dissertazione v.4.1 _finale_

La Ricerca dei Pianeti Extrasolari
Facoltà di Scienze Matematiche Fisiche Naturali
Corso di laurea in Fisica e Astrofisica
Candidato
Giammarco Campanella
n° matricola: 1061676
Relatore
Ch.mo Prof. Pietro Giannone
Anno Accademico 2006/2007
Data 27 Febbraio 2008
Università degli Studi di Roma “La Sapienza”
Estratto
LA RICERCA DEI PIANETI
EXTRASOLARI
di Giammarco Campanella
Relatore:
Professore Pietro Giannone
Negli ultimi anni lo studio dei meccanismi di formazione ed evoluzione dei sistemi
planetari ha ricevuto una considerevole spinta dalla scoperta di più di 260 pianeti
extrasolari, principalmente grazie all’analisi delle variazioni delle velocità radiali delle
stelle. Mentre parecchie caratteristiche generali dei sistemi planetari stanno
incominciando ad emergere, ancora poco è noto riguardo diversi aspetti, collegati per
esempio ai possibili meccanismi che portano alle configurazioni dei sistemi planetari
osservati (semiasse maggiore, eccentricità orbitale, masse planetarie, ecc.). Tutto ciò ha
un impatto significativo sulla determinazione della frequenza dei pianeti in generale e di
quelli in grado di ospitare la vita in particolare.
La struttura della tesi è la seguente. Nel Capitolo 1 viene fornito un quadro storico
relativo all’argomento oggetto della dissertazione.
Nel Capitolo 2 vengono presentati i metodi utilizzati per l’individuazione degli
esopianeti. Si mostrano con una speciale attenzione le tecniche riguardanti la velocità
radiale, l’astrometria e la fotometria e si offre una panoramica generale su altri metodi
concernenti le microlenti gravitazionali, il “pulsar timing”, i dischi circumstellari e
protoplanetari e il rilevamento diretto.
Nel Capitolo 3 sono esaminati alcuni aspetti generali riguardanti la ricerca in corso dei
pianeti extrasolari. Vengono presentati alcuni programmi osservativi da terra, quali
PLANET, HARPS, ELODIE e si descrivono alcune missioni spaziali in corso, e.g.
COROT (CNES-ESA), e in fase di progettazione, quali KEPLER (NASA) e
DARWIN (ESA).
Infine nel Capitolo 4 sono brevemente presentate le attuali teorie concernenti la
formazione dei pianeti, come l’accrescimento del nucleo e l’instabilità del disco. Inoltre,
vengono commentati i meccanismi proposti della migrazione planetaria per spiegare la
presenza di pianeti massicci in orbite molto vicine alle stelle ospitanti. Quindi sono
discusse le proprietà generali degli esopianeti scoperti e le particolari caratteristiche dei
pianeti extrasolari più peculiari. In più, vengono esposte le singolarità della Zona
Abitabile e degli spettri che contraddistinguono l’attività biologica.
SOMMARIO
1. Introduzione ........................................................................................ 1
2. Metodi di individuazione ..................................................................... 4
2.1 Velocità radiale ................................................................................................. 6
2.2 Astrometria ...................................................................................................... 17
2.3 Transiti ............................................................................................................. 23
2.4 Microlenti gravitazionali ................................................................................ 30
2.5 Variazioni degli intervalli di emissioni di una Pulsar ............................... 34
2.6 Dischi circumstellari e protoplanetari ........................................................ 35
2.7 Rilevamento diretto ....................................................................................... 36
3. I programmi di ricerca ....................................................................... 43
4. I sistemi planetari ............................................................................... 48
4.1 Teorie sulla formazione dei sistemi planetari............................................ 48
4.2 Le proprietà generali delle stelle e degli esopianeti scoperti ................... 49
4.3 Nomenclatura ................................................................................................. 52
4.4 Pianeti extrasolari degni di nota .................................................................. 53
4.5 Zona Abitabile e “Biosignatures” ............................................................... 57
5. Conclusioni ......................................................................................... 59
Bibliografia .............................................................................................. 60
i
INDICE DELLE FIGURE
2.1 Perturbazione di una stella ...................................................................................... 6
2.2 Parametri orbitali di un sistema stella-pianeta in orbita circolare ............................. 7
2.3 Curva della velocità radiale di 51 Peg....................................................................... 8
2.4 Deformazione del profilo di riga stellare ................................................................... 9
2.5 Sviluppo delle tecniche Doppler nel corso degli ultimi decenni .................................. 10
2.6 Misure di velocità radiale per la stella Gliese 86 .................................................... 12
2.7 Moto e velocità del sistema Sole-Giove ................................................................... 13
2.8 Orbita kepleriana della stella attorno al centro di massa........................................ 14
2.9 Curve di velocità radiali messe in fase .................................................................... 15
2.10 Variazione di velocità radiali della stella HD82943............................................ 16
2.11 Il cammino perturbato di Gl 876 .......................................................................... 17
2.12 Esempio di orbita relativa ricostruita ..................................................................... 18
2.13 I parametri orbitali................................................................................................ 18
2.14 Il moto del Sole visto da 30 anni-luce di distanza .................................................. 22
2.15 Il sistema Gl 876 – Gl 876b ............................................................................... 22
2.16 La curva di luce di HD 209458 .......................................................................... 23
2.17 Schema di transito planetario ................................................................................ 24
2.18 Modello di transito planetario ................................................................................ 25
2.19 La curva di luce e la curva della velocità radiale di OGLE-TR-122 .................... 28
2.20 Schema di casi confondibili .................................................................................... 29
2.21 Il diagramma massa-raggio dei pianeti scoperti con tecniche fotometriche ................. 30
2.22 Individuazione di un pianeta attraverso una microlente .......................................... 32
2.23 La curva di luce dell’evento di microlente OGLE 2003-BLG-235 ...................... 33
2.24 La curva di luce della microlente con il pianeta OB053 ......................................... 33
2.25 Una stella e un pianeta in orbita attorno al comune centro di massa ...................... 34
2.26 Immagine di 2M1207 b e di GQ Lupi b ............................................................. 36
2.27 Contrasto di luminosità tra un pianeta e la sua stella madre ................................. 38
2.28 Principi della coronografia stellare .......................................................................... 40
2.29 Prestazioni ottenute col coronografo d’ADONIS e con quello del NACO............ 41
2.30 Simulazione delle prestazioni attese con un telescopio da 8m .................................. 42
3.1 Tutti i pianeti extrasolari scoperti al 31 agosto 2004 ............................................ 45
3.2 Il telescopio spaziale Kepler.................................................................................... 47
4.1 Distribuzione delle masse degli esopianeti .............................................................. 50
4.2 Distribuzione dei semiassi e delle eccentricità degli esopianeti .................................. 50
4.3 Le masse e i semiassi di alcuni esopianeti............................................................... 51
4.4 Probabilità di rivelazione dei pianeti in funzione della metallicità della stella ......... 51
4.5 La Terra messa a confronto con Gliese 581 c ........................................................ 56
4.6 La Zona Continuamente Abitabile attorno a stelle di classe diversa ...................... 57
4.7 Lo spettro nel medio-IR di Venere, Terra e Marte visti da 10 pc.......................... 58
ii
INDICE DELLE TABELLE
2.1 Quantità base dei pianeti ........................................................................................... 5
2.2 Alcuni esempi di valori di segnali astrometrici .......................................................... 20
2.3 Risoluzione spaziale necessaria per separare angolarmente alcuni pianeti in orbite e a
distanze diverse................................................................................................................ 37
3.1 Diversi programmi di ricerca sugli esopianeti ............................................................ 43
iii
RINGRAZIAMENTI
Vorrei ringraziare tutti quelli che mi hanno accompagnato in questa
avventura: i miei amici, i ragazzi del Mazza, il Direttore Domaschio e Don
Ugo ma soprattutto i miei familiari, mio padre Emilio, mia madre Wilma, mia
sorella Cristiana, nonna Maria e nonna Rosa.
Inoltre ringrazio il network "Exoplanets" diretto da Jean Schneider
(Observatoire de Paris), Joseph Catanzarite (California Institute of
Technology/Jet Propulsion Laboratory), Adrian Belu (Université de Nice) e
Alessandro Sozzetti (University of Pittsburgh/Harvard Smithsonian Center
for Astrophysics) per le rilevanti informazioni e suggerimenti che mi hanno
fornito.
iv
Capitolo 1
INTRODUZIONE
Ipotesi fantasiose di altri mondi diversi dal nostro, magari abitati da creature
esotiche, sono state una parte integrante della nostra storia e cultura. I grandi
della civiltà classica, come Democrito (460-371 a. C.) ed Epicuro (341-270 a.
C.) e i filosofi e teologi medievali, quali Alberto Magno (1193-1280) e
Giordano Bruno (1548-1600) immaginarono che potremmo non essere soli
nell’Universo. Questi grandi pensatori seguivano un’antica tradizione
filosofica e teologica, ma le loro idee, per quanto interessanti possano
sembrare, non erano basate su nessuna evidenza sperimentale e osservativa.
A quanto si sa, il primo cacciatore di pianeti extrasolari fu Christiaan
Huygens, nel Seicento. Ma i tre secoli successivi videro solo falsi allarmi,
speranze infrante e scoperte mancate. Si dovette arrivare al 1988 perché si
registrassero i primi progressi: alcune rilevazioni di Gordon A.H. Walker e dei
suoi collaboratori all’Università della British Columbia suggerivano la
presenza di masse planetarie in orbita attorno a diverse stelle vicine. Gordon e
colleghi, però, furono estremamente cauti e affermarono che quella dei pianeti
in orbita era solo una delle possibili interpretazioni dei dati. In pochi presero
in considerazione i loro studi.
Un anno più tardi, David W. Latham dello Harvard Smithsonian Center for
Astrophysics e quattro suoi collaboratori trovarono forti indizi di quello che
poteva essere un pianeta in orbita attorno a una stella poco conosciuta,
denominata HD 114762. Dato che il pianeta di Latham aveva una massa pari
ad almeno 10 volte quella di Giove, gli astronomi ipotizzavano che si trattasse
di una nana bruna, o di una stella ordinaria ma di massa molto piccola; e così
anche questa notizia non finì sulle prime pagine.
Nel 1992 Alexander Wolszczan della Pennsylvania State University e Dale
A. Frail del National Radio Astronomy Observatory usarono un metodo per
misurazioni temporali molto accurate e scoprirono due pianeti di massa simile
a quella della Terra in orbita attorno alla pulsar PSR 1257+12. A quanto pare,
questi mondi bizzarri si erano formati da un disco di detriti residui
dell’esplosione della supernova che dette origine alla pulsar. Forse questo
strano scenario spiega perché furono in pochissimi a ritenere che fosse stato
scoperto un vero analogo del nostro sistema solare; eppure la scoperta di
questi due mondi lontani fu il primo indizio del fatto che la formazione
planetaria è un processo ordinario.
Poi, nel 1995, due astronomi svizzeri, Michel Mayor e Didier Queloz
dell’Osservatorio di Ginevra, stupirono il mondo quando individuarono un
pianeta – che ha una massa pari a circa 150 volte quella della Terra e compie
un’orbita completa in solo 4,2 giorni terresti – in orbita attorno a 51 Pegasi,
una stella vicina non molto diversa dal Sole. Quando fu dato l’annuncio nel
corso di un convegno scientifico a Firenze, le reazioni furono per lo più di
incredulità. Un pianeta con un periodo orbitale così breve deve trovarsi molto
vicino alla stella attorno a cui orbita, all’incirca un ventesimo della distanza tra
la Terra e il Sole. Nel 1995 tutti ritenevano che i pianeti di grande massa
dovessero trovarsi molto più perifericamente. Come era possibile che
l’oggetto appena scoperto, denominato “51 Peg b”, potessero anche solo
sopravvivere?
Nel giro di pochi giorni altri astronomi verificarono le osservazioni di Mayor
e Queloz e vari gruppi di astrofisici sottoposero a test i modelli al calcolatore
di questo “Giove caldo”. Molti furono sorpresi quando i calcoli mostrarono
che un pianeta come 51 Peg b poteva facilmente sopportare l’intensa
radiazione stellare e che avrebbe presumibilmente perso solo una frazione
trascurabile della propria massa nel corso dei suoi miliardi di anni di esistenza.
2
La scoperta di questo oggetto così strano e imprevisto diede vita a un nuovo
rivoluzionario settore dell’astronomia: lo studio di sistemi planetari alieni. La
ricerca dei pianeti extrasolari è considerata importante per tre ragioni
principali:
1. Testare la nostra attuale comprensione sulla formazione dei sistemi
(extra)solari.
