie presentano anche domain-sharing nella proteina TP53 Studio della comorbidity Tre parametri per quantificare le relazioni tra i network cellulari e la comorbidity Numero di disease genes condivisi tra le malattie i e j; Quantifica la potenziale origine genetica comune delle due malattie Numero di PPI tra le proteine codificate dai disease genes (non solamente dai geni condivisi) della malattia i e quelle della malattia j; quantifica la relazione a livello di PPI delle due malattie Coespressione genica media; rappresenta la Pearson correlation media della coespressione di ogni coppia di geni di ogni malattia La distribuzione tessuto-specifica dei disease genes Considerazione di partenza: le proteine codificate dai disease genes che interagiscono nello stesso modulo funzionale tendono ad essere espresse nello stesso tessutto. Per la co-espressione di geni si usano i dati di riferimento pubblicati da Ge X e colleghi: Genomics. 2005 Aug;86(2):127-41. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H. Abstract A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data analysis algorithms, integration of additional information about genes might be useful. We performed genomewide expression profiling of 36 types of normal human tissues and identified 2503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by reanalyzing a large collection of published DNA microarray datasets. We observed that the expression level of liver-specific genes in hepatocellular carcinoma (HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of individual cell types, uncovering differences in cell lineage among tumor subtypes. We were able to detect the expression signature of hepatocytes in HCC, neuron cells in medulloblastoma, glia cells in glioma, basal and luminal epithelial cells in breast tumors, and various cell types in lung cancer samples. We also demonstrated that tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study shows that integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of the expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis. Studio della comorbidity Le interazioni tra molecole a livello cellulare aumentano la probabilità che gli individui sviluppino simultaneamente entrambe le condizioni patologiche? I network cellulari correlano con la comorbidity La Pearson correlation tra la comorbidity per tutte le coppie di malattie e e n g, n p e ρ φ Correlazione positiva (PCC positivo) con tutte 3 variabili. ng mostra la corelazione più alta. LA CORRELAZIONE OTTENUTA NON E ALTISSIMA in quanto su 83.924 paia di malattie considerate per calcolare la Pearson correlation solamente 2.239 paia sono legate da geni (658) oppure PPI (1.873) Studio della comorbidity La correlazione tra i network cellulari è positiva, ma bassa Limiti attuali dell’applicazione: I valori ottenuti NON considerano: - l ambiente - lo stile di vita - trattamenti vari Non si conoscono tutte le associazioni gene-malattia nel database OMIM Esiste un certo noise tra l OMIM e i codici ICD-9-CM I disease genes o le proteine condivise si conoscono solamente per una minoranza delle malattie con comorbidity I network cellulari correlano con la comorbidity La comorbidity media per coppia di malattie che condividono geni e proteine <φ> Se un paziente sviluppa una certa malattia associata con un gene o geni multipli hanno 2 volte maggiore chance di sviluppare un’altra malattia ad essa connessa nel diseasoma http://pfam.sanger.ac.uk/ The Pfam database is one the most important collections of information in the world for classifying proteins. Its vision is to provide a tool which allows experimental, computational and evolutionary biologists to classify protein sequences and answer questions about what they do and how they have evolved. A 'periodic table' of biology I network cellulari correlano con la comorbidity La comorbidity media per coppie di malattie con valore crescente di ng, np, ρ <φ> Le malattie più interconnesse hanno comorbidity più alta <φ> <φ> 3. Predizioni / Conclusioni Studio della comorbidity I network cellulari correlano con la comorbidity e predicono: - Comorbidity note: diabete e obesità; cancro alla mammella e osteosarcoma - Comorbidity nuove: malattia di Alzheimer e infarto di miocardio; malattia del SN autonomo e la sindrome del tunnel carpale Gene – proteina codificata ACE-angiotensin-converting enzyme APOE- apolipoproteina E TTR-transthyretin IKBKAP- IKAP protein L impatto della topologia del network metabolico sulla comorbidity delle malattie umane Studio della comorbidity Le vie metaboliche intracellulari correlano a livello di popolazione con i pattern di comorbidity delle malattie metaboliche? Metabolic pathways Metabolismo (dal greco µεταβολισµός (metabolismós) è il complesso delle reazioni chimiche che avvengono in un organismo vivente o in una sua parte con lo scopo di mantenere la vita. E’ l'insieme dei processi di trasformazione chimica che avvengono nell'organismo sia in rapporto all'assimilazione degli alimenti che alle attività funzionali degli organi e dei tessuti. " " Il metabolismo si divide in tre insiemi di processi:" " ▪anabolismo, che produce molecole complesse " a partire da molecole più semplici utili alla cellula;" ▪catabolismo, che comporta la degradazione di " molecole complesse in molecole più semplici e produce " energia; " ▪metabolismo energetico, che comporta il recupero " dell'energia producendo molecole di ATP. " La classe di malattie metaboliche è la più dispersa nella rete di malattie umane classificate in base ai geni condivisi Perché fare la rete di malattie metaboliche? 