2. Coadiuvare la ricerca della vita extraterrestre.
3. Fornire una visione complementare agli studi delle nane brune e delle
stelle di piccola massa.
Attualmente gli astronomi hanno scoperto più di 260 mondi extrasolari, che
compongono sistemi planetari di stupefacente varietà. La recente
individuazione di pianeti di massa 5 volte quella della Terra dimostra che gli
esopianeti di piccola massa esistono. Tale esplosione nella scienza dei pianeti
extrasolari è dovuta principalmente allo sviluppo di tecniche per
l’individuazione degli esopianeti e all’elaborazione di modelli che spiegano le
inaspettate caratteristiche mostrate da questi oggetti.
3
Capitolo 2
METODI DI INDIVIDUAZIONE
I pianeti extrasolari sono incredibilmente difficili da rivelare. Ciò è dovuto al
fatto che essi non brillano di luce propria, ma di luce riflessa della stella
attorno a cui orbitano. Di conseguenza, sono molto meno luminosi della
propria stella madre (nel caso di Giove, per esempio, di un fattore 1010).
Pertanto, per trovare gli esopianeti si utilizzano principalmente metodi
indiretti. Le cinque principali tecniche usate attualmente sono:
1. Spettroscopia Doppler
2. Astrometria
3. Fotometria di transito
4. Microlenti gravitazionali
5. Pulsar timing
Questi metodi si basano sul fatto che un pianeta esercita una piccola
influenza sulla stella ospitante mentre si muove lungo la propria orbita.
Osservando i cambiamenti nella stella madre, si può dedurre la sua esistenza.
Dato che i cambiamenti diventano maggiori man mano che il pianeta ha
valori crescenti della massa, è più semplice rivelare pianeti gioviani che pianeti
terrestri.
4
Tabella 2.1: Quantità base dei pianeti.
Sole
Giove
Terra
HD
209458b
1.99.1030
1.9.1027
5.98.1024
1.31.1027
4.85
25.5
27.8
-
696000
71474
6378
94346
P (giorni)
-
4329
365
3.52
Semiasse
-
5.2
1
0.045
-
12.5
0.09
86.52
-
520
100
4.5
Contrasto
1
1.82.108
1.5.109
-
Profondità del
-
1.01
0.0084
1.7
Massa (kg)
MV (mag)
Raggio (km)
maggiore
(UA)
Semiampiezza
VR del moto
riflesso (m/s)
Semiasse
maggiore
proiettato a 10
pc (mas)
transito nella
curva di luce
(%)
5
2.1 Velocità radiale
Iniziando con la scoperta di un pianeta attorno alla stella 51 Pegasi, il
metodo della velocità radiale (VR), o della spettroscopia Doppler, si è
mostrato sino ad oggi il più affermato nella ricerca dei pianeti extrasolari. La
maggior parte degli esopianeti conosciuti sono stati in effetti scoperti e
confermati misurando la variazione della VR della stella lungo la sua orbita
attorno al baricentro del sistema stella-pianeta. (Figure 2.1 e 2.2).
Figura 2.1: Vista schematica della variazione della lunghezza d’onda della luce di una stella
per effetto di un pianeta in orbita così come vista da Terra. La stella si muove attorno al
centro di massa del sistema planetario e il suo spettro appare spostato verso il blu quando si
avvicina all’osservatore e verso il rosso quando se ne allontana.
La stella compie una piccola orbita circolare di raggio as = a p ⋅
Mp
Ms
con
un periodo pari al periodo orbitale P del pianeta. Ciò determina le
perturbazioni di tre quantità osservabili della stella: la velocità radiale viene
6
perturbata di
δ VRs =
2π as
as
, la posizione angolare di δα s =
e il
P
D
tempo d’arrivo del segnale di
δ Ts =
as
, con D distanza stella-osservatore e
c
c velocità della luce.
Figura 2.2: Parametri orbitali di un sistema stella-pianeta. La stella s di massa Ms e il pianeta
p di massa Mp sono in orbita circolare attorno al centro di massa cm del sistema. I raggi
orbitali sono as per la stella e ap per il pianeta. L’angolo i tra la normale al piano orbitale e la
direzione di vista è l’angolo d’inclinazione orbitale. La velocità radiale Vs della stella misurata
lungo la direzione di vista dipende dal seno dell’angolo d’inclinazione orbitale (da Alonso
2006).
Le precisioni tipiche richieste per la misura della VR, al fine di rilevare
esopianeti, possono essere ottenute dalla Tabella 2.1. Le semiampiezze delle
curve delle VR sono ~50-100 m/s per i pianeti gioviani caldi (“Hot Jupiters”)
(come 51 Peg b, Figura 2.3), pochi m/s per pianeti simili a Giove che
percorrano orbite ampie e qualche cm/s per pianeti simili alla Terra.
7
Figura 2.3: Curva della velocità radiale di 51 Peg rilevata dal SARG (“Spettrografo ad Alta
Risoluzione per Galileo”).
Sono necessari spettri stellari sia di alta risoluzione che di alto rapporto
segnale/rumore per determinare gli spostamenti delle lunghezze d’onda
dovuti al moto relativo della stella visto dalla Terra, anche nei casi più
semplici.
Questo metodo favorisce la rilevazione sia di esopianeti di grande massa che
di quelli di corto periodo. La maggior parte dei pianeti scoperti con la tecnica
della VR possiedono masse dell’ordine di Giove, semiassi maggiori a fino a
0.05 UA e periodi dell’ordine di giorni o pochi anni.
La maggior parte degli obiettivi indagati durante la ricerca degli esopianeti
sono stelle di sequenza principale, tipicamente di tipi spettrali F-G-K, perché i
loro spettri sono più adatti per l’analisi. Infatti, le stelle più calde e più
massicce di quelle di tipo F5 sono dei rotatori veloci con caratteristiche
spettrali che impediscono misure precise di VR (Perryman 2000). Le stelle
giovani o giganti mostrano, nei loro spettri, effetti Doppler intrinseci. Le
macchie, le zone cromosferiche attive, le disomogeneità convettive e le
variazioni fotometriche generano infatti un moto periodico della superficie
della stella che può imitare gli effetti di un moto baricentrico stellare (Figura
2.4). L’analisi delle stelle attive richiede quindi lo sviluppo di tecniche adatte a
correggere le VR per questi fenomeni (Saar e Donahue 1997).
8
Figura 2.4: Deformazione del profilo di riga stellare dovuta ad una macchia che introduce
un effetto Doppler apparente.
Ad oggi, gli attuali strumenti e tecnologie permettono misure con precisioni
anche superiori ad 1 m/s (Mayor et al. 2003) (Figura 2.5). Esopianeti di masse
21, 14 e 7.5 volte quella della Terra (in orbite di corto periodo) sono stati
scoperti recentemente (Butler et al. 2004, Santos et al. 2004 e Rivera et al.
2005).
Si può ragionevolmente pensare che, durante i prossimi anni, le misure
Doppler supereranno il muro del km/h (28 cm/s) permettendo quindi
l’individuazione di Terre calde e di super-Terre nella zona abitabile.
Tuttavia, l’aumentare della precisione nelle misure di VR condurrà ad un
limite naturale: il jitter della VR causato dal “rumore” stellare intrinseco.
9
Figura 2.5: Sviluppo delle tecniche Doppler nel corso degli ultimi decenni.
L’ampiezza della velocità è collegata alla massa stellare, alla massa
dell’esopianeta, al periodo e all’eccentricità dell’orbita. Usando la terza legge di
Keplero è possibile stabilire il semiasse maggiore dell’orbita. Tuttavia la massa
dell’esopianeta dipende dall’inclinazione orbitale attraverso il fattore sin i;
perciò, la VR fornisce solo un limite inferiore alle masse. È possibile trovare il
vero valore della VR solo quando il piano orbitale del pianeta si trova lungo la
nostra direzione di vista (“edge-on”). Se, invece, il piano orbitale del pianeta è
ortogonale alla direzione di vista (“face-on”), non è rilevabile alcuno
spostamento delle righe spettrali e la presenza del pianeta rimarrà sconosciuta.
Inoltre, a causa di questo inconveniente è possibile che qualche “pianeta”
scoperto attraverso la spettroscopia sia in realtà una “nana bruna”. Perciò,
quando è possibile, si combinano i risultati ottenuti col metodo della velocità
radiale con le osservazioni astrometriche e fotometriche al fine di ottenere la
corretta interpretazione.
10
La VR di una stella può essere ricavata dall’analisi del suo spettro,
utilizzando la relazione per l’effetto Doppler-Fizeau, che lega la velocità di un
corpo in movimento alla lunghezza d’onda misurata
∆λ
λ
=
∆v
c
(2.1)
Lo spostamento delle righe di assorbimento prodotto dal fenomeno è
relativamente piccolo dato che una variazione di velocità di 12 m/s
corrisponde, nel visibile, ad uno spostamento delle righe spettrali di soli 0.2
mÅ. Ciò rappresenta solo qualche millesimo della larghezza tipica delle righe
spettrali.
In realtà, al risultato ottenuto per le VR conviene sottrarre la componente
della velocità legata alla deriva dello spettrografo e quella legata al movimento
della Terra.
VR = Vspettro − Vderiva − VTerra
(2.2)
La componente di deriva strumentale è, la maggior parte delle volte (eccetto
per gli spettrografi sotto vuoto), dominata dalle variazioni d’indice di
rifrazione dell’aria, collegate alle variazioni di temperatura e di pressione
atmosferiche. Una variazione di 1 mbar induce uno spostamento delle righe
dell’ordine dei 90m/s. Una variazione di temperatura di 1°C produce uno
spostamento dell’ordine dei 300 m/s. (si veda Bouchy 2005a per
approfondimenti).
Misurando lo spettro stellare nel tempo, si possono così ricavare le
variazioni periodiche che indicano la presenza di un pianeta (Figura 2.6).
11
Figura 2.6: Misure di velocità radiale per la stella Gliese 86 nella costellazione dell’Eridano. Le
misurazioni suggeriscono la presenza di un pianeta con un periodo orbitale di 15.8 giorni. La
massa calcolata per il pianeta è circa 5 volte quella di Giove.
La semiampiezza K della VR può essere espressa con la seguente relazione
(2.3)
dove G è la costante gravitazionale di Newton, P il periodo orbitale del
pianeta, Mp la massa del pianeta, M* la massa della stella ed e l’eccentricità
orbitale. Utilizzando la terza legge di Keplero, il periodo viene espresso con
(2.4)
dove a è il semiasse maggiore dell’orbita planetaria.
12
Considerando un’orbita circolare vista di profilo (e=0, sin i =1) l’equazione
per la semiampiezza diviene
(2.5)
A titolo di esempio riportiamo i valori di alcuni cambiamenti di velocità
indotti sul Sole a causa dei pianeti: K = 12.5 m/s nel caso di Giove (Figura
2.7), K = 2.7 m/s in quello di Saturno e K = 0.09 m/s per la Terra (Tabella
2.1). Perciò, i pianeti giganti (qualche massa gioviana) con orbite strette (più
piccole di 1 UA) producono grandi valori di K, più facili da misurare. Inoltre
la più piccola massa planetaria rilevabile varia come la radice quadrata del
semiasse maggiore.
Quindi, misurando il periodo, conoscendo la massa della stella e utilizzando
la (2.4) e la (2.5), è possibile ricavare a e Mp.
Figura 2.7: Moto e velocità del sistema Sole-Giove.
13
Inoltre, la definizione completa della curva della VR conduce alla
determinazione di 6 parametri del sistema:
– V0 la velocità del centro di massa, chiamata anche velocità sistematica,
– K la semiampiezza della velocità,
– P il periodo orbitale,
– TP l’epoca del passaggio al periastro,
– e l’eccentricità,
– ω l’argomento del periastro.
Figura 2.8: Orbita kepleriana della stella attorno al centro di massa (cm) del sistema stellapianeta. M* indica la stella, a1 è il semiasse maggiore dell’orbita ellittica, E è l’anomalia
eccentrica, ν è l’anomalia vera ed r il vettore di posizione della stella. La freccia in punto-tratto
indica il nodo ascendente a partire dal quale viene calcolata la distanza angolare del periastro
dal nodo. La direzione dell’osservatore, non rappresentata, punta verso la parte inferiore
sinistra della figura.
14
La Figura 2.9 mostra 4 esempi di curve di velocità radiali messe in fase con
V0=0 m/s e K=100 m/s.