1. Le mappe metaboliche conosciute sono di alta qualità e sono abbastanza complete. 2. Vari sets di reazioni metaboliche consecutive sono interdipendenti, e le loro attività (flux rate) a volte sincronizzate. Quindi la disfunzione di una via si ripercuote anche su altre vie metaboliche 3. Le cascate metaboliche suggeriscono che alcune malattie metaboliche possono associarsi (comorbidity). 4. La classe di malattie metaboliche è la più dispersa nella rete di malattie umane classificate in base ai geni condivisi Duarte et al., 2007 Classificazione delle malattie metaboliche Le malattie metaboliche ereditarie, sono classificabili nei seguenti gruppi: Malattie del metabolismo degli acidi organici (metilmalonico, propionico, isovalerico, glutarico acidemia, ecc.) Malattie del metabolismo degli aminoacidi (fenilchetonuria, omocistinuria, difetti del ciclo dell'urea, cistinuria) Malattie del metabolismo dei carboidrati (glicogenosi, galattosemia, intolleranza ereditaria al fruttosio, piruvato carbossilasi e deidrogenasi) Malattie del metabolismo dei lipidi (ipercolesterolemia familiare e altre dislipidemie) Malattie del metabolismo delle purine e pirimidine (malattia di Lesch-Nyhan) Malattie del metabolismo dei metalli (emocromatosi, malattia di Wilson, malattia di Menkes) Malattie mitocondriali (difetti della catena respiratoria, difetti dell'ossidazione degli acidi grassi) Malattie lisosomiali (mucopolisaccaridosi, malattia di Niemann-Pick, malattia di Tay-Sachs, leucodistrofia metacromatica) Malattie perossisomiali (adrenoleucodistrofia, malattia di Zellweger) Malattie del metabolismo dei neurotrasmettitori (malattia di Canavan, difetto di tirosina idrossilasi) Le tappe dello studio della comorbidity delle malattie metaboliche 1. Costruzione della rete di malattie metaboliche 2. Analisi e validazione della rete di malattie metaboliche 3. Analisi della comorbidity 4. Predizioni / Conclusioni Le tappe dello studio della comorbidity delle malattie metaboliche 1. Costruzione della rete di malattie metaboliche a. KEGG, BiGG – lista generica, manually curated di reazioni metaboliche b. OMIM database per identificare le malattie associate con gli ensimi del network metabolico umano (2,025 disease genes e 3,423 disease phenotypes - Aug. 2007) c. Medicare database Le tappe dello studio della comorbidity delle malattie metaboliche 1. Costruzione della rete di malattie metaboliche KEGG: 737 su 1.473 reazioni metaboliche sono associate a malattie genetiche in OMIM BiGG: 1.116 su 3.742 reazioni metaboliche sono associate a malattie genetiche in OMIM Table S1. Disease classification and disease-reaction association Disorder class Associated reactions Ref[Goh et al., 2007] cross check ICD-9-CM & ICD-10CM Final (KEGG) (BiGG) 17,20-lyase deficiency, isolated, 202110 (3) Metaboli c Metaboli c Metaboli c R04853|R03783|R02211|R0 4852 P45017A3r|P45017A1r|P450 17A2r|P45017A4r 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, 300438 (3) Metaboli c Metaboli c Metaboli c R04743|R04745|R04748|R0 4737|R04739|R04741|R019 75|R04203|R05066|R06941 HACD9m|HACD1m Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c 3-beta-hydroxysteroid dehydrogenase, type II, deficiency (3) Metaboli c Nonmetaboli c 3-hydroxyacyl-CoA dehydrogenase deficiency, 231530 (3) Metaboli c 3-hydroxyisobutryl-CoA hydrolase deficiency, 250620 (3) Metaboli c Disease 2-methylbutyrylglycinuria, 610006 (3) 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 210200 (3) 3-methylglutaconic aciduria, type I, 250950 (3) AGAT deficiency (3) AICA-ribosiduria due to ATIC deficiency, 608688 (3) Acatalasemia (3) ACOAD10m|PPCOAOm|A COAD1fm R04138 MCCCrm Metaboli c R02840|R04849|R03327|R0 3328|R02217|R04163|R041 64|R02842|R04851|R02499 |R02500|R01837|R01839|R 04678|R04680 HSD3B3r|HSD3B2r|HSD3B13r |HSD3B12r|HSD3B11r Metaboli c Metaboli c R04743|R04745|R04748|R0 4737|R04739|R04741|R019 75|R04203|R05066|R06941 HACD1m Metaboli c Metaboli c 3HPCOAHYD R02085 ECOAH1m|T2M26DCOAHL m|MGCHrm|PRPNCOAHY Dm|C2M26DCOAHLm R01989|R00565 GLYAMDTRc R04560|R01127 AICART|IMPC R02670|R00602 CAT2p|CATm|CATp Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c Metaboli c 1 Principi per la costruzione della rete di malattie metaboliche: Se lo stesso substrato è condiviso tra due reazioni metaboliche, la sua scarsità o abbondanza influisce entrambe le vie metaboliche Due reazioni metaboliche sono linked se processano lo stesso metabolita (per esempio sono adiacenti in una mappa metabolica) Le reazioni metaboliche cellulari sono alla base dei links (edges/archi) tra i nodi rappresentati da malattie metaboliche 1. Costruzione della rete di malattie metaboliche http:// www.kegg.j p/kegg/ kegg2.html Pathway glicolisi BPGM=bisfosfoglicerato mutasi ENO= enolasi PGAM=fosfoglicerato mutasi Ipotesi di lavoro: se 2 malattie sono causate da diffetti metabolici che influenzano “coupled reactions” (glycerate-2P), allora la loro patogenesi potrebbe essere correlata (linked) La rete delle malattie metaboliche umane (2008) costruita usando KEGG database - 308 nodi sono connessi da 878 metabolic links Lee D et al. PNAS 2008;105:9880-9885 La rete delle malattie metaboliche umane (2008) costruita usando BiGG database 319 malattie connesse da 699 metabilic links La rete delle malattie metaboliche umane (2008) costruita usando KEGG database Lee D et al. PNAS 2008;105:9880-9885 2. Analisi e validazione della rete di malattie metaboliche (KEGG) - Ha un cluster con 197 malattie (in network theory = “giant component”) e altri clusters più piccoli - Le malattie del giant component appartengono a classi diverse - Le malattie del metabolismo purinico formano un cluster di 33 malattie (62 reazioni chimiche in KEGG) (blue shading) - Le malattie del metabolismo lipidico formano un cluster di 34 malattie (34 reazioni chimiche in KEGG) (red shading) - Hubs: ipertensione (27 links); resistenza alla warfarina (19) e anemia emolitica (17). - La maggior parte delle malattie hanno pochi links (la rete contiene malattie mendeliane come la deficienza di enolasi ma anche malattie complesse come ipertensione e diabete per le quali si conosce solamente suscettibilità di alleli che non è suffiicente per indurre la malattia) Distribuzione del degree e distanza nella rete di malattie metaboliche Degree medio = 5 Network bipartito: cerchi = malattie metaboliche; quadrattini = reazioni metaboliche; links: disease-reaction; reaction-reaction 308 malattie 686 “reazioni” 1741 links malattia-reazione 431 links reazione-reazione Validazione della rete: omogeneità funzionale I links tra le malattie metaboliche e gli ensimi associati hanno un significato funzionale? Gli ensimi sono espressi negli stessi tessuti? Per rispondere dobbiamo computare il PCC tra i profili di espressione dei geni linked nei vari tessuti Genomics. 2005 Aug;86(2):127-41. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H. Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. [email protected] Abstract A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data analysis algorithms, integration of additional information about genes might be useful. We performed genomewide expression profiling of 36 types of normal human tissues and identified 2503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by reanalyzing a large collection of published DNA microarray datasets. We observed that the expression level of liver-specific genes in hepatocellular carcinoma (HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of individual cell types, uncovering differences in cell lineage among tumor subtypes. We were able to detect the expression signature of hepatocytes in HCC, neuron cells in medulloblastoma, glia cells in glioma, basal and luminal epithelial cells in breast tumors, and various cell types in lung cancer samples. We also demonstrated that tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study shows that integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of the expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis. Esempi di geni linked: ENO3 e PGAM; ENO3 e BPGM Validazione della rete: omogeneità dinamica La coespressione dei geni metabolici linked è maggiore rispetto a geni non-linked KEGG P<10-8 PCC=0.66 e P=10-5 per ENO3 e PGAM2 BiGG Considerazione: Le relazioni causali tra due malattie metaboliche linked potrebbe non essere limitata solamente a reazioni adiacenti Ipotesi: Le malattie metaboliche potrebbero essere linked da reazioni adiacenti, ma anche da reazioni “flux coupled” (reazioni di flusso accoppiate) Metabolic flux: the rate of passage of a metabolite (production/ consume) through a given metabolic pathway/reaction Types of flux coupling between reactions that are located first neighbour (directly connected by one node) Set di reazioni correlate o ‘‘flux coupled’’ i) A-B: directionally coupled, ii) B-C: fully coupled, and iii) C-D: uncoupled. Le reazioni metaboliche di flusso riflettono associazioni funzionali Co-Regulation of Metabolic Genes Is Better Explained by Flux Coupling Than by Network Distance Richard A. Notebaart1, Bas Teusink1,2,3, Roland J. Siezen1,2,3, Balázs