Figura 2.9: Curve di velocità radiali messe in fase per diversi valori dell’eccentricità e
dell’argomento del periastro w. La fase 0 corrisponde al passaggio al periastro.
Nei casi in cui più di un oggetto orbita attorno alla stella osservata, le
oscillazioni vengono modulate.
15
Figura 2.10: Variazione di velocità radiali della stella HD82943, che possiede due pianeti in
risonanza 2:1 (Mayor et al. 2004).
Le leggi della dinamica di due corpi non sono più sufficienti per descrivere
questi sistemi. La definizione dei parametri deve allora tenere conto delle
interazioni gravitazionali tra i diversi pianeti.
Al fine di rilevare semiampiezze K di poche decine di m/s e per individuare
esopianeti di massa piccola od orbite ampie, è necessario seguire delle
procedure adatte di acquisizione e analisi dati (si veda Butler et al. 1996 e
Mayor et al. 2003 per precisioni di 3 m/s e 1 m/s rispettivamente e Bouchy
2005a e Martinez Fiorenzano 2006 per gli accorgimenti tecnici).
La maggior parte dei pianeti scoperti attraverso la spettroscopia sono dei
pianeti gioviani caldi, cioè probabili luoghi non adatti alla vita, come noi la
conosciamo. Per di più, la loro prossimità al centro di un sistema planetario
rende improbabile la possibilità che pianeti simili alla Terra possano essere
sopravvissuti nelle loro vicinanze. Quindi, mentre le scoperte fatte con la
16
spettroscopia stabiliscono la cospicua presenza di pianeti nel cosmo, la
maggior parte dei sistemi identificati sono solo di uso limitato nella ricerca
della vita nell’Universo.
2.2 Astrometria
Una stella in un sistema planetario si muove attorno al baricentro lungo un
percorso circolare o ellittico e proiettato sulla sfera celeste. Questo moto può
essere osservato e misurato con l’astrometria. Essa è la più antica tecnica
utilizzata per la rilevazione degli esopianeti e permette di studiare le precise e
periodiche perturbazioni che un “compagno invisibile”, quale un pianeta o
una nana bruna, causano sulla stella.
Innanzitutto, si provvede a rilevare il percorso della stella sulla sfera celeste
(Figura 2.11).
Figura 2.11: La stella Gl 876 percorre un cammino oscillante rispetto alle “stelle fisse”. Ciò è
dovuto alla presenza del pianeta Gl 876b (Benedict 2005)
Quindi i dati rilevati vengono raccordati a un modello di moto orbitale
kepleriano.
17
Figura 2.12: Esempio di orbita relativa ricostruita.
L’orbita kepleriana richiede la determinazione di 7 parametri: il semiasse
maggiore a, il periodo P, l’eccentricità e, l’inclinazione i, la posizione angolare
della linea dei nodi Ω, l’argomento del pericentro ω e l’epoca del passaggio al
pericentro τ.
Misurando le componenti del moto orbitale, è possibile determinare
l’inclinazione i, l’eccentricità e, il periodo orbitale P, il semiasse maggiore a
(Asada et al. 2004). Quindi, combinando i valori ottenuti con i dati delle
velocità radiali, si può determinare la massa dell’esopianeta senza ambiguità.
Figura 2.13: I parametri orbitali.
18
Se la massa della stella è M*, e la massa del pianeta è Mp, allora, assumendo
un’orbita perfettamente circolare, il raggio dell’orbita stellare attorno al centro
di massa del sistema, scalato per la distanza dall’osservatore, viene chiamato
segnale astrometrico (ampiezza angolare):
α=
Mp a
M* D
(2.6)
Se Mp e M* sono forniti in unità di massa solare, a in UA e D in pc, allora α è
in arcsec.
Con l’astrometria, è possibile studiare un campione di stelle maggiore (es.: di
masse maggiori, giovani e della pre-sequenza principale) e superare alcuni
limiti che si presentano durante le osservazioni delle VR. Inoltre sarebbe
possibile rilevare esopianeti attorno alle stelle giovani, al fine di indagare il
tempo-scala della formazione planetaria e dei processi di migrazione.
Poiché il segnale astrometrico cresce linearmente col semiasse maggiore a
dell’orbita planetaria, sono più facilmente rilevabili quei sistemi di massa
anche piuttosto piccola che hanno un valore abbastanza grande di a.
Nel caso di un sistema planetario multiplo, non basta considerare
semplicemente orbite kepleriane indipendenti, ma si devono avere ulteriori
informazioni, quali ad esempio, le espressioni analitiche approssimate che
descrivano le perturbazioni gravitazionali e le conseguenti variazioni temporali
degli elementi orbitali.
Il metodo astrometrico richiede misurazioni di posizioni angolari numerose
e molto accurate, in un sistema di riferimento ben definito. Un osservatore
che si trovasse a 10 pc dal Sole rileverebbe un’ampiezza angolare di 500
microsecondi d’arco per il moto di Giove e un’ampiezza di 0.3 µas nel caso
19
della Terra. Perciò, le misurazioni richiedono una precisione superiore al
decimo di millisecondo d’arco (mas) per identificare oggetti più piccoli di
Giove ad una distanza di 50-200 pc.
La tabella 2.2 riporta alcuni esempi di valori di α.
Tabella 2.2: Confronto degli ordini di grandezza di parallasse, moto proprio
e segnali astrometrici indotti da pianeti di masse diverse e raggi orbitali vari,
assumendo una stella di 1 M⊙ osservata a 10 pc di distanza.
Sorgente
α
Giove a 1 UA
100 µas
Giove a 5 UA
500 µas
Giove a 0.05 UA
5 µas
Nettuno a 1 UA
6 µas
Terra a 1 UA
0.33 µas
Parallasse
105 µas
5 x 105 µas/yr
Moto proprio
È impossibile misurare dagli osservatori a terra spostamenti dell’ordine di
qualche mas utilizzando tecniche standard di rilevamento d’immagini; ciò è
dovuto agli effetti atmosferici, quali la turbolenza e la rifrazione che
impediscono la precisa focalizzazione delle immagini. Quindi, si cerca di
superare queste difficoltà attraverso l’utilizzo di tecniche interferometriche e
con le missioni spaziali. Tuttavia, bisogna sottolineare che già pianeti della
20
taglia di Giove producono degli effetti perturbativi impossibili da rilevare
anche per l’Hipparcos, la cui precisione è di 1 mas.
Rilevare un moto orbitale indotto da un pianeta terreste implica
necessariamente un miglioramento di 2-3 ordini di grandezza in precisione,
fino a raggiungere la scala dei microsecondi d’arco (µas). Ad oggi, dunque,
nessun pianeta è stato scoperto con questo metodo. Ciò nonostante è stata
determinata astrometricamente la massa del pianeta Gliese 876b utilizzando il
Fine Guidance Sensor 3 (FGS) dell’Hubble Space Telescope (HST) (Benedict et al.
2002).
Gliese 876 è una nana distante 4.7 pc, di tipo spettrale M4V e di massa
M*=0.32M⊙. Con metodi spettroscopici erano già stati calcolati: il periodo
orbitale del pianeta P=61 giorni e la sua massa M p sin i ≈ 2 M J . Con questi
dati, utilizzando la (2.6), si prevede α=270 µas; Benedict et al. (2002) ritennero
che tale valore potesse essere rilevato dal FGS che ha una precisione tipica di
0.5 mas. Dunque, utilizzando 5 stelle di riferimento che si trovavano entro
pochi minuti d’arco dal bersaglio, essi combinarono i dati ricavati da
misurazioni astrometriche e spettroscopiche e derivarono l’ampiezza angolare
della perturbazione, l’angolo d’inclinazione e quindi la massa di Gl 876b (e
non giusto M p sin i ). Trovarono α=(250±60)µas e Mp=(1.89±0.34)MJ .
Alcuni nuovi progetti in fase di sviluppo in quest’area sono: PRIMA (PhaseReference Imaging and Micro-Arcsecond Astrometry) dell’ESO, Gaia
dell’ESA (precisione 10 µas) e SIM (Space interferometry Mission) della
NASA (precisione 2 µas, che potenzialmente permette di scoprire un pianeta
di 6.6 masse terrestri che orbiti a 1UA da una stella come il Sole alla distanza
di 10 pc da noi).
21
Figura 2.14: Il moto del Sole rispetto alle “stelle fisse” rilevabile a 30 anni-luce di distanza.
Per individuare la perturbazione dovuta ad un pianeta simile alla Terra, serve misurare angoli
con una precisione 1000 volte superiore a quella dell’Hubble Space Telescope.
Figura 2.15: Il sistema Gl 876 – Gl 876b studiato da Benedict et al.
22
2.3 Fotometria
Il primo successo del metodo fotometrico è datato 1999, quando venne
osservato il transito di HD 209458b (Charbonneau et al. 2000 (Figura 2.16S) e
Henry et al. 2000). Da allora la sua popolarità è aumentata, perché gli studi sui
sistemi planetari visti di profilo sono molto più ricchi di quelli a qualsiasi altra
inclinazione, dato che così si riesce a misurare direttamente il raggio e la massa
del pianeta. Adesso, la prossima pietra miliare potrebbe arrivare da COROT e
KEPLER con la prima scoperta di un pianeta simile alla Terra.
Figura 2.16: Sinistra: la curva di luce di HD 209458 mostra il primo transito planetario
osservato (Charbonneau et al. 2000). Destra: lo stesso sistema osservato da HST/STIS ha
fornito la curva di luce con il più alto S/N osservato sino ad oggi (Brown et al. 2001).
Il metodo fotometrico consiste nel cogliere il piccolo cuneo nella curva di
luce stellare che si ha quando un pianeta transita davanti alla sua stella durante
il suo moto di rivoluzione. Perciò, viene richiesto un allineamento quasi
perfetto tra l’osservatore, il pianeta e la stella. Il transito si compie
periodicamente, con un periodo pari a quello del moto di rivoluzione del
pianeta. La probabilità Ptr che un sistema planetario mostri un transito è
proporzionale al rapporto tra il raggio della stella e il semiasse maggiore a
dell’orbita planetaria: Ptr = R a .
Applicando questa equazione al sistema solare, si ha che, per un osservatore
lontano, la Terra ha la probabilità di 1/214 di causare un transito davanti al
23
Sole; questo valore è pari a 1/1100 per Giove ma aumenta drasticamente per
orbite strette (P ~ 3 d) quando ha un valore del 10% circa.
Un sistema planetario osservato di profilo (“edge-on”) offre anche la
migliore configurazione per l’osservazione della VR; inoltre, sparisce
l’indeterminazione del “sin i” per la massa e quindi dalla curva di luce si
possono determinare i parametri fisici dell’esopianeta, cioè: il raggio,
l’inclinazione orbitale i, la densità, la gravità superficiale.
Il transito planetario individuato nella curva di luce viene principalmente
descritto da tre parametri: profondità, durata, forma. A seconda della
latitudine del transito sul disco stellare, il cuneo della curva di luce avrà una
forma a U (occultazione centrale) o a V (occultazione marginale).
Quantitativamente, il parametro collegato è la durata tra l’ingresso e l’uscita
dal transito.
Calcoliamo questi parametri nel caso semplificato di orbita circolare e di
disco stellare di luminosità uniforme (si veda Moutou e Pont 2005 per
un’orbita ellittica). Uno schema di transito planetario è mostrato nella Figura
2.17.
Figura 2.17: Schema di transito planetario, DF indica la differenza di flusso dovuta al
transito e b è il parametro d’impatto.
24
L’ingresso (ovvero l’uscita) è definito come la fase tra il contatto 1 (ovvero
3) e il contatto 2 (ovvero 4). Il “fondo piatto” corrisponde alle fasi dalla 2 alla
3.
Profondità di transito. La profondità del transito è collegata al raggio della stella
e del pianeta (rispettivamente R e r) ed è:
(2.7)
ove il flusso stellare rilevato è Fon durante il transito e Foff in caso contrario.
Questa formula trascura il fenomeno conosciuto col nome di oscuramento al
bordo (“limb darkening”), cioè il fatto che le stelle sono leggermente più
luminose al centro del disco rispetto al bordo. Tenendo conto
dell’oscuramento al bordo, la curva di luce ha un profilo più tondeggiante
(Figura 2.18).
Figura 2.18: Sinistra: modello di transito planetario con diversi coefficienti di oscuramento al
bordo corrispondenti a stelle nane di temperatura effettiva tra i 4000 e i 7000 K. Destra: lo
stesso, in varie bande fotometriche. (Mandel e Agol 2002)
25
Durata del transito. La durata totale del transito, per un orbita circolare, è
collegata ai parametri orbitali e al raggio della stella e vale
(2.8)
ove P è il periodo orbitale, a è il raggio orbitale ed i è l’inclinazione orbitale.