Papp4,5* 1 Center for Molecular and Biomolecular Informatics (NCMLS), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, 2 NIZO Food Research BV, Ede, The Netherlands, 3 TI Food and Nutrition (WCFS), Wageningen, The Netherlands, 4 Institute of Biochemistry, Biological Research Center, Szeged, Hungary, 5 Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naı̈ve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools. La distribuzione del flusso nelle reti metaboliche riflette meglio le relazioni funzionali Introduction tra due geni implicati nel metabolismo rispetto alle misure [11,12], one might expect that the correlation between reaction fluxes across network states would provide a sound topologicheIn della rete (distanza tra due I geni metabolici “flux recent years, metabolic networks of various species have nodi). and biochemically relevant measure of functional dependbeen reconstructed [1], and several systematic studies ence between enzyme-encoding genes [13]. Therefore, we coupled” (accoppiati in regulation reazioni di flusso) tendono ad essere coespressi e addressed the issue of gene in metabolism [2–5]. hypothesized that dynamic functional associations (i.e., These studies have revealed important insights into trancorrelations) between fluxes, rather than static topological legati funzionalmente. scriptional regulation by integration of gene co-expression properties of a metabolic network, could capture true Citation: Notebaart RA, Teusink B, Siezen RJ, Papp B (2008) Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PloS Comput Biol 4(1): e26. doi:10.1371/journal.pcbi.0040026 with historically defined modules (e.g., glycolysis) or with graph-theoretical properties of reconstructed networks. Although trends in gene co-regulation with network distance functional associations between genes and consequently would provide refined insights into the modes of transcrip- cant biological insight as to which reactions are potentially missing from metabolic models, as well as which reactions may be under coordinated regulation, alluding to a mechanism for the continuous refinement of metabolic reconstructions through an iterative model-building process. Specifically, stoichiometric models of Escherichia coli metabolism utilized within the flux balance analysis (FBA) framework have been used for (1) quali- connectivity features of genome-scale metabolic networks. The framework is dem modes for a given metabolic environmental condition and hint at Escherichia coli, and Saccharomyces cerevisiae reconstructions of organism Helicobacter pylori, a more flexible metabolism (Stelling et al. 2002). This concept determine whether any two metabolic fluxes, v1 and v2, are (1) directionally coupled, if a has proven effective in the rational strain design for poly-!non-zero flux for v2 but not necessarily the reverse; (2) partially coupled, if a non-zero hydroxybutyrate production in Saccaromyces cerevisiae by quanthough variable, flux by forthe v2 addition and viceofversa; or (3) fully coupled, if a non-zero flux for v tifying the additional flexibility gained a nonbut alsoreaction a fixed (Carlson flux for et v2 al. and2002). vice versa. native transhydrogenase Corre-Flux coupling analysis also enables the glo reactions, which are allrefers reactions incapable of carrying flux under a certain condition; e spondingly, the set of extreme pathways to the minimum the setofofdescribing all possible reactions whose deletion forces the flux through a particular set of flux vectorsascapable all steady-state flux distributions and areaffected consequently a subset of elementary modes reactions denoting all reactions whose fluxes are forced to zero if a particular (Schilling et al. 2000). As withthus elementary the number of approach providesmodes, a novel and versatile tool for aiding metabolic reconstru extreme pathwaysmanipulations. provides a measure of pathway redundancy. The application of extreme pathway analysis has revealed that Flux coupling finder (FCF) = Procedura per identificare set di coupled e uncoupled reactions nelle reti metaboliche 3 These authors contributed equally to this work. Corresponding author. E-MAIL [email protected]; FAX (814) 865-7846. Article and publication are at http://www.genome.org/cgi/doi/10.1101/ gr.1926504. Article published online before print in January 2004. 