L’espressione b =
a
cos i è chiamata parametro d’impatto ed indica la distanza
R
proiettata del centro del pianeta dall’equatore della stella.
La (2.8) può essere riscritta (Seager e Mallen-Ornelas 2003) in funzione di P
e b:
(2.9)
ove M è la massa della stella e si è trascurata quella del pianeta.
Durata d’ingresso. Un altro parametro temporale che descrive il transito è la
durata dell’ingresso o dell’uscita, data da
(2.10)
26
Si può inoltre studiare la forma del transito calcolando il rapporto tra la
durata del “fondo piatto” (tF) e quella totale del transito (d):
(2.11)
Le tre equazioni che descrivono un transito planetario (profondità, durata
totale e dell’ingresso) possono essere usate per definire i 4 parametri incogniti
del sistema: r, R, M, b. La massa e il raggio della stella possono essere
determinati indipendentemente con altre osservazioni (spettroscopia ad alta
risoluzione o modelli di evoluzione stellare). Ad esempio, per stelle di piccola
massa, si ha che M ∝ R con una approssimazione piuttosto buona.
La precisione attualmente raggiungibile da terra è dello 0.2% (si veda
Perryman e Hainaut 2005). Essa è sufficiente per rivelare pianeti della taglia di
Giove, ma non quelli simili alla Terra (si veda la Tabella 2.1); per i pianeti
terrestri sono necessarie osservazioni spaziali.
La temperatura superficiale del pianeta può essere ottenuta, una volta
stimata la sua albedo (Moutou e Pont 2005), supponendo l’equilibrio tra
l’irradiazione proveniente dalla stella e l’emissione del pianeta. Inoltre si può
calcolare la temperatura effettiva studiando l’eclisse secondaria (quando la
stella passa davanti al pianeta). Un’eclisse secondaria è difficile da rilevare nel
visibile dato che il flusso emesso dal pianeta (inclusa la riflessione) è molto
piccolo rispetto a quello della stella. Nell’IR, invece, il contrasto tra la stella e il
pianeta è minore e quindi l’eclisse secondaria è rilevabile. La temperatura
effettiva può essere stimata assumendo che la profondità del minimo
secondario della curva di luce è data dal rapporto tra l’emissività del pianeta e
quella della stella, modulata dal fattore (r/R)2.
27
Poiché i transiti sono abbastanza rari, le osservazioni devono essere eseguite
su ampi campi e per lunghi periodi di tempo. In questo modo dovrebbe
essere possibile identificare da terra pianeti di grandi raggi; la rivelazione di
pianeti come la Terra richiede invece precisioni fotometriche di 10-5 mag, che
sono possibili solo dallo spazio.
Comunque, è importante preparare delle adeguate strategie di analisi dati al
fine di eliminare i falsi positivi, che potrebbero essere causati da effetti stellari,
quali brillamenti, macchie, attività coronali o intrinseca variazione stellare, ma
anche da binarie fotometriche con eclissi marginali (“grazing eclipses”) o
semplicemente da occultazioni e transiti tra stelle. Inoltre, nel caso di
osservazioni da terra bisogna fare attenzione agli effetti atmosferici, quali le
masse d’aria, le bande di assorbimento, il seeing. D’altra parte, i transiti
possono essere dovuti a stelle binarie o nane brune invece che ad esopianeti.
Tutti questi sono motivi per seguire ulteriori osservazioni spettroscopiche, al
fine di confermare l’individuazione di pianeti in transito.
Figura 2.19: La curva di luce e la curva della velocità radiale di OGLE-TR-122, una dei
candidati fotometrici (Udalski et al. 2003). La curva fotometrica imita precisamente il transito
di un pianeta, ma la curva Doppler mostra che la massa della compagna non è compatibile
con questa ipotesi: si tratta infatti di una nana M della taglia di un pianeta (Pont et al. 2005).
28
Figura 2.20: Schema di casi confondibili: a) binarie marginali, b) binarie con una nana di tipo
spettrale M c) binarie in un sistema triplo, d) falso positivo (causato dall’attività stellare o da
artifatti strumentali).
Tra gli esopianeti scoperti tramite metodi fotometrici vi sono: TrES-1,
OGLE-TR-10, OGLE-TR-56, OGLE-TR-111, OGLE-TR-113, OGLE-TR132 e alcuni altri candidati del progetto OGLE (Osservatorio di Las
Campanas in Cile). Gli esopianeti scoperti combinando le tecniche
spettroscopiche e di transito sono: HD 209458b, HD 149026 e HD 189733
(Bouchy et al. 2005b e Hébrard e Lecavelier Des Etangs 2006). Tra questi,
uno dei più osservati e studiati con attenzione è TrES-1 (Alonso et al. 2004).
KEPLER studierà circa 100000 stelle continuamente e simultaneamente.
Così, per la prima volta si potrà fare una stima della frequenza dei pianeti
attorno alle stelle nane di classe F, G e K.
29
Figura 2.21: Il diagramma massa-raggio dei pianeti scoperti con tecniche fotometriche. Sono
anche indicate le curve dell’isodensità e, per confronto, le ubicazioni di Giove e Saturno.
2.4 Microlenti gravitazionali
Le microlenti costituiscono l’unico metodo capace di scoprire pianeti a
distanze davvero molto grandi dalla Terra. Mentre la spettroscopia ricerca i
pianeti nel nostro immediato vicinato galattico, fino a 100 anni-luce dalla
Terra, e la fotometria può potenzialmente scoprire pianeti distanti centinaia di
anni-luce, le microlenti possono rilevare pianeti che orbitano attorno a stelle
distanti migliaia di anni-luce.
Le microlenti sono dei rilevanti effetti astronomici, predetti dalla Teoria
della Relatività Generale di Einstein. Secondo Einstein, quando la luce emessa
da una stella passa molto vicino ad un’altra stella, lungo il suo cammino verso
un osservatore a terra, la gravità della stella interposta curverà leggermente i
raggi di luce provenienti dalla stella sorgente, facendo sì che le due stelle
30
appaiano angolarmente più lontane tra loro. Questo effetto venne utilizzato
da Sir Arthur Eddington nel 1919 per fornire la prima prova sperimentale
dell’esattezza della Relatività Generale.
Se rispetto alla Terra la stella sorgente si viene a trovare esattamente dietro
alla stella intermediaria, questo effetto è raddoppiato. I raggi di luce
provenienti dalla stella sorgente passano da entrambi i lati dell’intermediaria, o
stella “lente”. Dal momento che entrambi i flussi di luce sono curvati dalla
gravità della stella “lente”, a terra la stella sorgente dovrebbe apparire come
sdoppiata (Figura 2.22 3). In realtà, anche il più potente telescopio a Terra
non riesce a risolvere separatamente le immagini della stella sorgente e della
stella “lente” che si trova in mezzo, perciò quello che si riesce a vedere è un
unico gigantesco disco di luce, che prende il nome di “disco di Einstein”. Il
“raggio di Einstein” è il raggio angolare del disco ed è pari a:
in radianti
(2.12)
ove M è la massa della “lente”, dL la distanza della “lente” e dS la distanza della
sorgente. Se M è pari alla massa del Sole, dL=4 kpc e dS=8 kpc (tipico per un
evento di microlente del Bulge), il raggio di Einstein è 1 mas.
L’effetto risultante è un’improvvisa crescita della luminosità della stella
“lente”, di addirittura 1000 volte. Ciò dura tipicamente qualche settimana o
mese, in seguito la stella sorgente si porta fuori allineamento e la luminosità
diminuisce. Se la stella “lente” ha un pianeta abbastanza vicino, accade che
anche la gravità del pianeta curva i raggi di luce emanati dalla stella sorgente e
così viene prodotta temporaneamente una terza immagine della stessa (Figura
2.22 4). Quando viene misurato da Terra, questo effetto appare come un
temporaneo picco di luminosità, che può durare parecchie ore o giorni,
sovrapposto al normale andamento prodotto dalla microlente. Inoltre, le
precise caratteristiche della curva di luce osservata (la sua intensità e la sua
durata) forniscono diverse informazioni sul pianeta. La massa, l’orbita e il
31
periodo possono essere dedotte con grande precisione da un evento di
microlente gravitazionale.
Figura 2.22: Individuazione di un pianeta attraverso una microlente. Da destra a sinistra, la
stella “lente” (bianca) passa d’avanti alla stella sorgente (gialla) raddoppiando la sua immagine.
Nella quarta immagine da destra il pianeta aggiunge il suo effetto, creando i due picchi
caratteristici nella curva di luce.
Tra tutti i metodi attualmente disponibili, le microlenti permettono di
scoprire i pianeti più piccoli e più lontani. Tuttavia questi pianeti non
potranno mai essere riosservati a causa del raro e casuale evento che permette
la loro scoperta – il preciso passaggio visto dalla Terra di una stella davanti ad
un’altra. Ciò rende molto difficile e imprevedibile l’individuazione di pianeti
con questo metodo e obbliga ad osservare zone di cielo con molte stelle sullo
sfondo (es.: il nostro Rigonfiamento Galattico o la Grande Nube di
Magellano). Difatti ad oggi, nonostante anni di intense osservazioni, solo
quattro pianeti sono stati scoperti con le microlenti: OGLE 2003-BLG235/MOA 2003-BLG-53 (Bond et al. 2004) (Figura 2.23), OGLE-2005-
32
BLG-071 (Udalski et al. 2005), OGLE–05-169L e OGLE–2005-BLG-390Lb
(in breve OB053) (Beaulieu et al. 2006) (Figura 2.24) – un pianeta freddo,
annunciato nel Gennaio 2006, di sole 5 masse terrestri che orbita a 3 UA da
una stella nana prossima al centro della nostra galassia, cioè a 22000 anni-luce
da noi.
I progetti più attivi con questo metodo sono il nippo-neozelandese MOA
(Microlensing Observations in Astrophysics) presso “Mt John University
Observatory” in Nuova Zelanda e il polacco OGLE (Optical Gravitational
Lensing Experiment) presso “Las Campanas Observatory” in Cile.
Figura 2.23: La curva di luce dell’evento di microlente OGLE 2003-BLG-235/MOA 2003BLG-53 (Bond et al. 2004).
Figura 2.24: La curva di luce della microlente con il pianeta OB053. La curva ha mostrato il
picco il 31 Luglio 2005. Il disturbo attorno al 10 Agosto indica la presenza di un pianeta.
Fonte: European Southern Observatory.
33
2.5 Variazioni degli intervalli di emissioni di una Pulsar (“Pulsar timing”)
La presenza di un pianeta in orbita attorno ad una pulsar produce una
perturbazione nel moto di quest’ultima che si traduce in una variazione
periodica del tempo d’arrivo dell’impulso inviato dalla stella di neutroni.
Quando, durante il suo moto attorno al centro di massa del sistema, la pulsar
si allontana dalla Terra, l’intervallo di tempo tra due pulsazioni diventa
leggermente più grande; per contro, quando la pulsar si muove verso la Terra,
lo stesso intervallo si riduce leggermente.
Misurando questi cambiamenti periodici del periodo di pulsazione, è
possibile dedurre il semiasse maggiore dell’orbita del pianeta e fissare un limite
inferiore per la sua massa.
Ad oggi, solo quattro pianeti sono stati identificati usando questo metodo,
di cui tre da Wolszczan nel 1994. Scoperte di questo tipo non sono molto
interessanti per la ricerca dei pianeti extrasolari, dato che le pulsar e i pianeti
verrebbero creati solo dopo che l’esplosione della supernova avrebbe
spazzato via ogni forma di vita che si trovasse sui pianeti circostanti.
Figura 2.25: Una stella e un pianeta in orbita attorno al comune centro di massa.
34
2.6 Dischi circumstellari e protoplanetari
Un approccio ancora più recente consiste nello studio delle nubi di materia
diffusa e ricche di polveri. Questa polvere forma un disco attorno alla stella,
assorbe una parte della sua radiazione e la riemette come radiazione
infrarossa. Sfortunatamente questo metodo può essere usato solo con
osservazioni dallo spazio, perché la nostra atmosfera assorbe la maggior parte
della radiazione infrarossa, rendendo impossibili le osservazioni da Terra. Il
nostro stesso sistema solare contiene una quantità di polvere pari ad un
decimo della massa della Luna. Anche se questa quantità è insignificante nel
totale della massa, il volume su cui è distribuita è così elevato che, da grandi
distanze, l'emissione infrarossa della polvere sarebbe 100 volte più intensa di
quella di tutti i pianeti.
Il telescopio spaziale Hubble può svolgere queste osservazioni, utilizzando
la sua camera NICMOS (Near Infrared Camera and Multi-object
Spectrometer). Immagini migliori sono state riprese da una camera "sorella",
montata sul telescopio spaziale Spitzer. Lo Spitzer è stato progettato
specificatamente per le osservazioni infrarosse e, per questo tipo di immagini,
è molto più potente dell'HST.
La pressione di radiazione esercitata dalla stella spingerebbe le particelle di
polvere nello spazio interstellare in un tempo scala relativamente breve.
Pertanto, la rilevazione di polvere indica un continuo rimpiazzamento dovuto
a nuove collisioni, e fornisce una forte evidenza indiretta della presenza di
piccoli oggetti quali comete ed asteroidi che orbitano attorno alla stella madre.
In più, il rilevamento di una cavità centrale in un disco avvale l’ipotesi
dell’esistenza di un pianeta che ha spazzato la polvere presente nella propria
orbita, mentre la presenza di un ammasso di polvere potrebbe essere stata
determinata dall’influenza gravitazionale di un pianeta. Entrambe queste
caratteristiche sono presenti nel disco di polvere che circonda ε Eridani e
suggeriscono la presenza di un pianeta con un raggio orbitale di circa 40 UA
(Greaves et al. 2005).
35
2.7 Rilevamento diretto
Le tecniche discusse in precedenza sono tutti modi indiretti per determinare
la presenza di esopianeti attraverso l’influenza che esercitano sulla stella
madre. Attualmente si sta cercando di rendere possibile il rilevamento diretto
degli esopianeti e un buon risultato è l’immagine diretta dell’esopianeta
2M1207 b attorno alla nana bruna 2MASSWJ1207334-393254. Per questa
scoperta, Chauvin et al. (2005) hanno utilizzato il VLT/NACO e hanno
confermato che l’esopianeta condivide lo stesso moto proprio della stella ed
ha una massa pari a circa cinque volte quella di Giove (Figura 2.26 sx).
Altri risultati importanti sono il rilevamento fatto con Spitzer della
radiazione termica di due esopianeti scoperti col metodo fotometrico: HD
209458b e TrES-1. Deming et al. (2005) hanno studiato l’eclisse secondaria di
HD 209458b misurando la radiazione a 24 µm, per TrES-1 Charbonneau et
al. (2005) hanno eseguito le analisi a 4.5 µm e 8 µm.
Figura 2.26: Sinistra: Immagine dell’oggetto 2MASSWJ1207334-393254 e del suo compagno
(Chauvin et al. 2005). Destra: Una nana bruna (solo 13-14 masse gioviane) assieme alla
giovane stella GQ Lupi (Neuhäuser et al. 2005).
36
Il rilevamento diretto dei pianeti extrasolari soffre di due difficoltà maggiori:
(1) una minuscola separazione angolare e (2) un enorme contrasto di
luminosità. Per esempio, il sistema Sole-Giove a 10 pc di distanza sarebbe
visto sotto un angolo di 0.5” e con un rapporto tra flussi di circa 109 nel
visibile e 105 nell’IR.
La tabella 2.3 mostra la risoluzione angolare necessaria per separare
spazialmente alcuni sistemi planetari di taglia tipica (Giove caldo, Terra,
Giove, Nettuno) situati a diverse distanze. A questo riguardo, si possono
considerare le risoluzioni spaziali ottenibili coi telescopi. Il picco di diffrazione
ha un raggio angolare pari a:
(2.13)
Tabella 2.3: Risoluzione spaziale necessaria per separare angolarmente alcuni
pianeti in orbite e a distanze diverse.
separazione
0.1 UA
1 UA
5 UA
30 UA
3 pc
30 mas
0.3"
1.5"
9"
10 pc
10 mas
0.1"
0.5"
3"
25 pc
4 mas
40 mas
0.2"
1.2"
distanza
Telescopio
spaziale o
ottica
adattiva da
terra
100 pc
1 mas
10 mas
50 mas
Interferometria
37
0.3"
Il secondo aspetto cruciale è il contrasto tra il pianeta e la stella che lo
ospita. Devono essere considerati due processi radiativi: l’emissione termica
del pianeta e l’emissione stellare diffusa dall’atmosfera del pianeta. Un pianeta
in orbita attorno ad una stella di luminosità L* fornisce per riflessione una
luminosità LP pari a:
LP =
AL* RP 2
( ) φ( t )
8 a
(2.14)
dove φ(t ) è un fattore di fase orbitale pari a φ(t ) = 1 − sin i sin(2π t P ) .
La Figura 2.27 rappresenta la differenza di magnitudine tra un pianeta e la
sua stella madre per diverse classi spettrali. La luce diffusa gioca un ruolo
predominante per piccole separazioni (per esempio a ≤ 1.5 UA per una stella
di classe G5).
Figure 2.27: Contrasto espresso in differenza di magnitudine tra un pianeta e la sua stella
madre per un’emissione puramente termica o frutto della diffusione della luce stellare.
38
Vari approcci vengono considerati per rendere possibili le rivelazioni. Il
contrasto tra stella e pianeta può essere ridotto studiando le lunghezze d’onda
dell’IR termico (λ>5µm) e rilevando le immagini dallo spazio eliminando così
la componente atmosferica del rumore. Il telescopio spaziale James Webb
(JWST) verrà utilizzato anche in quest’ambito. Invece, da terra è obbligatorio
l’uso di un’Ottica Adattiva di alto profilo. Si modifica la superficie dello
specchio secondario del telescopio in modo tale che la luce della stella (e non
quella del pianeta) proveniente da diverse parti dello specchio (di focale F)
interferisca distruttivamente nel punto in cui si trova il pianeta. Si considerino
le ampiezze A*1 e A*2 (e AP1 e AP2 ) delle radiazioni luminose della stella (e del
pianeta) che arrivano nel fuoco e provengono da due punti distanti l sullo
specchio. Si supponga che in questi due punti lo specchio abbia una
deformazione con una sfasature d tra i raggi di luce. Quindi, sul piano focale
del telescopio, la fase relativa tra A*1 e A*2 è
tra AP1 e AP2 è (
2π l d
, mentre la fase relativa
F λ
2π l
d
+ α ) ove si è introdotta la distanza angolare α = a D .
F
λ
Quindi nel fuoco le ampiezze combinate della stella e del pianeta sono
A* = A + A = A (1 + e
1
*
Dati F,
che
2
*
1
*
α e λ,
si
2π il d
F λ
) e AP = AP1 + AP2 = A1P (1 + e
possono
sistemare l
2π l d
2π l
d
= (2n + 1)π e (
+ α ) = 2nπ ,
F λ
F
λ
e d in
ottenendo
i(
2π l
d
+α )
F
λ
modo
così A* = 0
).
tale
e
AP = 2 AP1 ≠ 0 . Si possono così ottenere parecchie sfasature d in diversi punti
dello specchio utilizzando degli “attuatori” piezoelettrici che ne deformano la
sagoma (Angel 1994).
Invece, per quanto riguarda il problema del contrasto di luminosità tra i due
corpi, la coronografia è molto utile al fine di ridurre sia la saturazione del
39
picco centrale che gli anelli di diffrazione di ordine successivo dell’immagine
stellare.
I bordi della pupilla sono responsabili di effetti diffrattivi che si manifestano
a causa della transizione netta nel flusso tra l’interno e l’esterno della pupilla.
B. Lyot (1939) per osservare la corona solare inserì una maschera che occulta i
bordi della pupilla (Figura 2.28 e) lì dove si trovano gli anelli di diffrazione di
ordine successivo dell’immagine stellare. Sul piano focale finale (f), il flusso
della stella è globalmente ridotto su tutta l’immagine mentre quello del pianeta
è totalmente conservato. Il rapporto tra il flusso residuo della stella e quello
del compagno viene quindi diminuito di un fattore rilevante.
Figura 2.28: Principi della coronografia stellare. In alto: schema d’un coronografo con la
maschera focale e la maschera di Lyot. In basso a sinistra: intensità luminose d’un
coronografo con maschera focale classica in diversi punti del coronografo : (a) pupilla
d’entrata, (b) piano focale davanti alla maschera, (c) dopo la maschera focale, (d) pupilla
secondaria davanti la maschera di Lyot, (e) dopo la maschera di Lyot e (f ) piano focale finale.
In basso a destra: stesse informazioni ma per un coronografo con maschera di fase a 4
quadranti rappresentata in (a). Il compagno, appena visibile nell’immagine diretta (b) appare
difatti più luminoso nell’immagine coronografica (f ).
40
La figura successiva mostra come con la tecnica di Lyot si possa ottenere
una riduzione di 5-6 grandezze nella differenza delle magnitudini tra stella e
pianeta, che può permettere l’identificazione di compagni flebili.
Figure 2.29: Prestazioni ottenute col coronografo d’ADONIS col telescopio di 3.60 m di La
Silla e con quello del NACO/VLT sulla stella HIP 6856 (comunicazione privata di G.
Chauvin 2005). A sinistra: immagini ottenute in alto con ADONIS e in basso con NACO
nelle quali si nota la presenza di due deboli compagne CCb e CCc.
La coronografia classica di Lyot non è necessariamente la più performante.
Alcune varianti che fanno uso di maschere di fase sono state presentate da
Roddier e Roddier (1997), Guyon et al. (1999) e Rouan et al. (2000) (cf. Figura
2.28 in basso a destra).
In più per ridurre il fondo di luce diffusa dalle imperfezioni di planarità
dell’ottica, si può beneficiare della turbolenza atmosferica utilizzando la
tecnica delle “specole oscure” (“dark speckles”) proposta da Labeyrie (1995).
L’atmosfera cambia il cammino dei raggi di luce con una frequenza di circa 1
kHz. Quando, per caso, la luce della stella interferisce distruttivamente nel
luogo in cui si trova il pianeta, esso diviene visibile per brevissimo tempo (1
ms).
41
In più, con l’interferometria, è possibile combinare la luce stellare fuori
fase per produrre interferenza distruttiva, mentre il segnale del pianeta
interferisce costruttivamente (“nulling interferometry”) (Bracewell e Mc Phie
1979).
Tra i diversi progetti che si prefiggono di rilevare direttamente gli esopianeti
ci sono: il Terrestrial Planet Finder (TPF) della NASA (Unwin e Beichman
2004), il Planet Finder presso il Very Large Telescope (VLT-PF) dell’ESO
(Mouillet et al. 2004) e la missione Darwin dell’ESA (Léger et al. 1996).
La figura 2.30 illustra le “performance” attese per il VLT-PF. Lo scopo di
questo progetto è quello di guadagnare 5 magnitudini in termini di contrasto
rispetto alla strumentazione esistente, esplorare il dominio di separazione
situato tra 0".1 e 3” corrispondenti a distanze tra 0.5 e 150 UA, sondare il
dominio spettrale tra 0.96 e 2.32 µm con una risoluzione pari a 50 e realizzare
delle misure polarimetriche che permettano di separare meglio i pianeti dalle
stelle che li ospitano.
Figura 2.30: Simulazione delle prestazioni attese con un telescopio da 8 m, equipaggiato con
un sistema d’ottica adattiva 40 × 40 e un coronografo con maschera di fase acromatica per
diversi tipi di sistemi planetari (da Boccaletti et al. 2005).
42
Capitolo 3
I PROGRAMMI DI RICERCA
In questi giorni, la ricerca dei pianeti extrasolari si sta rivelando uno dei
campi dell’astronomia più interessanti. Infatti, si contano più di 70 programmi
di ricerca a terra e 17 missioni spaziali già al lavoro o in fase di progettazione.
La tabella 3.1 riporta alcuni tra i programmi più attivi.
Tabella 3.1: Diversi programmi di ricerca sugli esopianeti.