4 14:000–000 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org Methods [Supplemental material is available online at1www.genome.org.] Genome Research www.genome.org An overarching attribute of metabolic networks is their inherent robustness and ability to cope with ever-changing environmental conditions. Despite this flexibility, network stoichiometry and connectivity do establish limits/barriers to the coordination and accessibility of reactions. The recent abundance of complete genome sequences has enabled the generation of genome-scale metabolic reconstructions for various microorganisms (Covert et al. 2001; Price et al. 2003; Reed and Palsson 2003). These models provide a largely complete 1,3 1,3 2 skeleton of the metabolic reactions present in an organism. Examination of the structural and topological properties of metabolic networks is important at both the 1,4 conceptual level, to reveal the organizational principles of meta1 2 within cellular and at the practical Department of Chemical Engineering, Pennsylvania State University, Universitybolic Park,interactions Pennsylvania 16802, USA;networks, Genomatica level for more effectively focusing engineering interventions and Inc., San Diego, California 92121, USA ensuring the consistency of the underlying reconstructions. To this end, the identification of blocked reactions (i.e., reactions incapable ofthe carrying flux dueand to the stoichiometry of the In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating topological flux metabolic network under steady-state conditions) and enzyme connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale subsets (i.e., groups of reactions that operate together in fixed metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to flux proportions under steady-state conditions) in metabolic determine whether any two metabolic fluxes, v1 and v2, are (1) directionally coupled, a non-zeroconsiderable flux for v1 implies a in recent years models hasif attracted interest non-zero flux for v2 but not necessarily the reverse; (2) partially coupled,(Kholodenko if a non-zeroetflux for v implies a non-zero, 1 al. 1995; Rohwer et al. 1996; Pfeiffer et al. 1999; though variable, flux for v2 and vice versa; or (3) fully coupled, if a non-zero v1 implies not only a non-zero Klamtflux et al.for 2003). The output of these analyses provides signifibut also a fixed flux for v2 and vice versa. Flux coupling analysis also enables the global identification blocked cant biological insight as to which of reactions are potentially missing condition; from metabolic models, as well asdefined which reactions may be reactions, which are all reactions incapable of carrying flux under a certain equivalent knockouts, under coordinated regulation, alluding to aofmechanism for the as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets refinement reconstructions through an affected reactions denoting all reactions whose fluxes are forced to zerocontinuous if a particular reactionofismetabolic deleted. The FCF iterative model-building stoichiometric approach thus provides a novel and versatile tool for aiding metabolic reconstructions andprocess. guidingSpecifically, genetic models of Escherichia coli metabolism utilized within the flux manipulations. balance analysis (FBA) framework have been used for (1) quali- Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions Anthony P. Burgard, Costas D. Maranas Evgeni V. Nikolaev, Christophe H. Schilling, and An overarching attribute of metabolic networks is their inherent robustness and ability to cope with ever-changing environmental conditions. Despite this flexibility, network stoichiometry and connectivity do establish limits/barriers to the coordination and accessibility of reactions. The recent abundance of complete genome sequences has enabled the generation of genome-scale metabolic reconstructions for various microorganisms (Covert et al. 2001; Price et al. 2003; Reed and Palsson 2003). These models provide a largely complete skeleton of the metabolic reactions present in an organism. Examination of the structural and topo- 3 These authors contributed equally to this work. Corresponding author. E-MAIL [email protected]; FAX (814) 865-7846. Article and publication are at http://www.genome.org/cgi/doi/10.1101/ gr.1926504. Article published online before print in January 2004. tatively predicting the outcomes of gene knockout experiments [Supplemental material is available online at www.genome.org.] 4 tatively predicting the outc (Edwards and Palsson 2000; tifying the correct sequenc creasingly anaerobic condit tatively predicting cellular Ibarra et al. 2002); (4) assess bolic networks in response gard and Maranas 2001); an egies for enhancing biochem Pharkya et al. 2004). In the postgenomic er entity, or physiological even network of interactions. Foll for examining structural a based on convex analysis strated for small-scale metab to identify extreme pathway modes (Schuster and Hilge elementary mode refers to a operate under steady-state c tion can be represented by a elementary modes. Element quantitative measure of netw modes for a given environm a more flexible metabolism has proven effective in th hydroxybutyrate production tifying the additional flexibi native transhydrogenase re spondingly, the set of extre set of flux vectors capable o tributions and are consequ (Schilling et al. 