Programma
Metodo di
individuazione
Luoghi
Istituzioni
California &
Carnegie Planet
Search (più di
120 pianeti
scoperti)
velocità radiale
Keck
Observatory,
Hawaii
University of
California,
Berkeley
AngloAustralian
Observatory,
Australia
Carnegie
Institution of
Washington
Elodie
velocità radiale
precisione 8 m/s
Observatoire de
Haute Provence,
Francia
Observatoire de
Haute Provence
Observatoire de
Genève
Coralie
velocità radiale
precisione 5 m/s
La Silla
Observatory, Cile
Observatoire de
Genève
HARPS (High
velocità radiale
Accuracy Radial precisione 1 m/s
velocity Planetary
Search)
La Silla
Observatory, Cile
ESO
SARG
(Spettrografo ad
Alta Risoluzione
Telescopio
Nazionale
Galileo, Canarie
Observatoire de
Genève
velocità radiale
43
Osservatori
Astronomici di
Padova, Catania
per Galileo)
PLANET
(Probing Lensing
Anomalies
NETwork)
e Teramo
microlenti
La Silla
Observatory, Cile
20 istituzioni in
10 Paesi
Sutherland Boyden
Observatory,
South Africa
Bickley Canopus
Observatory,
Australia
OGLE (Optical
Gravitational
Lensing
Experiment)
fotometria e
microlenti
Las Campanas
Observatory, Cile
University of
Warsaw
Princeton
University
TrES
(Transatlantic
Exoplanet
Survey)
fotometria
Palomar
Observatory,
California
California
Institute of
Technology
Lowell
Observatory,
Arizona
Observatorio del
Teide, Canarie
Nel complesso, in 12 anni e con l’ausilio dello Spitzer Space Telescope e
dell’Hubble Space Telescope sono stati scoperti più di 260 pianeti extrasolari.
Il tasso di scoperte aumenta ogni anno di più e lo scopo principale resta
quello di riuscire a rilevare pianeti di taglia simile alla Terra, dato che essi
vengono ritenuti i più probabili ad ospitare la vita.
44
Figura 3.1: Tutti i pianeti extrasolari scoperti al 31 agosto 2004 (in ascisse il semiasse
maggiore, sulle ordinate le masse gioviane): I puntini blu rappresentano pianeti scoperti con il
Metodo delle Velocità radiali, in rosso quelli con metodo del transito, in giallo con le
microlenti gravitazionali. L'immagine mostra anche i limiti delle capacità di rilevamento dei
prossimi strumenti (linee colorate), sia terrestri che spaziali, dal 2006 al 2015. Infine
l'immagine mostra anche la posizione dei pianeti del sistema solare: sono i pallini più grandi
con l'iniziale del nome inglese.
45
La Figura 3.1 mostra i pianeti noti nel piano semiasse maggiore (o periodo) massa. Come già detto, i metodi noti selezionano pianeti massicci in orbite
strette, ma questi limiti potranno essere estesi con la prossima generazione
di telescopi. Il successo della rivelazione di esopianeti ha infatti stimolato
l'avvio di molti progetti, tra i quali:
•
Sia il VLT che il Keck e l'LBT utilizzeranno l'interferometria ottica
per misurare con precisione la posizione delle stelle vicine, in modo
da rivelare pianeti tramite la tecnica astrometrica.
•
COROT (COnvection ROtation and planetary Transits): piccolo
telescopio spaziale di 27 cm di diametro dell'Agenzia Spaziale
Francese (CNES) in cooperazione con l'Agenzia Spaziale Europea.
Lanciato il 27 dicembre 2006 a bordo di un vettore russo dal
cosmodromo di Baikonur, COROT attualmente si trova in un orbita
circolare polare a 827 km di altezza. Ha visto la prima luce tecnica il
18 gennaio 2007, ha individuato il suo primo pianeta extrasolare,
Corot-exo-1b, nel maggio 2007 e ora sta conducendo una campagna
di fotometria di precisione delle stelle vicine, sia per studi di
sismologia stellare che per trovare pianeti terrestri con il metodo dei
transiti.
•
Kepler: piccolo telescopio spaziale ottico della NASA da 95 cm di
diametro, utilizzerà il metodo dei transiti per trovare pianeti terrestri
orbitanti attorno a stelle vicine. Durante i 4 anni di vita della missione,
Kepler monitorerà continuamente e simultaneamente la luminosità di
100000 stelle della sequenza principale.
•
SIMPlanetQuest: la Space Interferometry Mission della NASA è un
telescopio interferometrico spaziale, costituito da piccoli telescopi da
30 cm su una base di 9 metri. Previsto per il prossimo decennio,
misurerà la posizione delle stelle vicine con una precisione tale da
rivelare la perturbazione di pianeti terrestri nelle stelle più vicine.
46
•
Darwin (ESA) e Terrestrial Planet Finder (NASA): sistemi di 4-5
telescopi spaziali di 3 metri, collegati in interferometria. Saranno
capaci non solo di rivelare pianeti terrestri ma di misurarne
l'emissione,
alla
ricerca
di
segnali
della
presenza
di
vita
(``biosignatures''). TPF sarà equipaggiato anche con un coronografo
ottico.
•
L'OverWelmingly Large (OWL) telescope: un telescopio di 100 m
a terra, lavorando in IR con ottica adattiva, potrebbe misurare
direttamente la luce di pianeti terrestri. L'ESO sta considerando
seriamente l'ipotesi di puntare ad un telescopio di queste dimensioni,
ma le difficoltà tecniche (per non parlare dei costi) sono tali da
rendere probabile la costruzione di un telescopio di “soli” 30-50 m di
diametro. Il prossimo Extremely Large Telescope comunque monterà
spettrografi di grandissima stabilità e precisione, che permetteranno di
spingere il metodo delle fluttuazioni di velocità a livelli di segnale
molto più bassi.
Figura 3.2: Il telescopio spaziale Kepler il cui lancio è programmato per i primi mesi del
2009.
47
Capitolo 4
I SISTEMI PLANETARI
Fino a 10 anni fa, la nostra conoscenza dei pianeti e dei sistemi planetari era
basata sulle caratteristiche osservative del solo Sistema Solare. I nuovi
esopianeti, scoperti attorno ad altre stelle, hanno mostrato un quadro diverso
e più generale dei sistemi planetari e della formazione planetaria.
4.1 Teorie sulla formazione dei sistemi planetari
Tra i primi modelli che hanno provato a spiegare la formazione del Sistema
Solare dobbiamo ricordare quello di Pierre Laplace (1796) e quello di James
Jeans (1917). Tuttavia, sia queste teorie, che quelle frutto dell’evoluzione di
queste idee originali, non sono riuscite a spiegare alcune proprietà quali: la
distribuzione del momento angolare nel sistema e la lenta rotazione del Sole.
La scoperta di diversi esopianeti con caratteristiche molto particolari rispetto
a quelle del Sistema Solare, come ad esempio gli esopianeti della taglia di
Giove con orbite poco eccentriche (47 UMa), molto eccentriche (70 Vir) e
molto vicini (pianeti gioviani caldi) in orbita pressoché circolare (51 Peg),
hanno indicato la necessità di rivedere le vecchie teorie e di sviluppare dei
modelli adatti a spiegare l’origine planetaria. Qui presentiamo due meccanismi
riguardanti la formazione planetaria: l’accrescimento del nucleo e l’instabilità
del disco.
I pianeti giganti gassosi potrebbero essersi formati attraverso il processo di
accrescimento del nucleo, durante il quale gli elementi che collidono
all’interno di una nebulosa stellare danno origine ad oggetti solidi. Nuclei
solidi di circa 10 masse terrestri, nella parte esterna della nebulosa stellare in
orbite approssimativamente circolari, possono aggregare enormi inviluppi
gassosi (Mizuno 1980). Il protopianeta forma un’atmosfera, cresce attirando a
48
sé gas e planetesimi fino a che non si rompe l’equilibrio idrostatico. Allora
l’atmosfera si contrae durante un breve periodo di collasso in modo tale che il
protopianeta acquisisce la maggior parte della sua massa attuale (Pollack et al.
1996).
Il meccanismo dell’instabilità del disco suggerisce la formazione di proto
pianeti attraverso le instabilità gravitazionali. Un disco instabile può dare
origine a bracci a spirale che possono aumentare di densità fino a raggiungere
una massa sufficiente per essere autogravitazionalmente stabili e formare
protopianeti in un centinaio d’anni (Boss 2002).
In tutti gli scenari è molto difficile formare pianeti giganti a corte distanze
dalla stella, come invece si è osservato per l’intera classe dei pianeti gioviani
caldi, di cui il primo esempio è 51 Peg b. La difficoltà sta nel fatto che le
temperature molto alte e la presenza di campi magnetici in queste regioni
impediscono l’attrazione dei gas. Per superare le difficoltà che i meccanismi di
formazione in-situ incontrano, è stato suggerito che i pianeti potrebbero
essersi formati a distanze molto maggiori, ed essere migrati nelle orbite attuali
a corto periodo solo più tardi a causa di interazioni col disco.
4.2 Le proprietà generali delle stelle e degli esopianeti scoperti
Con circa 200 pianeti rivelati, è possibile esaminarne la statistica. La
Figura 4.1 mostra la distribuzione delle masse M P sin i dei pianeti noti. Questa
funzione di massa sembra seguire una legge di potenza con pendenza circa 1.1, che non presenta molti oggetti oltre le 10 MJ. Dato che i pianeti più
grandi sono anche i più facili da osservare, e dato che non si è trovata scarsità
di pianeti gioviani in orbite strette, questo limite è probabilmente reale. La
Figura 4.2 mostra la distribuzione dei semiassi maggiori delle orbite e delle
eccentricità. Ancora una volta va notato come la casistica dei sistemi planetari
mostri una grande diversità rispetto al semplice sistema solare: le orbite quasi
49
circolari non sono assolutamente la regola, i valori delle eccentricità arrivano
fino a ~0.8. Inoltre, le orbite più strette tendono ad essere circolari.
Figura 4.1: Distribuzione delle masse M P sin i degli esopianeti.
Figura 4.2: Distribuzione dei semiassi e delle eccentricità di alcuni degli esopianeti.
50
Figura 4.3: Le masse e i semiassi di alcuni esopianeti confrontati con i pianeti del Sistema
Solare.
Sorprendente risulta la distribuzione della probabilità di trovare pianeti
attorno ad una stella. Dati i limiti di rivelazione, queste percentuali vanno
considerate come limiti inferiori. Risulta (Figura 4.4) che la probabilità di
rivelare un pianeta è una funzione forte della metallicità della stella: attorno a
stelle più metalliche si trovano più pianeti. Inoltre, l'esistenza di sistemi
planetari è un fatto molto comune, tanto da rendere plausibile l'ipotesi che
ogni stella sufficientemente metallica abbia il suo sistema.
Figura 4.4: Probabilità di rivelazione dei pianeti in funzione della metallicità della stella
(Fischer e Valenti 2005).
51
4.3 Nomenclatura
Per il primo pianeta scoperto nel sistema (per esempio 51 Pegasi b) si
aggiunge una lettera minuscola dopo il nome della stella, incominciando da
“b” e si prosegue così via.
Si noti che le lettere non vengono assegnate a seconda della posizione. Per
esempio, nel sistema Gliese 876, l’ultimo pianeta scoperto è stato chiamato
Gliese 876 d, nonostante sia il più vicino alla stella di Gliese 876 b e Gliese
876 c.
Prima della scoperta di 51 Pegasi b, nel 1995, i pianeti extrasolari erano
chiamati differentemente. I primi pianeti extrasolari scoperti attorno alla
pulsar PSR 1257+12 furono chiamati con le lettere maiuscole: PSR 1257+12
B e PSR 1257+12 C. Quando un nuovo pianeta più vicino fu scoperto
attorno alla pulsar, esso venne denominato PSR 1257+12 A e non D.
Inoltre, parecchi pianeti extrasolari hanno soprannomi non ufficiali. Ad
esempio, HD 209458 b è ufficiosamente chiamato “Osiride” e 51 Pegasi b è
soprannominato
"Bellerofonte"1.
Attualmente
l’IAU
(International
Astronomical Union) non ha in programma di dare nomi ufficiali ai pianeti
extrasolari, poiché si ritiene che ciò non sia praticabile.
1
Bellerofonte è un eroe della mitologia greca che, secondo le narrazioni di Esiodo e Pindaro, cavalcava
Pegaso
52
4.4 Pianeti extrasolari degni di nota
La pietra miliare dei pianeti extrasolari fu posta nel 1992 dagli astronomi
Wolszczan e Frail, che pubblicarono sulla rivista Nature i risultati di una loro
osservazione, indicando che intorno alla pulsar PSR B1257+12 orbitavano dei
pianeti. Le osservazioni erano cominciate due anni prima, grazie al
Radiotelescopio di Arecibo, portando a questa sensazionale scoperta: si
trattava dei primi pianeti extrasolare di cui era stata confermata l'esistenza.
La prima scoperta di pianeta extrasolare ad essere stata verificata fu quella 51
Pegasi b, che orbita attorno a una stella della sequenza principale (51 Pegasi);
fu annunciata da Michel Mayor e Didier Queloz sulla rivista Nature il 6
Ottobre 1995. Inizialmente, gli astronomi erano sorpresi per la scoperta di
questo "hot Jupiter", ma presto furono rinvenuti numerosi i pianeti di questo
tipo.
Da allora, vi sono state numerose altre scoperte interessanti e significative:
1999, HD 209458 b
Questo pianeta extrasolare, originariamente scoperto con il metodo delle
velocità radiali, divenne il primo pianeta extrasolare a essere osservato
transitare davanti alla propria stella. Il metodo del transito ha dimostrato
l'esistenza di un pianeta extrasolare, confermando i risultati del metodo delle
velocità radiali.
2003, PSR B1620-26c
Il 10 Luglio 2003, utilizzando le informazioni del Telescopio Spaziale
Hubble, un gruppo di scienziati guidati da Steinn Sigurdsson scoprì quello che
è ancora oggi il più vecchio pianeta extrasolare conosciuto. Il pianeta è situato
nell'ammasso globulare M4, nella costellazione dello Scorpione, a circa 5600
anni luce dalla Terra. Inoltre, si tratta del solo pianeta conosciuto che orbiti
attorno a un sistema stellare binario: una delle due stelle del sistema è una
53
pulsar, mentre l'altra è una nana bianca. Il pianeta ha una massa pari al doppio
di quella di Giove e si pensa abbia 12,5-13 miliardi di anni.
2006, OGLE-2005-BLG-390Lb
Il 25 Gennaio del 2006, fu annunciata la scoperta di OGLE-2005-BLG390Lb. Questo è probabilmente il pianeta extrasolare più distante e più freddo
mai individuato fino ad ora. Il pianeta orbita attorno ad una stella nana rossa
situata a circa 21500 anni-luce di distanza dalla Terra, vicino al centro della
Via Lattea. E' stato stimato che abbia una massa pari a 5,5 volte quella della
Terra: ciò farebbe di OGLE-2005-BLG-390Lb uno dei pianeti extrasolari più
piccoli finora scoperti attorno a una stella della sequenza principale.
2006, HAT-P-1b
Usando un network di piccoli telescopi automatizzati noti come HAT, gli
astronomi del Smithsonian Institution hanno individuato un pianeta,
battezzato inizialmente come HAT-P-1b, che orbita attorno a una stella
distante 450 anni luce dalla Terra, nella costellazione della Lucertola. Il pianeta
ha un diametro che equivale a 1,38 volte quello di Giove, ma ha solamente
metà della massa del più grande pianeta del Sistema Solare: ciò fa di lui il
pianeta extrasolare meno denso osservato fino ad ora (la sua densità è circa
1/4 di quella dell'acqua). Rimane ancora poco chiaro come un pianeta possa
evolversi, e si pensa che uno studio approfondito di HD 209458 b (così è
stato ribattezzato il pianeta) possa contribuire alla formulazione di una teoria
efficace sulla formazione e sull'evoluzione dei pianeti.
2007, HD 209458 b e HD 189733b
Il 21 Febbraio, 2007, la NASA e la rivista scientifica Nature hanno rilasciato
la notizia che HD 209458 b e HD 189733 b sono i primi pianeti extrasolari di
cui si è riuscito ad osservare direttamente lo spettro. Tale sistema fu
considerato il primo metodo tramite il quale era possibile individuare la
54
presenza di forme di vita non senzienti, analizzando la composizione
dell'atmosfera del pianeta. Un gruppo di scienziati, guidati da Jeremy
Richardson del NASA's Goddard Space Flight Center furono i primi a
pubblicare, il 22 Febbraio un articolo su Nature. Gli scienziati analizzarono lo
spettro dell'atmosfera di HD 209458 b, ottenendo risultati molto diversi da
quelli aspettati. Lo spettro avrebbe dovuto avere un picco attorno ai 10
micrometri, il che avrebbe suggerito la presenza di vapore acqueo
nell'atmosfera; tuttavia, il picco non fu rilevato, e ciò portò ad escludere
l'ipotesi della presenza si acqua sotto forma di vapore. Un picco non previsto
fu invece rilevato attorno ai 9,65 micrometri. Gli scienziati lo attribuirono alla
presenza di nuvole di polvere di silicati, un fenomeno prima non osservato.
Infine, un ultimo picco imprevisto fu rilevato attorno ai 7,78 micrometri, che
gli scienziati non sono ancora riusciti a spiegare.
2007, Gliese 581 c
Annunciato su Space.com il 24 Aprile 2007, è stato detto che questo pianeta
sia in grado di supportare la presenza di acqua allo stato liquido e, quindi, la
vita. Sebbene non vi siano dati evidenti che segnalino la presenza di acqua, la
posizione del pianeta— nella cosiddetta zona abitabile del sistema—
permetterebbe
all'acqua
di
esistere.
La
conferma
della
posizione
dell'esopianeta è stata ottenuta grazie all'HARPS dell' European Southern
Observatory; per l'occasione fu utilizzato un telescopio di 3,6 m di diametro e
usato il metodo della velocità radiale. Gliese 581 c, secondo le stime,
dovrebbe essere circa il 50% più grande della Terra, e avere una massa pari a 5
volte quella terrestre. Alcuni ricercatori sostengono che Gliese 581 c potrebbe
essere caratterizzato da una sorta di effetto serra e se così, il pianeta
somiglierebbe come aspetto (non come dimensioni) a Venere, e non sarebbe
in grado di ospitare la vita. Tuttavia, gli stessi sostengono che Gliese 581 d,
altro pianeta del sistema, sarebbe vicino al bordo esterno della zona abitabile,
avendo quindi maggiori probabilità di sostegno della vita rispetto a Gliese 581
c.
55
2007, Corot-exo-1b
Il 3 maggio 2007 viene annunciato il primo pianeta scoperto dalla missione
COROT Il pianeta e' un classico pianeta gioviano caldo con periodo di 1.5
giorni, di massa circa 1.3 masse gioviane e un raggio tra 1.2 e 1.8 raggi di
Giove.
Figura 4.5: La Terra messa a confronto con Gliese 581 c.
56
4.5 Zona Abitabile e “Biosignatures”
La Zona Abitabile (ZA) circumstellare è definita come la regione attorno alla
stella entro la quale un pianeta simile alla Terra può mantenere acqua allo
stato liquido sulla sua superficie, una condizione necessaria per la fotosintesi2.
Entro la ZA, la luce della stella è sufficientemente intensa da permettere ad
una atmosfera serra di mantenere una temperatura superficiale di circa 273 K
ed abbastanza tenue da non provocare condizioni serra che vaporizzino le
intere riserve d’acqua, permettendo la foto dissociazione del vapore d’acqua e
la perdita di idrogeno nello spazio. La Zona Continuamente Abitabile (ZCA)
è la regione che rimane abitabile per più di 1 miliardo d’anni. La Figura 4.6
mostra i limiti della ZCA in funzione della massa stellare. I pianeti nella ZA
non sono necessariamente abitabili. Possono essere troppo piccoli, come
Marte, per mantenere una geologia attiva e limitare la perdita della loro
atmosfera. Possono essere troppo grandi, come HD69830d, e aver creato un
inviluppo di H2-He al disotto del quale l’acqua non può essere liquida.
Figura 4.6: La ZCA (regione blu) attorno a stelle di classe diversa. La regione attorno al Sole che rimane
abitabile per più di 5 miliardi di anni va da 0.76 a 1.63 UA.
2
Infatti l’equazione della fotosintesi clorofilliana ossigenica è 6 CO2(gas) + 12 H2O(liq) + 686
Kilocalorie/mole → C6H12O6(aq) + 6 O2(gas) + 6 H2O(liq)
57
Quindi, per sapere se un pianeta della ZA è veramente abitato, bisogna cercare
le “biosignatures”, caratteristiche che sono specifiche delle attività biologiche
e che possono essere individuate. Un esempio è l’O2 prodotto dalla
fotosintesi.
La Missione Darwin sarà capace di cercare i segnali di vita negli spettri dei
pianeti scoperti nella ZA della propria stella. La Figura 4.7 mostra che lo
spettro della Terra nel medio-IR presenta la banda dell’O3 a 9.6 µm, la banda
del CO2 a 15 µm, la banda dell’H2O a 6.3 µm e la banda rotazionale dell’H2O
che si estende fino a 12 µm. Lo spettro della Terra è palesemente diverso da
quello di Marte e di Venere che presentano solo la banda del CO2. Quindi la
rilevazione combinata delle bande di assorbimento dell’O3, dell’H2O e del
CO2 è il segnale più robusto e meglio studiato dell’attività biologica.
Figura 4.7: Lo spettro nel medio-IR di Venere, Terra e Marte visti da 10 pc.
58
Capitolo 5
CONCLUSIONI
La ricerca dei pianeti extrasolari si sta mostrando uno dei settori più attivi
nel campo dell’astronomia grazie alla scoperta di più di 260 pianeti in soli 12
anni.
Si stanno progettando tecnologie sempre più avanzate al fine di avere:
spettrografi che riescano a rilevare differenze di velocità radiale pari al km/h,
ottiche adattive e tecniche interferometriche più performanti che permettano
di avere risoluzioni angolari di 1 µas, coronografi che consentano di
guadagnare 5 magnitudini in termini di contrasto e missioni spaziali che
studino centinaia di migliaia di stelle contemporaneamente.
Scopi della ricerca sono quelli di riuscire a rilevare pianeti di taglia simile alla
Terra, formulare una teoria che spieghi come si sono formati i pianeti e capire
quali siano le proprietà dei sistemi planetari.
Infine il massimo obiettivo rimane quello di dare una risposta alla domanda
principe che attanaglia l’uomo da millenni: esistono altre forme di vita
nell’Universo? È entusiasmante pensare che i telescopi spaziali – a cominciare
da Kepler e Corot – potrebbero dare una risposta affermativa nel corso della
nostra vita.
59
BIBLIOGRAFIA
O. Absil, A. Baglin, C. Beichman, L. Colangeli, V. Coudé du Foresto, C.
Eiroa, T. Henning, T. Herbst, K. Johnston, L. Kaltenegger, P. Lawson, A.
Léger, R. Liseau, F. Malbet, B. Mennesson, D. Mourard, C. Moutou, M.
Ollivier, F. Paresce, G. Perrin, D. Queloz, A. Quirrenbach, H. Röttgering,
D. Rouan, J. Schneider, M. Tamura, G. White, W. Benz, M. Blanc, H.
Lammer, F. Selsis, D. Stam, G. Tinetti, F. Westall, A. Brack, C. Cockell,
H. Cottin, L. d’Hendecourt, L. Labadie, B. Chazelas, A. Chelli, D.
Defrère, J-W. den Herder, P. Kern, R. Launhardt R., O. Lay, J-M.
LeDuigou, S. Martin, D. Mawet, L. Mugnier, Y. Rabbia, N. Santos, G.
Serabyn e E. Thiébaut. Darwin – Science across disciplines – A proposal
for the cosmic vision 2015-2025 ESA plan, Giugno 2007.
R. Alonso, T. M. Brown, G. Torres, D. W. Latham, A. Sozzetti, G.
Mandushev, J. A. Belmonte, D. Charbonneau, H. J. Deeg, E. W.
Dunham, F. T. O'Donovan e R. P. Stefanik. TrES-1: The Transiting
Planet of a Bright K0 V Star. ApJ, 613:L153, Ottobre 2004.
R. Alonso. Deteccion y caracterizacion de exoplanetas mediante el método de
los transitos. Tesi di Dottorato, 2006.
A. Amir. Extrasolar Planets. The Planetary Society, 2007.
R. Angel. Ground-based imaging of extrasolar planets using adaptive optics.
Nature, 368:203, 1994.
H. Asada, T. Akasaka e M. Kasai. Inversion formula for determining
parameters of an astrometric binary. astro-ph/0409613, Settembre 2004.
J.P. Beaulieu et al. Discovery of a cool planet of 5.5 Earth masses through
gravitational microlensing. Nature, 439: 437, 2006.
G. F. Benedict, B. E. McArthur, T. Forveille, X. Delfosse, E. Nelan, R. P.
Butler, W. Spiesman, G. Marcy, B. Goldman, C. Perrier, W. H. Jefferys e
M. Mayor. A Mass for the Extrasolar Planet Gliese 876b Determined
from Hubble Space Telescope Fine Guidance Sensor 3 Astrometry and
High-Precision Radial Velocities. ApJ, 581:L115, Dicembre 2002.
G. F. Benedict e B. E. McArthur. Turning Companions into Planets - HST
Astrometry of Exoplanet Candidates. (Michelson Summer Workshop),
Luglio 2005.