2000). As wi extreme pathways provides The application of extreme (Edwards and Palsson 2000; Badarinarayana et al. 2001); (2) identifying the correct sequence of Cold byproduct secretion underPress in- ISSN 1088-9051/04; www.genome.org 14:000–000 ©2004 by Spring Harbor Laboratory creasingly anaerobic conditions (Varma et al. 1993); (3) quantitatively predicting cellular growth rates (Edwards et al. 2001; Ibarra et al. 2002); (4) assessing the performance limits of metabolic networks in response to gene additions or deletions (Burgard and Maranas 2001); and (5) suggesting gene knockout strategies for enhancing biochemical production (Burgard et al. 2003; Pharkya et al. 2004). La coespressione dei geni metabolici flux-coupled è maggiore rispetto ai geni linked in reazioni adiacenti Average PCC: geni flux-coupled = 0.31 geni di reaz. adiacenti = 0.24 tutti i geni = 0.1 2. Analisi e validazione della rete di malattie metaboliche Conclusioni: 1. Le malattie metaboliche linked da reazioni chimiche formano una rete scale-free 2. Links funzionali tra i geni adiacenti (linked) e flux-coupled suggeriscono l’esistenza di links tra malattie e comorbidity Sarà vero? 3. Analisi della comorbidity Scopo principale: capire se i links della rete di malattie metaboliche possono essere detettati/individuati realmente nella popolazione umana, quindi se le malattie linked coesistono anche nei pazienti con malattie metaboliche (o “metabolism-related” – correlate al metabolismo) 3. Analisi della comorbidity "The International Classification of Diseases, 9th Revision, Clinical Modification" (ICD-9-CM), issued for use beginning October 1, 2008 for federal fiscal year 2009 (FY09). http://www.cms.gov/ http://www.cms.gov/MedicareGenInfo/ http://www.medicare.gov/ The ICD-9-CM is maintained jointly by the National Center for Health Statistics (NCHS) and the Centers for Medicare & Medicaid Services (CMS). http://www.icd9data.com/ 001-139 140-239 240-279 280-289 290-319 320-389 390-459 460-519 520-579 580-629 630-679 680-709 710-739 740-759 760-779 780-799 800-999 INFECTIOUS AND PARASITIC DISEASES NEOPLASMS ENDOCRINE, NUTRITIONAL AND METABOLIC DISEASES, AND IMMUNITY DISORDERS DISEASES OF THE BLOOD AND BLOOD-FORMING ORGANS MENTAL DISORDERS DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS DISEASES OF THE CIRCULATORY SYSTEM DISEASES OF THE RESPIRATORY SYSTEM DISEASES OF THE DIGESTIVE SYSTEM DISEASES OF THE GENITOURINARY SYSTEM COMPLICATIONS OF PREGNANCY, CHILDBIRTH, AND THE PUERPERIUM DISEASES OF THE SKIN AND SUBCUTANEOUS TISSUE DISEASES OF THE MUSCULOSKELETAL SYSTEM AND CONNECTIVE TISSUE CONGENTIAL ANOMALIES CERTAIN CONDITIONS ORIGINATING IN THE PERINATAL PERIOD SYMPTOMS, SIGNS, AND ILL-DEFINED CONDITIONS INJURY AND POISONINGRY AND POISONING http://www.icd9data.com/2011/Volume1/140-239/170-175/170/default.htm 2011 ICD-9-CM Diagnosis Code 170 Malignant neoplasm of bone and articular cartilage 2011 ICD-9-CM Diagnosis Code 170.0 Malignant neoplasm of bones of skull and face except mandible 2011 ICD-9-CM Diagnosis Code 170.1 Malignant neoplasm of mandible 2011 ICD-9-CM Diagnosis Code 170.2 Malignant neoplasm of vertebral column excluding sacrum and coccyx 2011 ICD-9-CM Diagnosis Code 170.3 Malignant neoplasm of ribs sternum and clavicle 2011 ICD-9-CM Diagnosis Code 170.4 Malignant neoplasm of scapula and long bones of upper limb 2011 ICD-9-CM Diagnosis Code 170.5 Malignant neoplasm of short bones of upper limb 2011 ICD-9-CM Diagnosis Code 170.6 Malignant neoplasm of pelvic bones sacrum and coccyx 2011 ICD-9-CM Diagnosis Code 170.7 Malignant neoplasm of long bones of lower limb 2011 ICD-9-CM Diagnosis Code 170.8 Malignant neoplasm of short bones of lower limb 2011 ICD-9-CM Diagnosis Code 170.9 Malignant neoplasm of bone and articular cartilage site unspecified Studio della comorbidity Studio della comorbidity Studio effettuato su pazienti registrati nel database Medicare: N= 13.039.018 pazienti registrati su Medicare per un totale di 32.341.348 visite mediche Periodo: più di 4 anni (1990 to 1993) Età media: 76.3 ± 7.4 (range 65-113) 41.8% maschi; 89.9% caucasici Caratteristiche del data-set Medicare Nr. medio di malattie/pz = 8,4 Costruzione di una mappa “hand-curated” per omologare le malattie genetiche (OMIM) ai codici ICD-9-CM del database Medicare Table S4. Disease prevalence Disease Prevalenza di una malattia i: Ii=Ni/N (la frazione di pazienti che hanno quella malattia) Ni= nr. pz. diagnosticati con la malattia i N= nr. totale di pazienti 17,20-lyase deficiency, isolated, 202110 (3) 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, 300438 (3) 2-methylbutyrylglycinuria, 610006 (3) 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 210200 (3) 3-beta-hydroxysteroid dehydrogenase, type II, deficiency (3) 3-hydroxyacyl-CoA dehydrogenase deficiency, 231530 (3) 3-hydroxyisobutryl-CoA hydrolase deficiency, 250620 (3) 3-methylglutaconic