60
A. Boccaletti, C. Moutou, A. Labeyrie, D. Kohler e F. Vakili. Present
performance of the dark-speckle coronagraph. Astron. Astrophys. Suppl.
Ser., 133:395, 1998.
A. Boccaletti, D. Mouillet, T. Fusco et al. In Proc. of the IAU Colloquium
“Direct Imaging of Exoplanets : Science & Techniques”, Nice. astroph/0512092, 2005.
I. A. Bond, A. Udalski, M. Jaroszynski, N. J. Rattenbury, B. Paczynski, I.
Soszynski, L. Wyrzykowski, M. K. Szymanski, M. Kubiak, O. Szewczyk,
K. Zebrun, G. Pietrzynski, F. Abe, D. P. Bennett, S. Eguchi, Y. Furuta, J.
B. Hearnshaw, K. Kamiya, P. M. Kilmartin, Y. Kurata, K. Masuda, Y.
Matsubara, Y. Muraki, S. Noda, K. Okajima, T. Sako, T. Sekiguchi, D. J.
Sullivan, T. Sumi, P. J. Tristram, T. Yanagisawa e P. C. M. Yock. OGLE
2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event.
ApJ, 606:L155, Maggio 2004.
A. P. Boss. Formation of gas and ice giant planets. Earth and Planetary
Science Letters, 202:513, Settembre 2002.
F. Bouchy. Détection des exoplanètes par mesures de vitesses radiales. (Ecole
CNRS de Goutelas XXVIII), 2005a.
F. Bouchy, S. Udry, M. Mayor, C. Moutou, F. Pont, N. Iribarne, R. da Silva, S.
Ilovaisky, D. Queloz, N. C. Santos, D. Ségransan e S. Zucker. ELODIE
metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter
transiting the bright K star HD 189733. Astron. Astrophys., 444:L15,
Dicembre 2005b.
R. N. Bracewell. Nature, 274: 780, 1978.
R. N. Bracewell e R. H. McPhie. Searching for nonsolar planets. Icarus,
38:136, 1979.
T. Brown, D. Charbonneau, R. Gilliland et al. ApJ, 552:699, 2001.
R. P. Butler, G. W. Marcy, E. Williams, C. McCarthy, P. Dosanjh e S. S. Vogt.
Attaining Doppler Precision of 3 m/s. PASP, 108:500, Giugno 1996.
R. P. Butler, S. S. Vogt, G. W. Marcy, D. A. Fischer, J. T. Wright, G. W.
Henry, G. Laughlin e J. J. Lissauer. A Neptune-Mass Planet Orbiting the
Nearby M Dwarf GJ 436. ApJ, 617:580, Dicembre 2004.
D. Charbonneau, T. M. Brown, D. W. Latham e M. Mayor. Detection of
Planetary Transits Across a Sun-like Star. ApJ, 529:L45, Gennaio 2000.
2
D. Charbonneau, L. E. Allen, S. T. Megeath, G. Torres, R. Alonso, T. M.
Brown, R. L. Gilliland, D. W. Latham, G. Mandushev, F. T. O'Donovan
e A. Sozzetti. Detection of Thermal Emission from an Extrasolar Planet.
ApJ, 626:523, Giugno 2005.
G. Chauvin, A.-M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song,
J.-L. Beuzit e P. Lowrance. Giant planet companion to 2MASSW
J1207334-393254. Astron. Astrophys., 438:L25, Agosto 2005.
D. Darling. Extrasolar planets. 2005.
D. Deming, S. Seager, L. J. Richardson e J. Harrington. Infrared radiation
from an extrasolar planet. Nature, 434:740, Marzo 2005.
D. A. Fischer e J. Valenti. The Planet-Metallicity Correlation. ApJ, 622:1102,
Aprile 2005.
J.S. Greaves, M.C. Wyatt; W.S. Holland, W.F.R. Dent. Submillimetre Images
of the Closest Debris Disks. Astronomical Society of the Pacific,
Scientific Frontiers in Research on Extrasolar Planets: 239, 2003.
J.S. Greaves, M.C. Wyatt; W.S. Holland, W.F.R. Dent. The debris disk around
tau Ceti: a massive analogue to the Kuiper Belt. Monthly Notices Roy.
Astron. Soc., 351: L54, 2004.
J.S. Greaves, M.C. Wyatt; W.S. Holland, W.F.R. Dent, E.I. Robson, I.M.
Coulson, T. Jenness, G.H. Moriarty-Schieven, G.R. Davis, H.M. Butner,
W.K. Gear, C. Dominik, H. J. Walker. Structure in the Epsilon Eridani
Debris Disk. The Astrophysical Journal, 619: L187, 2005.
O. Guyon, C. Roddier, J. E. Graves et al. PASP, 111:1321, 1999.
G. Hébrard e A. Lecavelier Des Etangs. A posteriori detection of the
planetary transit of HD 189733 b in the Hipparcos photometry. A&A,
445:341, Gennaio 2006.
G. W. Henry, G. W. Marcy, R. P. Butler e S. S. Vogt. A Transiting “51 Peglike" Planet. ApJ, 529:L41, Gennaio 2000.
J. H. Jeans. The part played by rotation in cosmic evolution. MNRAS, 77:186,
Gennaio 1917.
U. G. Jørgensen. Are there Earth-like planets around other stars? Science in
school, Gennaio 2007.
3
D. Koch e A. Gould. Kepler Mission: Capabilities of Various Planet
Detection Methods. Novembre 2001.
A. Labeyrie. Images of exo-planets obtainable from dark speckles in adaptive
telescopes. Astron. Astrophys., 298:544, 1995.
P. Laplace. Exposition du Sistème du Monde Paris. Imprimiere Cercle-Social,
1796.
G. P. Laughlin. Extrasolar Planetary Systems. American Scientist, 94, 5:420,
Settembre 2006.
A. Léger, J. M. Mariotti, B. Mennesson et al. Icarus, 123:249, 1996.
J. Lunine, T. Henning, D. Fischer, G. Melnick, H. Hammel, D. Monet, L.
Hillenbrand, C. Noecker, J. Kasting, S. Peale, G. Laughlin, A.
Quirrenbach, B. Macintosh, S. Seager, M. Marley e J. Winn. ExoPlanet
Task Force Interim Report to Astronomy and Astrophysics Advisory
Committee, Ottobre 2007.
B. Lyot. MNRAS, 99:580, 1939.
F. Malbet. Imagerie directe de planètes extrasolaires. (Ecole CNRS de
Goutelas XXVIII), 2005.
K. Mandel e E. Agol. ApJ, 580:L171, 2002.
A. F. Martinez Fiorenzano. The search for extrasolar planets: Study of line
bisectors from stellar spectra and its relation with precise radial velocity
measurements. Tesi di Dottorato, Gennaio 2006.
M. Mayor e D. Queloz. A Jupiter-Mass Companion to a Solar-Type Star.
Nature, 378:355, Novembre 1995.
M. Mayor, F. Pepe, D. Queloz, F. Bouchy, G. Rupprecht, G. Lo Curto, G.
Avila, W. Benz, J.-L. Bertaux, X. Bonfils, T. Dall, H. Dekker, B. Delabre,
W. Eckert, M. Fleury, A. Gilliotte, D. Gojak, J. C. Guzman, D. Kohler, J.L. Lizon, A. Longinotti, C. Lovis, D. Megevand, L. Pasquini, J. Reyes, J.P. Sivan, D. Sosnowska, R. Soto, S. Udry, A. van Kesteren, L. Weber e U.
Weilenmann. Setting New Standards with HARPS. The Messenger,
114:20, Dicembre 2003.
M. Mayor, S. Udry, D. Naef e altri. Astron. Astrophys., 415:391, 2004.
H.A. McAlister. Astrometry: Revealing the Other Two Dimensions of
Velocity Space. (Michelson Summer Workshop), Luglio 2005.
4
H. Mizuno. Formation of the Giant Planets. Progress of Theoretical Physics,
64:544, Agosto 1980.
D. Mouillet, A. M. Lagrange, J.-L. Beuzit et al. Extrasolar Planets: Today and
Tomorrow, ASP Conf. Ser. 321:39, 2004.
C. Moutou, A. Boccaletti e A. Labeyrie. Coronographic dark-speckle imager
for the NGST. (34eme colloque international d’astrophysique de Liege),
1999.
C. Moutou e Frédéric Pont. Detection and characterization of extrasolar
planets: the transit method. (Ecole CNRS de Goutelas XXVIII), 2005.
R. Neuhäuser, E. W. Guenther, G. Wuchterl, M. Mugrauer, A. Bedalov e P.
H. Hauschildt. Evidence for a co-moving sub-stellar companion of GQ
Lup. Astron. Astrophys., 435:L13, Maggio 2005.
L. O'Hanlon. Cosmic magnifying glass finds new planet. Discovery News,
Aprile 2004.
M. A. C. Perryman. Extra-solar planets. Reports of Progress in Physics,
63:1209, 2000.
M. Perryman e O. Hainaut. Extra-solar planets. Technical report, 2005.
M. Perryman. Planet Detection Methods. Rep. Prog. Phys., 63:1209, 2000
(aggiornamento Aprile 2007).
J. B. Pollack, O. Hubickyj, P. Bodenheimer, J. J. Lissauer, M. Podolak e Y.
Greenzweig. Formation of the Giant Planets by Concurrent Accretion of
Solids and Gas. Icarus, 124:62, Novembre 1996.
F. Pont, C. Melo, F. Bouchy et al. A&A 433:L21, 2005.
D. Pourbaix. Orbital Estimation of Binary Stars. (Michelson Summer
Workshop), Luglio 2005.
E. J. Rivera, J. J. Lissauer, R. P. Butler, G. W. Marcy, S. S. Vogt, D. A. Fischer,
T. M. Brown, G. Laughlin e G. W. Henry. A ~ 7.5
; Planet Orbiting
the Nearby Star, GJ 876. ApJ, 634:625, Novembre 2005.
F. Roddier e C. Roddier. PASP, 109:815, 1997.
D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet e A. Labeyrie. PASP, 112:1479,
2000.
5
S. H. Saar e R. A. Donahue. Activity-related Radial Velocity Variation in Cool
Stars. ApJ, 485:319, August 1997.
N. C. Santos, F. Bouchy, M. Mayor, F. Pepe, D. Queloz, S. Udry, C. Lovis, M.
Bazot, W. Benz, J.-L. Bertaux, G. Lo Curto, X. Delfosse, C. Mordasini, D.
Naef, J.-P. Sivan e S. Vauclair. The HARPS survey for southern extrasolar
planets. II. A 14 Earth-masses exoplanet around µ Arae. A&A, 426:L19,
Ottobre 2004.
J. Schneider. The study of extrasolar planets: methods of detection, first
discoveries e future perspectives. C.R. Acad. Sci. Paris t., 327, Serie IIb,
n.6:621, 1999.
S. Seager e G. Mallen-Ornelas. ApJ, 585:1038, 2003.
A. Sozzetti. Astrometric Methods and Instrumentation to Identify and
Characterize Extrasolar Planets: A Review. astro-ph/0507115, Luglio
2005.
F. Sulehria. Detecting extrasolar planets. Nova Celestia, 2005.
R. Townsend. The Search for Extrasolar Planets. Lezione (University College,
Londra), Gennaio 2003.
S. C. Unwin e C. A. Beichman. In Microwave and Terahertz Photonics.
Proceedings of the SPIE, Vol. 5487:1216, 2004.
A. Udalski et al. Acta Astron., 53:133, 2003.
A. Udalski, M. Jaroszynski, B. Paczynski, M. Kubiak, M. K. Szymanski, I.
Soszynski, G. Pietrzynski, K. Ulaczyk, O. Szewczyk, L. Wyrzykowski, G.
W. Christie, D. L. DePoy, S. Dong, A. Gal-Yam, B. S. Gaudi, A. Gould,
C. Han, S. Lépine, J. McCormick, B.-G. Park, R. W. Pogge, D. P. Bennett,
I. A. Bond, Y. Muraki, P. J. Tristram, P. C. M. Yock, J.-P. Beaulieu, D. M.
Bramich, S. W. Dieters, J. Greenhill, K. Hill, K. Horne e D. Kubas. A
Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071. ApJ,
628:L109, Agosto 2005.
S. Udry. Extrasolar Planet Search: radial-velocity method. Luglio 1999.
W. F. van Altena. Astrometry. Ann. Rev. Astron. Astrophys., 21:131, 1983.
A. Wolszczan e D. A. Frail. A planetary system around the millisecond pulsar
PSR1257 + 12. Nature, 355:145, Gennaio 1992.
6