aciduria, type I, 250950 (3) AGAT deficiency (3) AICA-ribosiduria due to ATIC deficiency, 608688 (3) AMP deaminase deficiency, erythrocytic (3) Abruptio placentae, susceptibility to (3) Acatalasemia (3) Achondrogenesis Ib, 600972 (3) Acquired long QT syndrome, reduced susceptibility to, 152427 (3) Acromesomelic dysplasia, Hunter-Thompson type, 201250 (3) Acyl-CoA dehydrogenase, long chain, deficiency of, 201460 (3) Adenosine deaminase deficiency, partial, 102700 (3) Adenylosuccinase deficiency, 103050 (3) Adrenal hyperplasia, congenital, due to 11-beta-hydroxylase deficiency, 202010 (3) Adrenal insufficiency, congenital with or without 46, XY sex reversal (3) Adult i phenotype with congenital cataract, 110800 (3) Agammaglobulinemia, 601495 (3) Agenesis of the corpus callosum with peripheral neuropathy, 218000 (3) Albinism, brown oculocutaneous, (3) ICD-9CM Prevalence code 282.3 4.44819E-06 277.85 0.00000E+00 277.85 0.00000E+00 277.85 0.00000E+00 255.2 1.46483E-05 277.85 0.00000E+00 0.00000E+00 277.86 0.00000E+00 282.3 4.44819E-06 277.6 4.33315E-05 279.2 1.09671E-05 0.00000E+00 277.89 0.00000E+00 733 4.58035E-02 426.82 0.00000E+00 759.2 7.67696E-05 277.85 0.00000E+00 277.2 277.2 1.76394E-06 1.76394E-06 255.2 1.46483E-05 0.00000E+00 270.3 279 2.30079E-06 6.21519E-04 742.2 1.07370E-05 270.2 1.48784E-05 193 coppie di malattie con comorbidity statisticamente significativa !"#$%&'()&*+,%",%&-"+.,&/0"/&0"1%&"&,+23+4+5"3/&5676.#+8+/9&"38&".%&5633%5/%8&+3&%+/0%.&:;<<&6.&=+<<&8"/"#",%& 23$*4$5& *4&" .67&48&5" 43$*4$5&*4&" #$%&'%&!" 2@A#B":'8&"3C"5&4?$*&"3C"?>*D"C>*48$3*"$*B" EFEGEH"" 23:3*':<"':8&:<"5$%&'%&"$*"C'9$?$'?" I<7&:4I3?&%8&:3?&9$'B"7:38&48$3*"'D'$*%8B" !NHOGF"" #$%&'%&(" )$*+,-.//0" )$*+,1$//0" .97I<%&9'"" 23**&48&5" #$%43**&48&5" !JK!(G" K(KFGLGGHH" !LE(JFH.MF!" FLNFHGFHGHE" P<7&:8&*%$3*B"5$'%83?$4B":&%$%8'*4&"83B" EFOE(("" 23**&48&5" #$%43**&48&5" !N(KGN!" !FO!OFELHKG" !L(GKGG.MF!" FLOF(K!((NN" P&93?<8$4"'*&9$'"" Q7I&:34<83%$%B"I&:&5$8':<"" @;&%$8<B"'5:&*'?"$*%>CC$4$&*4<B"'*5" :&5"I'$:"" #$%43**&48&5" 23**&48&5" !FHK" !FL(GHHJOKO" OLOKHJ!.MF(" FLE(JEOJGO!" 23**&48&5" 23**&48&5" !!KEHO" KH!KFLEJGEJ" OLH(EKE.MF(" FLHKH!KJ(FE" #$';&8&%"9&??$8>%B"D&%8'8$3*'?B"!(KOK!"" P<7&:8&*%$3*B"5$'%83?$4B":&%$%8'*4&"83B" EFOE(("" 2393:;$5$8<" ='6$9>9" 73%%$;?&" 4393:;$5$8<" 23:3*':<"%7'%9%B"%>%4&78$;$?$8<"83"" 23**&48&5" 23**&48&5" H(EK!H" ((KEHJLGNK(" JLN!NFO.MF(" FLH(EEJ(FKG" 23*&"5<%8:37I<M!B"HFNF(F"" )&;&:"43*D&*$8'?"'9'>:3%$%"RB"(FNFFF"" 23**&48&5" 23**&48&5" !" (L(!.MFK" KLOG(NH.MF(" FLGN(OFOGEG" )&;&:"43*D&*$8'?"'9'>:3%$%"RB"(FNFFF"" S&8$*'?"43*&"5<%8:37I<"HB"E!FF(N"" 23**&48&5" 23**&48&5" !" (L(!.MFK" KLOG(NH.MF(" FLGN(OFOGEG" P&93%$5&:3%$%B"%<%8&9$4B"5>&"83" '4&:>?37?'%9$*&9$'B"EFN(GF"" 23**&48&5" #$%43**&48&5" HHNO(" !(N!HLJK(OG" KLKF(O(.MF(" FLHKHN(HJKN" 23**&48&5" 23**&48&5" GNKK" !ONOLEOK!(H" KLFHJ((.MF(" FL((KE(ONFG" #$%43**&48&5" 23**&48&5" ((KN" !NELOJ!JN!K" NLOOJHH.MF(" FL!!NFJ(NGO" PUSA"%<*5:39&B"EFJ(HE"" R:3*"5&C$4$&*4<"'*&9$'B"%>%4&78$;$?$8<" 83"" T38'?"$35$5&"3:D'*$C$4'8$3*"5&C&48B" (JNKFF"" @;%&%%$V&M4397>?%$V&"5$%3:5&:"!B" !EN(HF"" @;&%$8<B"'5:&*'?"$*%>CC$4$&*4<B"'*5" :&5"I'$:"" 23**&48&5" #$%43**&48&5" !EJKO" KOEJLKFGOOK" NLF(HNO.MF(" FLOEEEJKENN" U?53%8&:3*$%9B"D?>4343:8$43$5M :&9&5$';?&B"!FHGFF"" U77':&*8"9$*&:'?343:8$43$5"&64&%%B" I<7&:8&*%$3*"5>&"83"" 23**&48&5" #$%43**&48&5" EK" FL(NONOFOF!" HLKGJO(.MF(" FLG!KKNOG!!" #$';&8&%"9&??$8>%B"D&%8'8$3*'?B"!(KOK!"" PUSA"%<*5:39&B"EFJ(HE"" P<7&:8&*%$3*B"5$'%83?$4B":&%$%8'*4&"83B" EFOE(("" 23**&48&5" #$%43**&48&5" EH!GE" NF!EELO(KKH" HLK!G(H.MF(" FLHFEFJ(JNG" 23**&48&5" #$%43**&48&5" G!KOJ" EEKOKL!!!!G" HLH!GOG.MF(" FL!JN!EH!GH" W':C':$*":&%$%8'*4&B"!((JFF"" 23**&48&5" #$%43**&48&5" HOE!K" (HKJKLFGGJN" HL!HE(G.MF(" FL!KFHEKFH" @V':$'*"4'*4&:"" 2I3?&%8'%$%B";&*$D*":&4>::&*8" $*8:'I&7'8$4B"(NHHFF"" #$';&8&%"9&??$8>%B"D&%8'8$3*'?B" !(KOK!"" Q4I$X3'CC&48$V&"5$%3:5&:B" %>%4&78$;$?$8<"83B"!O!KFF"" 23**&48&5" 23**&48&5" !HKG" !(OLO(NONK!" HLF!!NH.MF(" FLJHOEH!!KH" #$%43**&48&5" 23**&48&5" (KOG" NHNLJ(GKNKN" (LOOJG!.MF(" FLHK!HFOHNG" 23**&48&5" #$%43**&48&5" (!JFJJ" !OHFHHLO((K" (LK((JK.MF(" FLEJEHKKFH(" 23**&48&5" #$%43**&48&5" (NOG" K!GLHHOEH(H" (LN!JK!.MF(" FLHKJGJ(OEE" P<7&:8I<:3$5$%9B"43*D&*$8'?"" U*6$&8<M:&?'8&5"7&:%3*'?$8<"8:'$8%B"EFJOHN"" Coincidence/Co-occurence = Nr. pz. che presentano le due malattie (Cij) Expected coincidence = coincidenza attesa se le due malattie fossero indipendenti (Cij* = IiIj/N) Comorbidity index (vedi φ correlation) Maximum possible comorbidity = comorbidity se la coincidenza fosse uguale all’incidenza più bassa delle due malattie /?'>439'"!B"37&*"'*D?&B".B"!HJJEF"" 23:3*':<"':8&:<"5$%&'%&"$*"C'9$?$'?" I<7&:4I3?&%8&:3?&9$'B"7:38&48$3*"'D'$*%8B" !NHOGF"" .*539&8:$'?"4':4$*39'"" /'??;?'55&:"5$%&'%&"!B"EFFOFH"" U*&9$'B"#$'93*5M1?'4+C'*B"!FKEKF"" A':+$*%3*"5$%&'%&"!HB"E!F(GJ"" Le malattie metaboliche con la più alta comorbidity Table S6. Disease pairs that have the highest comorbidity and are connected in both KEGG and BiGG database Coincidence Disease1 Disease2 Diabetes mellitus Hypertension Hyperthyroidism, congenital Endometrial carcinoma Glutathione synthetase deficiency Lhermitte-Duclos syndrome Alcoholism, susceptibility to Goiter Goiter Diabetes mellitus Enolase-beta deficiency Aldosteronism, glucocorticoid-remediable Favism Asthma Obesity Coronary spasms, susceptibility to Total iodide organification defect Ovarian cancer Myocardial infarcation, susceptibility to Oligodendroglioma Epilepsy Hyperthyroidism, congenital Total iodide organification defect Hyperinsulinemic hypoglycemia, familial, 3 Myopathy Hypoaldosteronism, congenital Hemolytic anemia Atopy Aldosteronism, glucocorticoid-remediable Asthma Glutathione synthetase deficiency Low renin hypertension, susceptibility to Atherosclerosis, susceptibility to Hemolytic anemia 1148 (662) 7084 (5889) 210 (80) Colon adenocarcinoma Diabetes mellitus Ovarian cancer Hemolytic anemia 816 (505) 1656 (1215) Colon adenocarcinoma Cowden disease 93 (25) (expected value) 115638 (53151) 326513 (225637) 9455 (1849) 1359 (129) 4900 (1725) 109 (3) 2038 (656) 426 (52) 2489 (977) 711 (175) 107 (7) 58 (3) 13 (0.2) 341 (90) Comorbidity (maximum possible comorbidity) 8.3266!10-2 (0.35316) 7.4141!10-2 (0.32667) 5.0372!10-2 (0.22563) 3.0114!10-2 (0.73863) 2.1414!10-2 (0.95010) 1.6810!10-2 (0.80107) 1.5058!10-2 (0.58752) 1.4343!10-2 (0.72645) 1.3767!10-2 (0.16397) 1.2320!10-2 (0.019991) 1.0519!10-2 (0.37852) 9.0245!10-3 (0.32134) 7.8440!10-3 (0.22424) 7.4047!10-3 (0.11757) 6.4234!10-3 (0.017235) 4.4056!10-3 (0.96029) 4.0737!10-3 (0.22471) 3.8768!10-3 (0.370902) 3.8373!10-3 (0.05276) 3.8059!10-3 (0.082376) 1 Le malattie metaboliche connesse hanno alta comorbidity Average comorbidity: - Malattie metaboliche: 0.0009 - Malattie metaboliche connesse: 0.0027 - Malattie metaboliche “flux connected”: 0.0062 La prevalenza (Ix) delle malattie metaboliche Ix = prevalenza di una malattia x (la frazione di pazienti che hanno quella malattia) Comorbidità e prevalenza nella rete di malattie metaboliche Le prevalenze più alte: Ipertensione: 0.337 Malattia coronarica: 0.246 Diabete mellito: 0.167 Malattia polmonare: 0.147 Lee D et al. PNAS 2008;105:9880-9885 La prevalenza delle malattie metaboliche aumenta con il degree nella rete Più una malattia è connessa nella rete più aumenta la probabilità che venga indotta da altre malattie e che contribuisca all’insorgenza di altre malattie (comorbidity) La comorbidity di due malattie metaboliche decresce con l’aumento della loro distanza nella rete Distanza: lunghezza (numero di links) della shortest path tra due nodi Le malattie più connesse hanno una rata della mortalità più alta Un paziente con una malattia hub ha la tendenza di sviluppare le malattie conesse nella rete (che aumentano la mortalità) I links tra le reazioni chimiche predicono la comorbidity delle malattie metaboliche meglio rispetti ai geni condivisi PCCs tra la presenza di geni condivisi e links metabolici con disease comorbidity sono presentati per le malattie correlate al metabolismo e le malattie metaboliche classiche. Geni condivisi Links metabolici (KEGG) Links metabolici (BiGG) Malattie con link metabolico e senza link genico I network cellulari metabolici correlano con la comorbidity Tuttavia solamente 31% dei nodi linked della rete mostrano la tendenza di co-esistere nella popolazione. Limiti: Solamente 46% delle malattie entrano nella categoria “metaboliche” I valori ottenuti NON considerano: - l ambiente - lo stile di vita - trattamenti vari dei pazienti - che le reti metaboliche potrebbero avere specificità cellulari La rete di malattie metaboliche si basa sulle informazioni trovate sull’OMIM. Tuttavia NON si conoscono tutte le associazioni genemalattia nel database OMIM Conclusioni (1): 1. Le malattie metaboliche si organizzano in una rete se gli ensimi coinvolti sono linked in vie metaboliche 2. I migliori “predictors” di link tra malattie sono le reazioni chimiche delle vie metaboliche 3. Le malattie metaboliche si organizzano in una rete complessa scale free Conclusioni (2): 1. Le malattie linked/connesse nella rete presentano maggiore comorbidity rispetto a quelle non connesse 2. Il degree alto delle malattie (nodi) predice una alta prevalenza nella popolazione 3. L’occorrenza di una malattia in un paziente aumenta la probabilità di sviluppare le malattie linked nella rete. Conclusioni (3) 1. L’approccio basato sull’utilizzo della rete è utile in quanto predice la comorbidity delle malattie metaboliche o correlate 2. Le vie metaboliche cellulari si propagano a livello di popolazione e predicono la comorbidity delle malattie 3. L’informazione codificata nella struttura delle reti metaboliche si amplifica e diventa individuabile a livello della popolazione come patterns di comorbidity